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Abstract
The sets of desirable gambles framework has been well-
studied as a tool for representing decision-making with
imprecise probabilistic beliefs – under the assumption
of act-state independence. The question of this paper
is: can we use sets of desirable gambles to represent
decisions where the states do depend (e.g., causally or
probabilistically) on the acts? In particular, I investi-
gate two possible routes for representing suppositional
decision theories with sets of desirable gambles, con-
cluding that while one route works only for the subclass
of SDTs representable by general imaging, the other
route can represent any SDT whatsoever. After giving
a fairly flat-footed representation, I investigate whether
it’s equivalent to a construction directly from the local
(suppositional) desirability judgments; it isn’t, but this
latter construction represents a different aggregation
rule applied to the same “credal committee.” Finally, I
extend the representation to model uncertainty about
the supposition rule itself, in addition to imprecise
credences.
Keywords: suppositional decision theories, causal
decision theory, evidential decision theory, sets of
desirable gambles, imaging

1. A Motivating Example: Extortion

Consider the following scenario from Jim Joyce:

Suppose you have just parked in a seedy neigh-
borhood when a man approaches and offers to
“protect” your car from harm for $10. You recog-
nize this as extortion and have heard that people
who refuse “protection” invariably return to find
their windshields smashed. Those who pay find
their cars intact. You cannot park anywhere else
because you are late for an important meeting. It
costs $400 to replace a windshield. Should you
buy “protection”? [9, p. 115]

We might reason as follows. There are two possible states
of the world that are relevant to this decision: whether my
window will get broken or not; and there are two actions I
might take: paying the $10 or refusing. So the payoff table
looks like this:

Windshield, Payment Broken Not Broken
Pay -$410 -$10

Don’t Pay -$400 0

Clearly, choosing not to pay dominates1 paying on the
partition {Broken,Not Broken}: if my window gets broken,
I would prefer to have kept 10 extra dollars in my pocket; if
my window doesn’t get broken, the same is true.
What’s gone wrong? The obvious problem is that whether

my windshield gets broken or not depends on whether
or not I pay; this is why it’s extortion! But dominance
reasoning only naturally applies to partitions of states that
are, in some sense, independent of my actions; which sense
turns out to be a matter of some controversy. The main
contenders are evidential decision theory2 (which takes
ordinary probabilistic independence as the standard for
when dominance reasoning is valid) and causal decision
theory (which allows dominance reasoning in cases where
the relevant states cannot be causally influenced by your
actions). For an investigation of a causal version of the Sure
Thing Principle, see [20].
Both EDT and CDT (or at least, several of the major

flavors of CDT) turn out to be examples of what has been
termed, following Joyce, suppositional decision theories [9,
Chapter 6]. Informally: an SDT enjoins you to maximize
expected utility from a certain epistemic perspective which
will typically be different from the one you currently hold;
in general, an SDT tells you to first suppose that you
perform a particular action (which involves modifying your
initial beliefs in a certain way characteristic of that kind
of supposition) and to then calculate the expected value
of that action with the suppositional credences. Different

1Relative to some partition, 𝑋 , act 𝐴 dominates 𝐵 iff ∀𝑥 ∈ 𝑋 ,
𝑣 (𝐴, 𝑥) ≥ 𝑣 (𝐵, 𝑥) and there is at least one 𝑥 ∈ 𝑋 for which 𝑣 (𝐴, 𝑥)
is strictly greater than 𝑣 (𝐵, 𝑥); 𝑣 (𝐴, 𝑥) represents the payoff the agent
receives at theworldwhere they perform act 𝐴and 𝑥 occurs. An anonymous
reviewer recommended I highlight the connection with Savage’s Sure
Thing Principle, which takes the inference from preference conditional on
each element of some partition to unconditional preference as valid.

