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Abstract
This supplement to my paper includes some proofs of
theorems that I don’t have room for in the main text
and an additional example.
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1. Proofs
The proofs of the following two Theorems, 5 and 6, were
included in my original submission, but I’ve had to move
them here to make space for the example in Section 10 of
the paper.

Theorem 5 𝐷𝑠,𝑞 = 𝐷𝑞𝑒 𝑓 𝑓
; ℎ ∈ 𝐷𝑠,𝑞 iff ℎ ∈ 𝐷𝑞𝑒 𝑓 𝑓

, for all
ℎ ∈ L(𝛺).

Proof →: assuming ℎ ∈ 𝐷𝑠,𝑞 , show ℎ ∈ 𝐷𝑞𝑒 𝑓 𝑓
. ℎ ∈

𝐷𝑠,𝑞 iff there is some 𝑛 ∈ ℕ such that ℎ =
∑𝑛

𝑗=1 _ 𝑗𝑔 𝑗 ,
where for every 𝑗 ∈ 1 : 𝑛, _ 𝑗 ∈ ℝ>0 and 𝑔 𝑗 ∈ 𝐷𝑢𝑛𝑖 or
𝑔 𝑗 ∈

⋃
𝑖 𝕀𝐴𝑖

𝐷
𝑞

𝑖
. Recall that 𝑞𝑒 𝑓 𝑓 is the probability function

which has 𝑞𝑒 𝑓 𝑓 (·|𝐴) = 𝑠(𝑞, 𝐴) (·), for all 𝐴 ∈ A, and is
uniform over the acts themselves. Then, clearly, ∀ 𝑗 ∈ 1 : 𝑛,
𝐸𝑞𝑒 𝑓 𝑓 (𝑔 𝑗 ) > 0. And 𝐸𝑞𝑒 𝑓 𝑓

(ℎ) = ∑𝑛
𝑗=1 _ 𝑗𝐸𝑞 (𝑔 𝑗 ) > 0. So,

ℎ ∈ 𝐷𝑞𝑒 𝑓 𝑓
.

←: assuming ℎ ∈ 𝐷𝑞𝑒 𝑓 𝑓
, show ℎ ∈ 𝐷𝑠,𝑞 . ℎ ∈ 𝐷𝑞𝑒 𝑓 𝑓

iff 𝐸𝑞𝑒 𝑓 𝑓
(ℎ) > 0. So there is also some 𝜖 ∈ ℝ>0 such

that 𝐸𝑞𝑒 𝑓 𝑓
(ℎ − 𝜖) > 0. Observe that we can write ℎ =∑𝑚

𝑖=1 𝕀𝐴𝑖
ℎ. (Recall that 𝑚 is the number of acts in A.) Let

𝑔 =
∑𝑚

𝑖=1 𝕀𝐴𝑖
𝐸𝑞𝑒 𝑓 𝑓

(ℎ((𝐴𝑖 , ·)) − 𝜖); 𝑔 is a gamble which
only depends onA and∑𝑚

𝑖=1 𝑔(𝐴𝑖) = 𝐸𝑞𝑒 𝑓 𝑓
(ℎ − 𝜖) > 0, so

𝑔 ∈ 𝐷𝑢𝑛𝑖 . 𝐸𝑠 (𝑝,𝐴𝑖) (𝑔((𝐴𝑖 , ·))) = 𝐸𝑠 (𝑝,𝐴𝑖) (ℎ((𝐴𝑖 , ·))) − 𝜖 ;
so, ∀𝑖 ∈ 1 : 𝑚, 𝐸𝑠 (𝑝,𝐴𝑖) ((ℎ − 𝑔) ((𝐴𝑖 , ·))) = 𝜖 > 0 and
thus (ℎ − 𝑔) ((𝐴𝑖 , ·)) ∈ 𝐷

𝑞

𝑖
. Finally, ℎ = 𝑔 +∑𝑚

𝑖=1 𝕀𝐴𝑖
(ℎ −

𝑔) ((𝐴𝑖 , ·)); 𝑔 ∈ 𝐷𝑢𝑛𝑖 and∀𝑖 ∈ 1 : 𝑚, (ℎ−𝑔) ((𝐴𝑖 , ·)) ∈ 𝐷𝑞

𝑖
.

