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Abstract

Machine learning models are increasingly used in high-stakes decision-making systems. In
such applications, a major concern is that these models sometimes discriminate against
certain demographic groups such as individuals with certain race, gender, or age. Another
major concern in these applications is the violation of the privacy of users. While fair
learning algorithms have been developed to mitigate discrimination issues, these algorithms
can still leak sensitive information, such as individuals’ health or financial records. Utilizing
the notion of differential privacy (DP), prior works aimed at developing learning algorithms
that are both private and fair. However, existing algorithms for DP fair learning are either
not guaranteed to converge or require full batch of data in each iteration of the algorithm
to converge. In this paper, we provide the first stochastic differentially private algorithm
for fair learning that is guaranteed to converge. Here, the term “stochastic” refers to the
fact that our proposed algorithm converges even when minibatches of data are used at
each iteration (i.e. stochastic optimization). Our framework is flexible enough to permit
different fairness notions, including demographic parity and equalized odds. In addition,
our algorithm can be applied to non-binary classification tasks with multiple (non-binary)
sensitive attributes. As a byproduct of our convergence analysis, we provide the first utility
guarantee for a DP algorithm for solving nonconvex-strongly concave min-max problems.
Our numerical experiments show that the proposed algorithm consistently offers significant
performance gains over the state-of-the-art baselines, and can be applied to larger scale
problems with non-binary target/sensitive attributes.

1. Introduction

In recent years, machine learning algorithms have been increasingly used to inform decisions
with far-reaching consequences (e.g. whether to release someone from prison or grant them
a loan), raising concerns about their compliance with laws, regulations, societal norms, and
ethical values. Specifically, machine learning algorithms have been found to discriminate
against certain “sensitive” demographic groups (e.g. racial minorities), prompting a profu-
sion of algorithmic fairness research (Dwork et al., 2012; Sweeney, 2013; Datta et al., 2015;
Feldman et al., 2015; Bolukbasi et al., 2016; Angwin et al., 2016; Calmon et al., 2017; Hardt
et al., 2016a; Fish et al., 2016; Woodworth et al., 2017; Zafar et al., 2017; Bechavod and
Ligett, 2017; Kearns et al., 2018; Prost et al., 2019; Baharlouei et al., 2020; Lowy et al.,
2022). Algorithmic fairness literature aims to develop fair machine learning algorithms that
output non-discriminatory predictions.
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Fair learning algorithms typically need access to the sensitive data in order to ensure
that the trained model is non-discriminatory. However, consumer privacy laws (such as the
E.U. General Data Protection Regulation) restrict the use of sensitive demographic data in
algorithmic decision-making. These two requirements–fair algorithms trained with private
data–presents a quandary: how can we train a model to be fair to a certain demographic if
we don’t even know which of our training examples belong to that group?

The works of Veale and Binns (2017); Kilbertus et al. (2018) proposed a solution to this
quandary using secure multi-party computation (MPC), which allows the learner to train a
fair model without directly accessing the sensitive attributes. Unfortunately, as Jagielski
et al. (2019) observed, MPC does not prevent the trained model from leaking sensitive data.
For example, with MPC, the output of the trained model could be used to infer the race of
an individual in the training data set (Fredrikson et al., 2015; He et al., 2019; Song et al.,
2020; Carlini et al., 2021). To prevent such leaks, Jagielski et al. (2019) argued for the
use of differential privacy (Dwork et al., 2006) in fair learning. Differential privacy (DP)
provides a strong guarantee that no company (or adversary) can learn much more about
any individual than they could have learned had that individual’s data never been used.

Since Jagielski et al. (2019), several follow-up works have proposed alternate approaches
to DP fair learning (Xu et al., 2019; Ding et al., 2020; Mozannar et al., 2020; Tran et al.,
2021b,a, 2022). As shown in Fig. 1, each of these approaches suffers from at least two
critical shortcomings. In particular, none of these methods have convergence guarantees
when mini-batches of data are used in training. In training large-scale models, memory and
efficiency constraints require the use of small minibatches in each iteration of training (i.e.
stochastic optimization). Thus, existing DP fair learning methods cannot be used in such
settings since they require computations on the full training data set in every iteration.
See Appendix A for a more comprehensive discussion of related work.