2Throughout the paper, by EDT I mean the SDT whose supposition
operator is Bayesian conditionalization, as originally promoted by Richard
Jeffrey [8]. An anonymous reviewer has reasonably pointed out that
this terminology is misleading; there are other decision theories that
could be considered “evidential” which have radically different structural
assumptions than Jeffrey’s theory, including [14]. My interest in discussing
Jeffrey’s version of EDT is mainly that Bayesian updating is a very intuitive
example of a supposition rule, and so it’s an interesting contrast case.
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kinds of supposition procedures generate different kinds
of SDTs: e.g., EDT is the decision theory that results
from using ordinary Bayesian conditionalization as your
supposition procedure (by stipulation; see footnote 2). There
are different flavors of CDT which correspond to different
kinds of supposition; arguably, the simplest to understand
is with supposition given by Pearl’s do-operator (which he
takes to be the appropriate way of updating your beliefs in
cases of causal interventions) [15].
As normally presented, both EDT and CDT assume

that the agent has a credence function, representing pre-
cise subjective probabilistic judgments about the world;
and both typically assume that the suppositional epistemic
perspective the agent adopts is also a precise probability.
For decisions under act-state independence, there is awell-

developed framework for representing imprecise beliefs that
still imposes probabilistic consistency, under the assumption
that the agent is trying to maximize expected utility: sets of
desirable gambles. Originally introduced by Peter Williams
[18], sets of desirable gambles have been well-studied by
many researchers in the Imprecise Probabilities community.
The question I will be investigating in this paper is: can

we use the sets of desirable gambles framework to model
decision problems with act-state dependence? In particular,
can we represent suppositional decision theories like EDT
and CDT?

2. Preliminaries: Modeling Act-State
Dependence with Gambles

To represent decision problemswhere the agent believes that
their actions and some relevant states of the world might not
be independent, it is useful to construct our outcome space
in terms of separate event spaces representing, respectively,
the acts under an agent’s “direct” control A, and all other
states of the world X relevant to the decision. Then the total
outcome space is 𝛺 ⊆ A × X (the Cartesian product). As
long as the acts are logically independent of the states,3 we
can safely take 𝛺 = A ×X. We assume that the elements
of A and the elements of X are, respectively, pairwise
mutually exclusive. This lets us understand bothA andX as
partitions of𝛺, andwe can freely translate between values of
variables and sets of events. E.g., if A = {𝐴1, . . . 𝐴ℓ } and
X = {𝑋1, . . . , 𝑋𝑚}, then 𝛺 = {(𝐴𝑖 , 𝑋 𝑗 ) : 𝐴𝑖 ∈ A, 𝑋 𝑗 ∈
X}; but we will also understand 𝐴𝑖 = {𝜔 ∈ 𝛺 : (∃𝑋 𝑗 ∈
X)(𝜔 = (𝐴𝑖 , 𝑋 𝑗 ))}. Hence,𝜔 ∈ 𝐴𝑖 is another way of saying
that 𝐴 takes the value 𝐴𝑖 at 𝜔. Throughout the paper, I will
consider only cases where this logical independence holds;
I am also restricting my attention to cases where both A
and X are finite, so that 𝛺 is also finite.

3Viz., it is logically possible that both 𝐴 and 𝑋 obtain, for any 𝐴 ∈ A
and any 𝑋 ∈ X.

A gamble 𝑔 is typically defined as a function 𝑔 : 𝛺 → ℝ,
with 𝑔(𝜔), 𝜔 ∈ 𝛺 interpreted as a gain/loss in utility (or a
commodity for which the agent has a linear utility function)
that the agent will receive if and only if 𝜔 obtains.4 L(𝛺)
is the set of all gambles, and, e.g., L(X) is the set of all
gambles defined on X (the set of all functions from X to
ℝ). For a gamble that depends, e.g., only on which state
obtains, 𝑔 ∈ L(X), we can also understand it as a gamble
on 𝛺: 𝑔∗ (𝜔) = 𝑔∗ ((𝐴, 𝑋)) = 𝑔(𝑋); 𝑔∗ is sometimes called
the cylindrical extension of 𝑔. However, in the rest of the
paper, I will usually just identify the cylindrical extension
with the gamble itself.
Immediately, there are a couple of things we have to