So, ℎ ∈ 𝐷𝑠,𝑞 = posi(⋃𝑖 𝕀𝐴𝑖
𝐷

𝑞

𝑖
∪ 𝐷𝑢𝑛𝑖).

Theorem 6 For any 𝑃 ⊆ ℙ, 𝑢 ∈ 𝕌, and any two acts,
𝐴, 𝐵 ∈ A, 𝑔𝐴 − 𝑔𝐵 ∈ posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖) iff either:
(1) ∃𝜖1, 𝜖2 ∈ ℝ such that (∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) > 𝜖1 >

𝜖2 > 𝑉 (𝑝, 𝑢, 𝐵)); (2) 𝑔𝐴 = 0 and ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐵) < 0;

(3) 𝑔𝐵 = 0 and ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐴) > 0; or (4) ∀𝑝 ∈ 𝑃,
𝑉 (𝑝, 𝑢, 𝐴) > 0 and 𝑉 (𝑝, 𝑢, 𝐵) < 0.1

Proof ←, part 1: assuming (1), show 𝑔𝐴 − 𝑔𝐵 ∈
posi(⋃𝑖 𝕀𝐴𝑖

𝐷𝑖 ∪𝐷𝑢𝑛𝑖). Let ℎ = 𝕀𝐴𝜖1 − 𝕀𝐵𝜖2; by hypothesis,
𝜖1 − 𝜖2 > 0, so ℎ ∈ 𝐷𝑢𝑛𝑖 . (In what follows, note that both
𝑔1 and 𝑔2 are intended to be read as gambles on X.) Let
𝑔1 = 𝑔𝐴((𝐴, ·))−𝜖1; by hypothesis,∀𝑝 ∈ 𝑃, 𝐸𝑠 (𝑝,𝐴) (𝑔𝐴) >
𝜖1, so 𝑔1 ∈ 𝐷𝐴. Let 𝑔2 = 𝜖2 − 𝑔𝐵 ((𝐵, ·)); by hypothesis,
∀𝑝 ∈ 𝑃, 𝐸𝑠 (𝑝,𝐵) (𝑔𝐵) < 𝜖2, so 𝑔2 ∈ 𝐷𝐵. And 𝑔𝐴 − 𝑔𝐵 =
ℎ + 𝕀𝐴𝑔1 + 𝕀𝐵𝑔2, so 𝑔𝐴 − 𝑔𝐵 ∈ posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖).
←, part 2: assuming (2), show 𝑔𝐴−𝑔𝐵 ∈ posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷𝑖∪
𝐷𝑢𝑛𝑖). 𝑔𝐴 = 0, so 𝑔𝐴 − 𝑔𝐵 = −𝑔𝐵. ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐵) =
𝐸𝑠 (𝑝,𝐵) (𝑔𝐵) < 0, so −𝑔𝐵 ((𝐵, ·)) ∈ 𝐷𝐵. 𝑔𝐴 − 𝑔𝐵 =

−𝕀𝐵𝑔𝐵 ((𝐵, ·)), so 𝑔𝐴 − 𝑔𝐵 ∈ 𝕀𝐵𝐷𝐵 ⊂ posi(
⋃

𝑖 𝕀𝐴𝑖
𝐷𝑖 ∪

𝐷𝑢𝑛𝑖).
←, part 3: assuming (3), show 𝑔𝐴−𝑔𝐵 ∈ posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷𝑖∪
𝐷𝑢𝑛𝑖). 𝑔𝐵 = 0, so 𝑔𝐴 − 𝑔𝐵 = 𝑔𝐴. ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐴) =
𝐸𝑠 (𝑝,𝐴) (𝑔𝐴) > 0, so 𝑔𝐴((𝐴, ·)) ∈ 𝐷𝐴. 𝑔𝐴 − 𝑔𝐵 =

𝕀𝐴𝑔𝐴((𝐴, ·)) ∈ posi(
⋃

𝑖 𝕀𝐴𝑖
𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖).