Our Contributions: In this work, we propose a novel algorithmic framework for
DP fair learning. Our approach builds on the non-private fair learning method of Lowy
et al. (2022). We consider a regularized empirical risk minimization (ERM) problem where
the regularizer penalizes fairness violations, as measured by the Exponential Rényi Mutual
Information. Using a result from Lowy et al. (2022), we reformulate this fair ERM problem
as a min-max optimization problem. Then, we use an efficient differentially private variation
of stochastic gradient descent-ascent (DP-SGDA) to solve this fair ERM min-max objective.
The main features of our algorithm are:

1. Guaranteed convergence for any privacy and fairness level, even when mini-batches of
data are used in each iteration of training (i.e. stochastic optimization setting). As
discussed, stochastic optimization is essential in large-scale machine learning scenarios.
Our algorithm is the first provably convergent stochastic DP fair learning method.

2. Flexibility to handle non-binary classification with multiple (non-binary) sensitive
attributes (e.g. race and gender) under different fairness notions such as demographic
parity or equalized odds. In each of these cases, our algorithm converges.

Empirically, we show that our method outperforms the previous state-of-the-art methods
in terms of fairness vs. accuracy trade-off across all privacy levels. Moreover, our algorithm
is capable of training with mini-batch updates and can handle non-binary target and non-
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binary sensitive attributes. By contrast, existing DP fairness algorithms could not converge
in our stochastic/non-binary experiment.

Reference Non-binary 
target?

Multiple 
fairness 
notions?

Convergence 
guarantee 

(poly. time)?

Guarantees 
with mini-
batches?

This work

Jagielski et al. 
(2019) 


(post-proc.)*
N/A

Jagielski et al. 
(2019)

(in-proc.)

Xu et al. 
(2019)

Ding et al. 
(2020)

Mozannar et 
al. (2020)

Tran et al. 
(2021a) 

Tran et al. 
(2021b)

Tran et al. 
(2022)

Figure 1: Comparison with existing works.
“Guarantee” refers to provable guar-
antee. N/A: the post-processing
method of Jagielski et al. (2019) is
not an iterative algorithm. *Method
requires access to the sensitive data at
test time. The in-processing method
of Jagielski et al. (2019) is inefficient.
The work of Mozannar et al. (2020)
specializes to equalized odds, but
most of their analysis seems to be
extendable to other fairness notions.

A byproduct of our algorithmic develop-
ments and analyses is the first DP conver-
gent algorithm for nonconvex min-max opti-
mization: namely, we provide an upper bound
on the stationarity gap of DP-SGDA for solv-
ing problems of the form minθ maxW F pθ,W q,
where F p¨,W q is non-convex. We expect this
result to be of independent interest to the DP
optimization community. Prior works that
provide convergence results for DP min-max
problems have assumed that F p¨,W q is either
(strongly) convex (Boob and Guzmán, 2021;
Zhang et al., 2022) or satisfies a generaliza-
tion of strong convexity known as the Polyak-
 Lojasiewicz (PL) condition (Yang et al., 2022).

2. Preliminaries

Let Z “ tzi “ pxi, si, yiquni“1 be a data set with
non-sensitive features xi P X , discrete sensi-
tive attributes (e.g. race, gender) si P rks fi

t1, . . . , ku, and labels yi P rls. Let pyθpxq denote
the model predictions parameterized by θ, and
ℓpθ, x, yq “ ℓppyθpxq, yq be a loss function (e.g.
cross-entropy loss). Our goal is to (approxi-
mately) solve the empirical risk minimization
(ERM) problem

min
θ

#

pLpθq :“
1

n

n
ÿ

i“1

ℓpθ, xi, yiq

+

(1)

in a fair manner, while maintaining the differential privacy of the sensitive data tsiu
n
i“1. We

consider two different notions of fairness in this work:1

Definition 1 (Fairness Notions) Let A : Z Ñ Y be a classifier.

• A satisfies demographic parity (Dwork et al., 2012) if the predictions ApZq are statis-
tically independent of the sensitive attributes.

• A satisfies equalized odds (Hardt et al., 2016a) if predictions ApZq are conditionally
independent of sensitive attributes given Y “ y for all y.