be careful about. The first problem is that it’s unclear that
gambles defined generally on 𝛺 = A×X really make sense,
from either a behavioristic or epistemic interpretation. The
problem is: we are assuming that the acts in a decision
problem are under the agent’s control in the sense that they
can make it so that some particular 𝐴𝑖 ∈ A obtains. So,
the agent’s betting behavior on gambles defined purely on
acts (viz., a gamble 𝑔 : 𝑔(𝜔) = 𝑔𝐴𝑖

iff 𝜔 ∈ 𝐴𝑖) cannot
generally be understood in terms of any prior beliefs about
what the agent thinks they are likely to do.5 The only
reasonable decision principle for gambles defined purely on
acts is maximax: 𝑔 � ℎ iff there is some 𝐴 ∈ A for which
𝑔(𝐴) > max𝐵∈A ℎ(𝐵). I simply pick the gamble which has
the highest possible payout, and then perform the act that
gets me that payout.6
Although I will be modeling gambles on the outcome

space 𝛺, we will only give a decision-theoretic interpreta-
tion to comparisons of gambles of certain forms. In each of
the two routes for representing SDTs with gambles that will
be explored below, there will be a special class of gambles
that we take as characteristic of the agent’s candidate acts.
We will primarily consider comparisons between gambles
from this class, so that, e.g., finding 𝑔 − ℎ desirable, where
𝑔, ℎ represent the acts 𝐴, 𝐵, respectively, will represent pre-
ferring 𝐴 to 𝐵. We will also make comparisons to certain
other gambles for the purposes of pricing; these gambles
will always be constant over X. In one of the two routes, we
will be interested in constant gambles 𝑔(𝜔) = 𝜖,∀𝜔 ∈ 𝛺.

4But note that ordinarily, unlike in this paper, the outcome space 𝛺
is assumed to represent states of the world independent of the agent’s
options; ordinarily, the gambles themselves are the acts.

5There is also, of course, continuing debate about whether these
predictions about what the agent will do, “act credences”, themselvesmake
sense: the negative view has been sloganized by Isaac Levi as “deliberation
crowds out prediction”. See, e.g., [16], [10], [7], and [13]. My only point
here is that there are problems with representing an agent’s prior credences
about acts via gambles on a space including the acts, assuming such beliefs
make sense in the first place.

6If the agent has a decision problem containing a mix of decisions
about betting on their own actions and outcomes which depend on their
actions and the state of the world, things get a bit more complicated than
just maximax. Nonetheless, it seems clear that these betting decisions
don’t reflect antecedent beliefs about which act the agent will perform.
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(I will typically identify constant gambles with the real
number that represents their constant reward.) In the other,
we will be interested in gambles of the form 𝕀𝐴𝜖 : gambles
that are called off unless act 𝐴 is performed, and return a
constant utility of 𝜖 across all X whenever 𝐴 is performed.7
The second problem is the issue of utility. In this paper,

I will simply be assuming that our agent has a utility
function that we can define in some world-independent
way, so that we can assign utilities directly on 𝛺. There
are interesting philosophical questions about whether this
makes sense, and interesting technical questions about how
you might represent preferences without making this kind
of assumption. For an interesting exploration of some of
these issues, see [21]. But I will not be engaging with these
questions at all in this paper. We will simply assume that
our agent has a utility function 𝑢 : 𝛺 → ℝ which represents
all preferences possibly relevant to the decision problem. 𝕌
represents the set of all utility functions definable on 𝛺.
A couple more notational notes: I will sometimes use the

notation 𝑔 > ℎ, where 𝑔 and ℎ are both gambles. What this
really means is that 𝑔 (weakly) 𝛺-dominates ℎ: ∀𝜔 ∈ 𝛺,
𝑔(𝜔) ≥ ℎ(𝜔) and ∃𝜔 ∈ 𝛺 : 𝑔(𝜔) > ℎ(𝜔). When a gamble
(weakly) dominates the zero gamble, I’ll call it “positive”;
L>0 is the set of all positive gambles.