←, part 4: assuming (4), show 𝑔𝐴−𝑔𝐵 ∈ posi(
⋃

𝑖 𝕀𝐴𝑖
𝐷𝑖∪

𝐷𝑢𝑛𝑖). ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐴) = 𝐸𝑠 (𝑝,𝐴) (𝑔𝐴) > 0, so
𝑔𝐴((𝐴, ·)) ∈ 𝐷𝐴; ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐵) = 𝐸𝑠 (𝑝,𝐵) (𝑔𝐵) <
0, so −𝑔𝐵 ((𝐵, ·)) ∈ 𝐷𝐵. 𝑔𝐴 − 𝑔𝐵 = 𝕀𝐴𝑔𝐴((𝐴, ·)) −
𝕀𝐵𝑔𝐵 ((𝐵, ·)) ∈ posi(𝕀𝐴𝐷𝐴 ∪ 𝕀𝐵𝐷𝐵) ⊂ posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷𝑖 ∪
𝐷𝑢𝑛𝑖).
→: assuming 𝑔𝐴 − 𝑔𝐵 ∈ posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖), show
that one of (1), (2), (3), or (4) holds. For any ℎ ∈ L(𝛺),
𝑔 ∈ posi(⋃𝑖 𝕀𝐴𝑖

𝐷𝑖∪𝐷𝑢𝑛𝑖) iff there is some 𝑛 ∈ ℕ such that
ℎ =

∑𝑛
𝑗=1 _ 𝑗𝑔 𝑗 , where for every 𝑗 ∈ 1 : 𝑛, _ 𝑗 ∈ ℝ>0 and

𝑔 𝑗 ∈ 𝐷𝑢𝑛𝑖 or 𝑔 𝑗 ∈
⋃

𝑖 𝕀𝐴𝑖
𝐷𝑖 . First, observe that because

each of the 𝐷𝑖 and 𝐷𝑢𝑛𝑖 are, respectively, closed under posi,
any gamble that can be represented this way can also be
constructed by picking at most one gamble from 𝐷𝑢𝑛𝑖 and
at most one gamble from each of the 𝐷𝑖 – we also don’t
need to scale them; viz., ℎ =

∑𝑚+1
𝑘=1 _𝑘𝑔𝑘 , with 𝑔𝑚+1 ∈ 𝐷𝑢𝑛𝑖 ,

(∀𝑘 ∈ 1 : 𝑚) (𝑔𝑘 ∈ 𝐷𝑘), (∀𝑘 ∈ 1 : 𝑚 + 1)_𝑘 ∈ {1, 0}, and
(∃𝑘 ∈ 1 : 𝑚 + 1)_𝑘 = 1. For ℎ = 𝑔𝐴 − 𝑔𝐵 in particular,
observe that ℎ(𝜔) = 0 for any 𝜔 ∉ 𝐴 ∪ 𝐵; this follows
from the fact that 𝑔𝐴 and 𝑔𝐵 are both characteristic gambles
of their respective acts. Notice also that it is pointless to
consider cases where 𝑔𝑚+1 (𝐴𝑖) ≠ 0 for any 𝐴𝑖 distinct from

1For lack of space, the proof has been relegated to the supplement.
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both 𝐴 and 𝐵. If 𝑔𝑚+1 (𝐴𝑖) > 0 (for some 𝐴𝑖 that isn’t 𝐴
or 𝐵), then to make ℎ((𝐴𝑖 , ·)) = 0, we would need to add
a negative 𝑔𝑖; but 𝐷𝑖 is consistent, so that’s impossible. If
𝑔𝑚+1 (𝐴𝑖) = 𝑎 < 0, then we can certainly find a positive
𝑔𝑖 which zeroes it out; but there’s no need to, because
𝑔∗
𝑚+1 = 𝑔𝑚+1 − 𝕀𝐴𝑖