1. Our method can also handle any other fairness notion that can be defined in terms of statistical (con-
ditional) independence, such as equal opportunity. However, our method cannot handle all fairness
notions: for example, false discovery rate and calibration error are not covered by our framework.
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Depending on the specific problem at hand, one fairness notion may be more desirable
than the other (Dwork et al., 2012; Hardt et al., 2016a). In practice, achieving exact fairness,
i.e. (conditional) independence of pY and S, is unrealistic (Cummings et al., 2019). Thus,
we instead aim to design an algorithm that achieves small fairness violation on the given
data set Z. Fairness violation can be measured in different ways: see e.g. Lowy et al. (2022)
for a survey. For example, if demographic parity is the desired fairness notion, then one can

measure (empirical) demographic parity violation by max
pyPY maxsPS

ˇ

ˇ

ˇ
p̂

pY |S
ppy|sq ´ p̂

pY
ppyq

ˇ

ˇ

ˇ
,

where p̂ denotes an empirical probability calculated directly from pZ, tpyiu
n
i“1q.

Next, we define differential privacy (DP). Following Jagielski et al. (2019); Tran et al.
(2021b, 2022), we consider a relaxation of DP, in which only the sensitive attributes require
privacy. Say Z and Z 1 are adjacent with respect to sensitive data if Z “ tpxi, yi, siquni“1,
Z 1 “ tpxi, yi, s

1
iquni“1, and there is a unique i P rns such that si ‰ s1

i.

Definition 2 (Differential Privacy w.r.t. Sensitive Attributes) Let ϵ ě 0, δ P r0, 1q.
A randomized algorithm A is pϵ, δq-differentially private w.r.t. sensitive attributes S (DP)
if for all pairs of data sets Z,Z 1 that are adjacent w.r.t. sensitive attributes, we have

PpApZq P Oq ď eϵPpApZq P Oq ` δ, (2)

for all measurable O Ď Y.

Definition 2 is useful if a company wants to train a fair model, but is unable to use the
sensitive attributes (which are needed to train a fair model) due to privacy concerns and
laws (e.g., the E.U.’s GDPR). Definition 2 enables the company to privately use the sensitive
attributes to train a fair model, while satisfying legal and ethical constraints. That being
said, Definition 2 still may not prevent leakage of non-sensitive data. Thus, if the company
is concerned with privacy of user data beyond the sensitive demographic attributes, then it
should impose DP for all the features. Our algorithm and analysis readily extends to DP
for all features: see Section 3.

Throughout the paper, we shall restrict attention to data sets that contain at least

ρ-fraction of every sensitive attribute for some ρ P p0, 1q: i.e. 1
|Z|

ř|Z|

i“1 1tsi“ru ě ρ for all

r P rks. This is a reasonable assumption in practice: for example, if sex is the sensitive
attribute and a data set contains all men, then training a model that is fair with respect to
sex and has a non-trivial performance (better than random) seems almost impossible.

3. Private Fair ERM via Exponential Rényi Mutual Information

A standard in-processing strategy in the literature for enforcing fairness is to add a regu-
larization term to the empirical objective that penalizes fairness violations (Zhang et al.,
2018; Donini et al., 2018; Mary et al., 2019; Baharlouei et al., 2020; Cho et al., 2020; Lowy
et al., 2022). We can then jointly optimize for fairness and accuracy by solving

min
θ

!

pLpθq ` λDppY , S, Y q

)

,

where D is some measure of statistical (conditional) dependence between the sensitive at-
tributes and the predictions (given Y ), and λ ě 0 is a scalar balancing fairness and accuracy.
The choice of D is crucial and can lead to different fairness-accuracy profiles. Inspired by
the strong empirical performance and amenability to stochastic optimization of Lowy et al.
(2022), we choose D to be the Exponential Rényi Mutual Information (ERMI):
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Definition 3 (ERMI – Exponential Rényi Mutual Information) We define the ex-

ponential Rényi mutual information between random variables pY and S with empirical joint
distribution p̂

pY ,S
and marginals p̂

pY
, p̂S by:

pDRppY , Sq :“ E

#

p̂
pY ,SppY , Sq

p̂
pY ppY qp̂SpSq

+

´ 1 “
ÿ

jPrls

ÿ

rPrks

p̂
pY ,Spj, rq2

p̂
pY pjqp̂Sprq

´ 1 (ERMI)