3. The Bridge between Desirable Gambles,
Utility, and Belief

For a decision theory where we assume that acts are inde-
pendent of the states of the world relevant to some decision
and that our agent is attempting to maximize expected
utility, there is a very natural connection between coherent
sets of desirable gambles, the agent’s utility function, and
their probabilistic beliefs. Suppose we have an agent with: a
sample space of states of the world outside of their control,
X, relevant to some decision problem; a menu of actions
A; a utility function defined on 𝛺 = A × X, 𝑢 : 𝛺 → ℝ,
representing how desirable they would find each world,
𝜔 ∈ 𝛺, resulting from (consisting of) performing a certain
act in a certain state; and imprecise probabilistic beliefs
about X, which we can represent as a set of probability
functions defined on X, 𝑃. Further, suppose that our agent
evaluates the choiceworthiness of acts by supervaluation
according to 𝑃: the agent prefers act 𝐴 to act 𝐵 (𝐴 �𝑢,𝑃 𝐵)
iff ∀𝑝 ∈ 𝑃, 𝐸𝑝 (𝑢(𝐴, ·)) > 𝐸𝑝 (𝑢(𝐵, ·))8 or act 𝐴 weakly
dominates 𝐵.9

7𝕀𝐸 , for 𝐸 ⊆ 𝛺, is the indicator for the event 𝐸; 𝕀𝐸 : 𝛺 → {0, 1},
with 𝕀𝐸 (𝜔) = 1 iff 𝜔 ∈ 𝐸 . It picks out which worlds the event obtains in.

8In the context of sets of desirable gambles (where desirability
is strict preference to the status quo), Walley-Sen maximality and E-
Admissability both collapse to supervaluation. Walley-Sen maximality
and E-Admissibility are different only for non-binary preferences.

9This weak dominance condition is necessary for coherence, which
we will discuss in Section 6.

Then, whatever 𝑃 is, there is a coherent set of desir-
able gambles 𝐷𝑃 that represents the agent’s beliefs in the
following sense: for any utility function, 𝑢,

• we can associate each act 𝐴 ∈ A with a characteristic
gamble

𝑔𝐴(𝜔) = 𝕀𝐴(𝜔)𝑢(𝜔) =
{
0, 𝜔 ∉ 𝐴

𝑢(𝜔), 𝜔 ∈ 𝐴
; (1)

• and for any 𝐴, 𝐵 ∈ A, 𝐴 �𝑢,𝑃 𝐵 iff 𝑔𝐴 − 𝑔𝐵 ∈ 𝐷𝑃 .

When considering how to represent suppositional de-
cision theories like EDT and CDT with sets of desirable
gambles, there are two natural-seeming generalizations of
this bridge. We might hope to either:

1. Use the same set of gambles 𝐷𝑃 , but allow for different
kinds of characteristic gambles, so that we can find
some way of reading off the preferences/valuations
of our suppositional decision theory from our agent’s
current beliefs (as represented by 𝐷𝑃).

2. Hold fixed the definition of the characteristic gamble,
but find some other set of desirable gambles which
encodes the agent’s preferences/valuations from the
suppositional decision theory; we don’t assume that
this set of gambles reflects the agent’s current beliefs.

Although both approaches might seem like reasonable
ideas at first, it turns out that the first approach is only
possible for the special subclass of suppositional decision
theories representable by generalized imaging. However,
we will see that the second approach is tractable for any
suppositional decision theory whatsoever.

4. Suppositional Decision Theories and
Imaging

Formally, supposition is represented by some operator
𝑠 : ℙ × P(𝛺) → ℙ, where ℙ is the set of all probability
functions defined on 𝛺 and P(𝛺) is the powerset of 𝛺; the
only further constraint on 𝑠 is that, for any 𝑅 ∈ P(𝛺) and
any 𝜔 ∉ 𝑅, 𝑠(𝑝, 𝑅) (𝜔) = 0. Bayesian conditionalization is
one example: 𝑠𝐵 (𝑝, 𝑅) (·) = 𝑝(·|𝑅) =

∑
𝜔∈𝑅 𝑝 ( ·∧𝜔)∑
𝜔∈𝑅 𝑝 (𝜔) .