𝑎 is itself in 𝐷𝑢𝑛𝑖 anyway. So, 𝑔𝐴− 𝑔𝐵 =

_𝐴𝕀𝐴ℎ𝐴 + _𝐵𝕀𝐵ℎ𝐵 + _𝑢𝑛𝑖ℎ𝑢𝑛𝑖 , with _𝐴, _𝐵, _𝑢𝑛𝑖 ∈ {1, 0}
and at least one of them equal to 1, 𝑔𝐴 ∈ 𝐷𝐴, etc. I’ll divide
the proof now into 2 cases: _𝑢𝑛𝑖 = 0 or _𝑢𝑛𝑖 = 1.
Suppose _𝑢𝑛𝑖 = 0. Then at most one of _𝐴𝕀𝐴ℎ𝐴, _𝐵𝕀𝐵ℎ𝐵

can be zero. Suppose _𝐵𝕀𝐵ℎ𝐵 = 0; then we have 𝑔𝐵 =

0 and 𝑔𝐴 = 𝕀𝐴ℎ𝐴. So (3) holds: 𝑔𝐵 = 0 and ∀𝑝 ∈ 𝑃,
𝑉 (𝑝, 𝑢, 𝐴) = 𝐸𝑠 (𝑝,𝐴)𝑔𝐴 > 0. Similarly, if _𝐴𝕀𝐴ℎ𝐴 = 0,
then 𝑔𝐴 = 0 and 𝑔𝐵 = −𝕀𝐵ℎ𝐵; (2) holds. If _𝐴𝕀𝐴ℎ𝐴 and
_𝐵𝕀𝐵ℎ𝐵 are both non-zero, then (4) holds: 𝑔𝐴 = 𝕀𝐴ℎ𝐴 and
𝑔𝐵 = −𝕀𝐵ℎ𝐵; ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐴) = 𝐸𝑠 (𝑝,𝐴)𝑔𝐴 > 0; and
∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐵) = 𝐸𝑠 (𝑝,𝐵)𝑔𝐵 < 0.
Suppose _𝑢𝑛𝑖 = 1. ℎ𝑢𝑛𝑖 = 𝕀𝐴𝛿1 + 𝕀𝐵𝛿2, with 𝛿1 + 𝛿2 >

0; this entails 𝛿1 > −𝛿2. So there are 𝜖1, 𝜖2 ∈ ℝ:
𝛿1 > 𝜖1 > 𝜖2 > −𝛿2. Then, ∀𝑝 ∈ 𝑃, 𝐸𝑠 (𝑝,𝐵) (𝑔𝐵) =

𝐸𝑠 (𝑝,𝐵) (−_𝐵ℎ𝐵 − 𝛿2) ≤ −𝛿2 < 𝜖2 (recall that ∀𝑝 ∈ 𝑃,
𝐸𝑠 (𝑝,𝐵) (ℎ𝐵) > 0, so 𝐸𝑠 (𝑝,𝐵) (−_𝐵ℎ𝐵) ≤ 0); ∀𝑝 ∈ 𝑃,
𝐸𝑠 (𝑝,𝐴) (𝑔𝐴) = 𝐸𝑠 (𝑝,𝐴) (_𝐴ℎ𝐴 + 𝛿1) ≥ 𝛿1 > 𝜖1. (3) holds.

2. Extortion with More Complications
In Section 10, I develop a version of the motivating Extor-
tion example from the beginning of the paper where we
arbitrarily assume that Agent assigns precise conditional
probabilities about what happens to their windshield when
the Pay or Don’t Pay. As I noted, this is not very natural – I
just wanted to give an example, nearly as simple as possible,
of how to construct both types of bridges.
Here, I’ll work through a version of the case where Agent

has much more imprecise suppositional beliefs. The causal
structure of this example will be a little more complicated
than the one in the paper, but it will still be a case where
EDT and CDT ultimately agree.
As before, Agent believes that the threatening man (TM)

will decide to break their windshield based on whether
or not Agent pays. Suppose Agent believes: if they Pay,
there’s at least a 55% chance TM will want the windshield
to stay unbroken; if they Don’t Pay, there’s at least a 55%
chance TM will want the windshield to get broken. Agent
thinks there’s some chance that someone or something
else in the neighborhood might break their windshield
for reasons that are causally independent of whether they
Pay or Don’t; they don’t have any precise estimate of how
likely that is to happen, but they’re extremely confident
that the combined probability is less than 25%. To not
make things too complicated: let’s assume that whether