Definition 3 is what we would use if demographic parity were the desired fairness notion. If
instead one wanted to encourage equalized odds, then Theorem 3 can be readily adapted
to these fairness notions by substituting appropriate conditional probabilities for p̂

pY ,S
, p̂

pY
,

and p̂S in (ERMI): see Appendix B for details.2 It can be shown that ERMI ě 0, and is zero
if and only if demographic parity (or equalized odds, for the conditional version of ERMI)
is satisfied (Lowy et al., 2022). Further, any algorithm that makes ERMI small will also
have small fairness violation with respect to other notions of fairness violation (Lowy et al.,
2022). Lastly, (Lowy et al., 2022, Proposition 2) shows that empirical ERMI (Theorem 3)
is an asymptotically unbiased estimator of “population ERMI”–which can be defined as in
Definition 3, but with empirical distributions replaced by their population counterparts.

Our approach to enforcing fairness is to augment (1) with an ERMI regularizer and
privately solve:

min
θ

!

FERMIpθq :“ pLpθq ` λ pDRppYθpXq, Sq

)

. (FERMI obj.)

There are numerous ways to privately solve (FERMI obj.). For example, one could use
the exponential mechanism (McSherry and Talwar, 2007), or run noisy gradient descent
(GD) (Bassily et al., 2014). The problem with these approaches is that they are inefficient
or require computing n gradients at every iteration, which is prohibitive for large-scale
problems, as discussed earlier. We could not run noisy stochastic GD (SGD) on (FERMI
obj.) because we do not (yet) have a statistically unbiased estimate of ∇θ

pDRppYθpXq, Sq.
Our next goal is to derive a stochastic, differentially private fair learning algorithm. For

feature input x, let the predicted class labels be given by pypx, θq “ j P rls with probability
Fjpx, θq, where Fpx, θq is differentiable in θ, has range r0, 1sl, and

řl
j“1Fjpx, θq “ 1. For

instance, Fpx, θq “ pF1px, θq, . . . ,Flpx, θqq could represent the output of a neural net after
softmax layer or the probability label assigned by a logistic regression model. Then we have
the following min-max re-formulation of (FERMI obj.):

Theorem 4 (Lowy et al. (2022)) There are differentiable functions pψi such that pψipθ, ¨q
is strongly concave for all θ and (FERMI obj.) is equivalent to

min
θ

max
WPRkˆl

#

pF pθ,W q :“ pLpθq ` λ
1

n

n
ÿ

i“1

pψipθ,W q

+

. (3)

The functions pψi are given explicitly in Appendix C. Theorem 4 is useful because it per-
mits us to use stochastic optimization to solve (FERMI obj.): for any batch size m P rns,
the gradients (with respect to θ and W ) of 1

m

ř

iPB ℓpxi, yi; θq ` λ pψipθ,W q are statistically

unbiased estimators of the gradients of pF pθ,W q, if B is drawn uniformly from Z. However,

2. To simplify the presentation, we will assume that demographic parity is the fairness notion of interest in
the remainder of this section. However, we consider both fairness notions in our numerical experiments.
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when DP of the sensitive attributes is also desired, the formulation (3) presents some chal-
lenges, due to the non-convexity of pF p¨,W q. Indeed, there is no known DP algorithm for
solving non-convex min-max problems that provably converges. Next, we provide the first
such convergence guarantee.

3.1. Noisy DP-FERMI for Stochastic Private Fair ERM

Our proposed stochastic DP algorithm for solving (FERMI obj.), is given in Algorithm 1.
It is a DP variation of stochastic gradient descent ascent (SGDA) (Lin et al., 2020).

Algorithm 1 DP-FERMI Algorithm for Private Fair ERM

1: Input: θ0 P Rdθ , W0 “ 0 P Rkˆl, step-sizes pηθ, ηwq, fairness parameter λ ě 0, iteration
number T , minibatch size |Bt| “ m P rns, set W Ă Rkˆl, noise parameters σ2w, σ

2
θ .

2: Compute pP
´1{2
S .