An SDT, then, enjoins you to pick the available act
which maximizes expected utility under the supposition
that you perform it; if you have utility function 𝑢 and precise
credence function 𝑝, you act to maximize the quantity
𝑉 (𝑝, 𝑢, ·) = 𝐸𝑠 (𝑝, ·) (𝑢(·)) =

∑
𝜔∈𝛺 𝑠(𝑝, ·) (𝜔)𝑢(𝜔).

In the literature on Causal Decision Theory, the various
flavors of CDT are typically taken to be representable by a
special kind of supposition known as generalized imaging.10

10Versions of CDT that are explicitly constructed with reference to
imaging functions are common in philosophy, including: Lewis’s, Sobel’s,
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Imaging was originally introduced by David Lewis, while
analyzing Stalnaker conditionals [11, p. 310]; generalized
imaging is a generalization due to Peter Gärdenfors [5]. For
much more on supposition, generalized imaging, and SDTs,
including representation theorems for general SDTs, see
[9], especially Chapters 6 and 7.
A general imaging function, 𝑓 : P(𝛺) × 𝛺 → ℙ, is a

map from pairs of propositions and worlds to probability
functions; it must also satisfy 𝑓 (𝑅, 𝜔) (𝜔′) = 0 for any
𝑅 ∈ P(𝛺) and any 𝜔′ ∉ 𝑅. I don’t find general imaging
functions so intuitive, but I will do my best to provide
some interpretations. One way to understand them is as a
generalization of Stalnakerian selection functions. Here’s
another: if an agent had a prior credence function, 𝑝𝜔 , which
was certain of some world 𝜔, then 𝑓 (𝑅, 𝜔) represents the
credence function that the agent should have suppositional
on 𝑅.
We say that a supposition operator, 𝑠, is representable by

general imaging iff there is some general imaging function
𝑓 s.t. 𝑠(𝑝, 𝑅) (·) = ∑

𝜔∈𝛺 𝑝(𝜔) 𝑓 (𝑅, 𝜔) (·), ∀𝑝 ∈ ℙ and
∀𝑅 ∈ P(𝛺). In words: 𝑠 is representable by general imaging
when, for any credence function 𝑝 and any proposition 𝑅,
the credence that 𝑠(𝑝, 𝑅) assigns to some world 𝜔′, can be
represented as the 𝑝-expectation (over all worlds 𝜔 ∈ 𝛺)
of 𝑓 (𝑅, 𝜔) (𝜔′).

5. Bridge Type 1
Formally, a bridge of Type 1 between an agent’s beliefs and
an SDT would be a map 𝑔 : 𝕌 × A → L(𝛺), where 𝕌 is
the set of all utility functions on 𝛺, s.t. ∀𝑢 ∈ 𝕌 and ∀𝑃 ⊆
ℙ, 𝑔(𝑢, 𝐴) − 𝑔(𝑢, 𝐵) ∈ 𝐷𝑃 iff (∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) >

𝑉 (𝑝, 𝑢, 𝐵)); and for any 𝜖 ∈ ℝ, (∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) >
𝜖) iff 𝑔(𝑢, 𝐴) − 𝜖 ∈ 𝐷𝑃; (∀𝑝 ∈ 𝑃) (𝜖 > 𝑉 (𝑝, 𝑢, 𝐴)) iff
𝜖 −𝑔(𝑢, 𝐴) ∈ 𝐷𝑃 . That is, we would have a way of “reading
off”, from gambles that are included in 𝐷𝑃 , both the agent’s
preferences among the acts and facts about their (utility)
prices according to the SDT.