TM wants the windshield to be broken doesn’t depend
on whether something else breaks it; if TM wants the
windshield to be broken, it will be (with probability 1); and
if TM doesn’t want the windshield to be broken, it won’t be
unless something else breaks it (with probability 1).
As before, we assume that Agent initially has no idea

which act they will choose; once again, we only consider
probabilities in the open interval (0, 1) for each act. (To
properly handle allowing the true vacuousmodel for acts, we
would need to define “primitive” conditional probabilities
that can be defined even when the ratio “definition” of
conditional probability – 𝑝(𝐴|𝐵) = 𝑝 (𝐴∧𝐵)

𝑝 (𝐵) – is undefined.
To avoid this complication, we continue to restrict to cases
where the ratio formula is well-defined.)
This causal structure is given by this graph:2

𝐴

𝐸

𝑇 𝑊

The agent’s choice of act is represented by the variable
𝐴, with A = {𝑃, 𝐷}: Pay or Don’t; 𝑇 represents what TM
wants to happen to the windshield, with T = {𝑇𝐵,𝑇𝑈}:
TM want it Broken or TM wants it Unbroken; 𝐸 represents
something/someone else breaking the windshield, with
E = {𝑌, 𝑁}: Yes or No; and𝑊 represents what will happen
to the windshield, withW = {𝐵,𝑈}: Broken or Unbroken.
This is not a single CBN: Agent’s prior has imprecision
concerning both 𝐴 and 𝐸; more importantly, Agent has
imprecise beliefs about how 𝑇 impacts 𝑊 . In this case,
both EDT and CDT admit a single supposition operator
(restricted to acts), which will also be identical. However, as
we will see below, the single supposition operator conceals
different general imaging functions, which means that it is
not obvious how to construct a bridge of Type 1.
We assume that Agent has linear utility in dollars, and

that the only relevant variables are, once again, 𝐴 and𝑊 :
Agent cares about the cost of paying, and they care about
whether their windshield is broken; but they don’t attach
any direct utility to how TM feels about their windshield;
and if their windshield is broken, they don’t care whether
it was by TM or something else. (Some of this might not
be very realistic, but conveniently, it lets us reuse the same
utility function as the example from the paper.)
To avoid repetition, in the next subsection, I construct the

Type 2 model only for EDT; we will see in the following
subsection that CDT admits the same supposition rule
(restricted to acts and restricted to credence functions in the
agent’s prior), so this model is equally a Type 2 model for
CDT.

2Note that this treats TM as not actually offering any “protection”
at all, except from himself. I won’t speculate about how reasonable an
assumption that is, but it’s what we’re stipulating the agent believes.
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2.1. Bridge Type 2

The total outcome space is 𝛺 = A ×X = A ×E ×T ×W.
Agent’s initial credal set is M = {𝑝 ∈ ℙ : 𝑝(𝑃) ∈
(0, 1), 0 < 𝑝(𝑌 ) < 0.25, 𝑝(𝑇𝑈 |𝑃) ≥ 0.55, 𝑝(𝑇𝐵|𝐷) ≥
0.55, 𝑝(𝐵 |𝑇𝐵) = 1, 𝑝(𝐵 |𝑌 ) = 1, 𝑝(𝐵 |𝑇𝑈, 𝑁) = 0}.
For EDT, supposition is just Bayesian conditionalization,

so we have 𝑠𝐸𝐷𝑇 (𝑝, 𝐴 = 𝑎) (𝜔′) = 𝕀𝑎 (𝜔′)𝑝(𝜔′ |𝐴 = 𝑎).
Every 𝑝 ∈ M is Markov with respect to our causal

graph, so for any 𝑝 ∈ M, we have 𝑠𝐸𝐷𝑇 (𝑝, 𝐴 = 𝑎) (𝜔′) =
𝕀𝑎 (𝜔′)𝑝(𝐸𝜔′)𝑝(𝑇𝜔′ |𝑎)𝑝(𝑊𝜔′ |𝐸𝜔′ , 𝑇𝜔′).