3: for t “ 0, 1, . . . , T do
4: Draw a mini-batch Bt of data points tpxi, si, yiquiPBt

5: Set θt`1 Ð θt ´
ηθ

|Bt|

ř

iPBt
r∇θℓpxi, yi; θ

tq ` λp∇θ
pψipθt,Wtq ` utqs, where ut „

N p0, σ2θIdθq.

6: Set Wt`1 Ð ΠW
´

Wt ` ηw
”

λ
|Bt|

ř

iPBt
∇w

pψipθt,Wtq ` Vt
ı¯

, where Vt is a kˆ l matrix

with independent random Gaussian entries pVtqr,j „ N p0, σ2wq.
7: end for
8: Pick t̂ uniformly at random from t1, . . . , T u.
9: Return: θ̂T :“ θt̂.

Explicit formulae for ∇θ
pψipθt,Wtq and ∇w

pψipθt,Wtq are given in Lemma 7 (Appendix D).
We provide the privacy and convergence guarantees of Algorithm 1 in Theorem 5:

Theorem 5 Assume the loss function ℓp¨, x, yq and Fpx, ¨q are Lipschitz continuous with
Lipschitz gradient for all px, yq, and pPSprq ě ρ ą 0 @ r P rks. Then there exist algorithmic
parameters such that Algorithm 1 is pϵ, δq-DP and

E}∇FERMIpθ̂T q}2 “ O

˜

a

maxpdθ, klq lnp1{δq

ϵn

¸

.

For large-scale models (e.g. deep neural nets), we typically have dθ " 1 and k, l “ Op1q, so
that the convergence rate of Algorithm 1 is essentially immune to the number of labels and
sensitive attributes. In contrast, no existing works with convergence guarantees are able to
handle non-binary classification (l ą 2), even with full batches and a single binary sensitive
attribute. Also, the utility bound in Theorem 5 corresponds to DP for all of the features.

In Theorem 9 of Appendix E, we prove more generally that noisy DP-SGDA converges
to an approximate stationary point of any smooth nonconvex-strongly concave min-max
optimization problem (not just (3)). We expect Theorem 9 to be of general interest to the
DP optimization community beyond its applications to DP fair learning, since it is the first
DP convergence guarantee for nonconvex min-max optimization.
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4. Numerical Experiments

In this section, we evaluate the performance of our proposed approach (DP-FERMI) in terms
of the fairness violation vs. test error for different privacy levels. We present our results
in two parts: In Section 4.1, we assess the performance of our method in training logistic
regression models on several benchmark tabular datasets. Since this is a standard setup that
existing DP fairness algorithms can handle, we are able to compare our method against the
state-of-the-art baselines. We carefully tuned the hyperparameters of all baselines for fair
comparison. We find that DP-FERMI consistently outperforms all state-of-the-art baselines
across all data sets and all privacy levels. These observations hold for both demographic
parity and equalized odds fairness notions. To quantify the improvement of our results over
the state-of-the-art baselines, we calculated the performance gain with respect to fairness
violation (for fixed accuracy level) that our model yields over all the datasets. We obtained a
performance gain of demographic parity that was 79.648 % better than Tran et al. (2021b)
on average, and 65.89% better on median. The average performance gain of equalized
odds was 96.65% while median percentage gain was 90.02%. In Section 4.2, we showcase
the scalability of DP-FERMI by using it to train a deep convolutional neural network for
classification on a large image dataset. In Appendix F, we give detailed descriptions of the
data sets, experimental setups and training procedure, along with additional results.

4.1. Standard Benchmark Experiments: Logistic Regression

We train a logistic regression model using DP-FERMI (Algorithm 1) for demographic parity
and a modified DP-FERMI (described in Appendix F) for equalized odds. We compare DP-
FERMI against all applicable publicly available baselines in each experiment.

4.1.1. Demographic Parity

We use four benchmark tabular datasets: Adult Income, Retired Adult, Parkinsons, and
Credit-Card dataset from the UCI machine learning repository (Dua and Graff (2017)). The
predicted variables and sensitive attributes are both binary in these datasets. We analyze
fairness-accuracy trade-offs with four different values of ϵ P t0.5, 1, 3, 9u for each dataset
(see Appendix F for complete results). We compare against state-of-the-art algorithms
proposed in Tran et al. (2021a) and (the demographic parity objective of) Tran et al.
(2021b). The results displayed are averages over 15 trials (random seeds) for each ϵ value.