Theorem 1 For an SDT characterized by supposition op-
erator 𝑠, the SDT admits a bridge of Type 1 iff 𝑠 is rep-
resentable by general imaging – at least for suppositions
about acts (viz., there is a general imaging function 𝑓 such
that, for any 𝐴 ∈ A, 𝑠(𝑝, 𝐴) (·) = ∑

𝜔∈𝛺 𝑝(𝜔) 𝑓 (𝐴, 𝜔) (·),
∀𝑝 ∈ ℙ).11

and Rabinowicz’s versions of CDT; see [12], [17]. Other authors have
defined CDT in terms of counterfactuals that can be analyzed with imaging
functions, e.g., Gibbard & Harper [6]. J. Dmitri Gallow has a very nice
constructive proof that causal intervention on a Causal Bayesian Network
is always representable by a general imaging function [4]; we will apply
this recipe in the example in Section 10 below.

11This theorem is basically a lazier version of a theorem proved by
Snow Zhang and cited by Andrew Bacon [1, Theorem 3]; I’m including
my proof only because the proof of Zhang’s theorem hasn’t been published

Proof ←: Suppose 𝑠 is representable by gen-
eral imaging, at least for suppositions about
acts. Then 𝑉 (𝑝, 𝑢, 𝐴) =

∑
𝜔∈𝛺 𝑠(𝑝, 𝐴) (𝜔)𝑢(𝜔)

=
∑

𝜔∈𝛺
∑

𝜔′∈𝛺 𝑝(𝜔′) 𝑓 (𝐴, 𝜔′) (𝜔)𝑢(𝜔) =∑
𝜔′∈𝛺 𝑝(𝜔′)∑𝜔∈𝛺 𝑓 (𝐴, 𝜔′) (𝜔)𝑢(𝜔).
Define 𝑔 : (𝑢, 𝐴) ↦→ ∑

𝜔∈𝛺 𝑓 (𝐴, ·) (𝜔)𝑢(𝜔). Then we
have 𝑉 (𝑝, 𝑢, 𝐴) = 𝐸𝑝 (𝑔(𝑢, 𝐴)). By definition of 𝐷𝑃 ,
𝑔(𝑢, 𝐴) − 𝑔(𝑢, 𝐵) ∈ 𝐷𝑃 iff the SDT recommends 𝐴 over
𝐵; this is true for any 𝑃 ⊆ ℙ and any 𝑢 ∈ 𝕌 – which is to
say, there is a bridge of Type 1 between the agent’s beliefs
and the 𝑆𝐷𝑇 .
→: Suppose there is a bridge of Type 1 between the

agent’s beliefs and the SDT. First, observe that a bridge
of type 1 requires that, 𝑉 (𝑝, 𝑢, 𝐴) = 𝐸𝑝 (𝑔(𝑢, 𝐴)), for
any precise 𝑝, any utility function 𝑢, and any act 𝐴.
(Suppose, for reductio, there is some 𝑝, 𝑢, 𝐴 for which
𝑉 (𝑝, 𝑢, 𝐴) > 𝐸𝑝 (𝑔(𝑢, 𝐴)). Then consider 𝜖 = 𝑉 (𝑝, 𝑢, 𝐴).
𝐸𝑝 (𝜖 − 𝑔(𝑢, 𝐴)) > 0, so 𝜖 − 𝑔(𝑢, 𝐴) ∈ 𝐷 𝑝 . But, obviously,
𝜖 ≯ 𝑉 (𝑝, 𝑢, 𝐴), so 𝑔 doesn’t represent a bridge of type
1. The proof for 𝑉 (𝑝, 𝑢, 𝐴) < 𝐸𝑝 (𝑔(𝑢, 𝐴)) is similarly
obvious.)
Next, observe that 𝑉 (𝑝, 𝕀𝜔 , 𝐴) =∑
𝜔′ 𝑠(𝑝, 𝐴) (𝜔′)𝕀𝜔 (𝜔′) = 𝑠(𝑝, 𝐴) (𝜔). So,

𝐸𝑝 (𝑔(𝕀𝜔 , 𝐴)) = 𝑠(𝑝, 𝐴) (𝜔). 𝐴 and 𝜔 are arbtirary,
so 𝑠 is representable by general imaging (at least for acts),
with 𝑓 (𝐴, 𝜔) = 𝑔(𝕀𝜔 , 𝐴), for any 𝐴 ∈ A, and any 𝜔 ∈ 𝛺.