𝑃𝑒 𝑓 𝑓 = {𝑞 ∈ ℙ : (∃𝑝 ∈ M)𝑞(𝜔) = 𝑞(𝐴, 𝑋) =
𝑝 (𝐸𝜔) 𝑝 (𝑇𝜔 |𝐴𝜔) 𝑝 (𝑊𝜔 |𝐸𝜔 ,𝑇𝜔)

2 }. Put another way, every 𝑞 ∈
𝑃𝑒 𝑓 𝑓 has this structure:

𝑞(𝜔) =



𝑟𝑠1
2 , (𝑃,𝑌, 𝑇𝑈, 𝐵)
0, (𝑃,𝑌, 𝑇𝑈,𝑈)
𝑟 (1−𝑠1)
2 , (𝑃,𝑌, 𝑇𝐵, 𝐵)

0, (𝑃,𝑌, 𝑇𝐵,𝑈)
0, (𝑃, 𝑁,𝑇𝑈, 𝐵)
(1−𝑟)𝑠1
2 , (𝑃, 𝑁,𝑇𝑈,𝑈)

(1−𝑟) (1−𝑠1)
2 , (𝑃, 𝑁,𝑇𝐵, 𝐵)

0, (𝑃, 𝑁,𝑇𝐵,𝑈)
𝑟 (1−𝑠2)
2 , (𝐷,𝑌, 𝑇𝑈, 𝐵)

0, (𝐷,𝑌, 𝑇𝑈,𝑈)
𝑟𝑠2
2 , (𝐷,𝑌, 𝑇𝐵, 𝐵)
0, (𝐷,𝑌, 𝑇𝐵,𝑈)
0, (𝐷, 𝑁,𝑇𝑈, 𝐵)
(1−𝑟) (1−𝑠2)

2 , (𝐷, 𝑁,𝑇𝑈,𝑈)
(1−𝑟)𝑠2
2 , (𝐷, 𝑁,𝑇𝐵, 𝐵)

0, (𝐷, 𝑁,𝑇𝐵,𝑈)

(1)

with 0 < 𝑟 < 0.25 and 0.55 ≤ 𝑠1, 𝑠2 ≤ 1.
So, 𝐷𝑃𝑒 𝑓 𝑓

, which isn’t coherent, is thus given by:
𝐷𝑃𝑒 𝑓 𝑓

= {𝑔 ∈ L(𝛺) : (∀(𝑟, 𝑠1, 𝑠2 : 0 < 𝑟 < 0.25, 0.55 <
𝑠1, 𝑠2 ≤ 1))𝑟𝑠1𝑔(𝑃,𝑌, 𝑇𝑈, 𝐵) + 𝑟 (1 − 𝑠1)𝑔(𝑃,𝑌, 𝑇𝐵, 𝐵) +
(1− 𝑟)𝑠1𝑔(𝑃, 𝑁,𝑇𝑈,𝑈) + (1− 𝑟) (1− 𝑠1)𝑔(𝑃, 𝑁,𝑇𝐵, 𝐵) +
𝑟 (1− 𝑠2)𝑔(𝐷,𝑌, 𝑇𝑈, 𝐵) + 𝑟𝑠2𝑔(𝐷,𝑌, 𝑇𝐵, 𝐵) + (1− 𝑟) (1−
𝑠2)𝑔(𝐷, 𝑁,𝑇𝑈,𝑈) + (1 − 𝑟)𝑠2𝑔(𝐷, 𝑁,𝑇𝐵, 𝐵) > 0}.
The natural extension is 𝐷𝑃𝑒 𝑓 𝑓

= 𝐷𝑃𝑒 𝑓 𝑓
∪ L>0 (𝛺).

Because we’re assuming the agent has the same utility
function as the example from the paper (they care directly
only about the costs of paying and what happens to their
windshield; and they attach the same values for both of these
factors as given in the paper), the characteristic gambles
are very similar to the ones from Section 10 of the paper
proper, just extended to this larger outcome space:

𝑔𝑃 (𝜔) =


−410, 𝐴 = 𝑃,𝑊 = 𝐵

−10, 𝐴 = 𝑃,𝑊 = 𝑈

0, 𝐴 = 𝐷

(2)

.

𝑔𝐷 (𝜔) =


0, 𝐴 = 𝑃

−400, 𝐴 = 𝐷,𝑊 = 𝐵

0, 𝐴 = 𝐷,𝑊 = 𝑈

(3)

.