For the Adult dataset, the task is to predict whether the income is greater than $50K or
not keeping gender as the sensitive attribute. The Retired Adult dataset is the same as the
Adult dataset, but with updated data. The results for Adult and Retired Adult are shown
in Figs. 2 and 7 (in Appendix F.2). DP-FERMI offers superior fairness-accuracy tradeoffs
at every privacy (ϵ) level.

In the Parkinsons dataset, the task is to predict whether the total UPDRS score of the
patient is greater than the median or not keeping gender as the sensitive attribute. Results
for ϵ P t1, 3u are shown in Fig. 3. Our algorithm again outperforms the baselines Tran et al.
(2021a,b) for all tested privacy levels.

In the Credit Card dataset , the task is to predict whether the user will default payment
the next month keeping gender as the sensitive attribute. Results are shown in Fig. 8
in Appendix F.2. DP-FERMI provides the best privacy-fairness-accuracy profile.
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(a) ϵ “ 0.5 (b) ϵ “ 1

Figure 2: Private, Fair (Demographic Parity) logistic regression on Adult Dataset.

(a) ϵ “ 1 (b) ϵ “ 3
Figure 3: Private, Fair (Demogrpahic Parity) logistic regression on Parkinsons Dataset

4.1.2. Equalized Odds

Next, we consider the slightly modified version of Algorithm 1, which is designed to minimize
the Equalized Odds violation by replacing the absolute probabilities in the objective with
class conditional probabilities: see Appendix F.2 for details.

We considered the Credit Card and Adult datasets for these experiments, using the same
sensitive attributes as mentioned above. Results for Credit Card are shown in Fig. 4. Adult
results are given in Fig. 10 in Appendix F.2. Compared to Jagielski et al. (2019) and the
equalized odds objective in Tran et al. (2021b), our equalized odds variant of DP-FERMI
outperforms these state-of-the-art baselines at every privacy level.

4.2. Training a Deep Convolutional Neural Network on Image Dataset

In our second set of experiments, we train a deep 9-layer VGG-like classifier (Simonyan and
Zisserman, 2015) with d « 1.6 million parameters on the UTK-Face dataset (Zhang et al.,
2017) using Algorithm 1. We classify the facial images into 9 age groups similar to the setup
in Tran et al. (2022), while keeping race (containing 5 classes) as the sensitive attribute.
See Appendix F.3 for more details.We analyze consider with four different privacy levels
ϵ P t10, 25, 50, 100u. Compared to the tabular datasets, larger ϵ is needed to obtain stable
results in the large-scale setting since the number of parameters d is much larger and the
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(a) ϵ “ 0.5 (b) ϵ “ 1 (c) ϵ “ 3

Figure 4: Private, Fair (Equalized Odds) logistic regression on Credit Card Dataset

cost of privacy increases with d (see Theorem 5). Larger values of ϵ ą 100 were used in the
baseline Jagielski et al. (2019) for smaller scale experiments.

The results in Fig. 5 empirically verify our main theoretical result: DP-FERMI converges
even for non-binary classification with small batch size and non-binary sensitive attributes.
We took Tran et al. (2021a,b) as our baselines and attempted to adapt them to this non-
binary large-scale task. We observed that the baselines were very unstable while training
and mostly gave degenerate results. By contrast, our method was able to obtain stable and
meaningful tradeoff curves. Also, while Tran et al. (2022) reported results on UTK-Face,
their code is not publicly available and we were unable to reproduce their results.

(a) ϵ “ 25 (b) ϵ “ 50

Figure 5: DP-FERMI on a Deep CNN for Image Classification on UTK-Face

5. Concluding Remarks

Motivated by pressing legal, ethical, and social considerations, we studied the challenging
problem of learning fair models with private demographic data. We observed that existing
approaches require full batches of data in each iteration (and/or exponential runtime) in
order to provide convergence/accuracy guarantees. We addressed this limitation by deriving
a DP stochastic optimization algorithm for fair learning, and rigorously proved the conver-
gence of our method. Finally, we evaluated our method in extensive experiments and found
that it significantly outperforms the previous state-of-the-art models, in terms of fairness-
accuracy tradeoff. Potential societal impacts of our work are discussed in Appendix G.
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