𝑔𝑃 − 𝑔𝐷 =



−410, (𝑃,𝑌, 𝑇𝑈, 𝐵)
−10, (𝑃,𝑌, 𝑇𝑈,𝑈)
−410, (𝑃,𝑌, 𝑇𝐵, 𝐵)
−10, (𝑃,𝑌, 𝑇𝐵,𝑈)
−410, (𝑃, 𝑁,𝑇𝑈, 𝐵)
−10, (𝑃, 𝑁,𝑇𝑈,𝑈)
−410, (𝑃, 𝑁,𝑇𝐵, 𝐵)
−10, (𝑃, 𝑁,𝑇𝐵,𝑈)
400, (𝐷,𝑌, 𝑇𝑈, 𝐵)
0, (𝐷,𝑌, 𝑇𝑈,𝑈)
400, (𝐷,𝑌, 𝑇𝐵, 𝐵)
0, (𝐷,𝑌, 𝑇𝐵,𝑈)
400, (𝐷, 𝑁,𝑇𝑈, 𝐵)
0, (𝐷, 𝑁,𝑇𝑈,𝑈)
400, (𝐷, 𝑁,𝑇𝐵, 𝐵)
0, (𝐷, 𝑁,𝑇𝐵,𝑈)

(4)

.
Agent prefers 𝑃 to 𝐷 iff 𝑔𝑃−𝑔𝐷 ∈ 𝐷𝑃𝑒 𝑓 𝑓

; 𝑔𝑃−𝑔𝐷 is not
a positive gamble, so we find this is true iff −410𝑟 − 10(1−
𝑟)𝑠1 − 410(1 − 𝑟) (1 − 𝑠1) + 400𝑟 (1 − 𝑠2) + 400𝑠2 > 0 for
every 𝑟, 𝑠1, 𝑠2 satisfying the constraints already discussed.
This is true: the infimum of this expression is 20, which is
the limit as 𝑟 → 0.25 with 𝑠1, 𝑠2 both taking the minimal
allowed value 0.55. So, EDT recommends Pay over Don’t
Pay.

2.2. CDT; No Bridge Type 1

Note, as in the example in the paper, that each 𝑝 ∈ M
encodes exactly one of the causal hypotheses Agent is
uncertain between (viz., Agent’s uncertainty about how TM
will respond to being paid or not; Agent is certain about
how𝑊 depends on 𝐸 and 𝑇). 3
For this reason, we can also identify a single sup-

position operator for CDT. If we apply Pearl’s “trun-
cated factorization” formula for calculating interven-
tional distributions, we find the same result as for EDT
in the previous subsection: 𝑠𝐶𝐷𝑇 (𝑝, 𝐴 = 𝑎) (𝜔′) =

𝕀𝑎 (𝜔′)𝑝(𝐸𝜔′)𝑝(𝑇𝜔′ |𝑎)𝑝(𝑊𝜔′ |𝐸𝜔′ , 𝑇𝜔′).
3Note that the converse is not true: for any 𝑝 (𝑇𝑈 |𝑃) and 𝑝 (𝑇𝐵 |𝐷)

Agent considers, there will be multiple priors over 𝐴 and 𝐸 that are
included in M. While supposing Agent performs a particular act will
“wash out” Agent’s prior uncertainty about acts, Agent will continue to be
imprecise about the value of 𝐸.

3



Blackwell

However, there isn’t a single general imaging function
which generates this supposition rule. This is because the
agent is uncertain about the causal impact of 𝑇 on𝑊 . We
could, of course, find a general imaging function corre-
sponding to each of the conditional chances that Agent
considers for how 𝑇 might impact𝑊 ; but this wouldn’t be
helpful in constructing a Type 1 bridge. The neat trick at the
core of a Type 1 bridge is that the general imaging function
for a single CBN depends only on the conditional chances
assumed by the causal structure, which can come apart
from the agent’s prior. This lets us consider “characteristic
gambles” encoding this causal dependence and the agent’s
utility function which are applicable, whatever the agent’s
prior might be. But in this case, different probability func-
tions inM consider different conditional chances (although
all are consistent with the same graph), so different elements
ofM are actually generated by distinct general imaging
functions.
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