In general, Jeffrey’s theory cannot be represented by
general imaging [1, Theorem 1, Theorem 3], so it won’t
always admit a bridge of Type 1; however, the major flavors
of CDT can be represented by general imaging. In cases
where Bayesian updating and CDT happen to generate the
same supposition rule, a Type 1 model may be possible for
both (as we will see in Section 10).

5.1. Bridge Type 1 and Pricing

To readers who are already fairly familiar with sets of
desirable gambles, the comparisons 𝑔(𝑢, 𝐴) − 𝜖 and 𝜖 −
𝑔(𝑢, 𝐴) might seem familiar. In the normal representation
of the act-state independent case, we find that an agent is
willing to buy a gamble 𝑔 for a (utility) price 𝜖 whenever
𝑔 − 𝜖 is desirable; similarly, an agent is willing to sell 𝑔 for
𝜖 whenever 𝜖 − 𝑔 is desirable.
This familiarity is misleading. In the ordinary setting, 𝜖 is

a constant gamble over states of the world; in our setting the
constant gamble 𝜖 represents a utility that is constant over
both acts and states. It’s an odd feature of the bridge of type
1 that these are the relevant comparisons, which requires
some explanation; for more on what I think is strange

anywhere. She has asked that I emphasize that her result is a straightforward
corollary of [5, Theorem 1].
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about this, see Subsection 6.1. Unfortunately, a thorough
treatment of what I think is going on here would require
more time and space than I am able to devote in the present
paper. For now, I will just explore an odd feature of the
characteristic gambles 𝑔(𝑢, 𝐴) = ∑

𝜔∈𝛺 𝑓 (𝐴, ·) (𝜔)𝑢(𝜔)
defined for general imaging; I hope this feature will at least
help illustrate the unusual concept of value that a bridge of
type 1 involves.
The first thing to notice is that these characteristic gam-

bles, radically unlike characteristic gambles as defined in
Equation 1, are not called off when the act isn’t performed.
This is because 𝑔(𝑢, 𝐴) represents what we might term the
“imaged value” of act 𝐴.12 That is, if 𝑓 (𝐴, 𝜔) picks out a
particular world, 𝜔′, with certainty (viz., 𝑓 (𝐴, 𝜔) = 𝕀𝜔′),
then 𝑔(𝑢, 𝐴) (𝜔) = 𝑢(𝜔′); if, more generally, 𝑓 (𝐴, 𝜔) as-
signs nonzero probability to several worlds, 𝑔(𝑢, 𝐴) (𝜔), is
the expectation according to 𝑓 (𝐴, 𝜔) of the utility of each
of these worlds.
In particular, one fact about this kind of value is that, for

any act 𝐴 which has constant utility 𝜖 across all states, its
imaged value is 𝑔(𝑢, 𝐴) = 𝜖 – which is, again, a constant
gamble across all acts and states.13 This fact helps explain
why bridge type 1 regards the relevant comparisons for
buying prices as 𝑔(𝑢, 𝐴) − 𝜖 . Suppose an agent is in a
decision problem where 𝐴, 𝐵 ∈ A, and where 𝑢((𝐵, 𝑋)) =
𝜖,∀𝑋 ∈ X. As observed above, 𝑔(𝑢, 𝐵) = 𝜖 according
to any supposition rule representable by general imaging.
So whenever 𝐵 has constant utility 𝜖 in states, 𝑔(𝑢, 𝐴) −
𝑔(𝑢, 𝐵) = 𝑔(𝑢, 𝐴)−𝜖 ; whichmeans bridge type 1 represents
act 𝐴 as preferred to the state-constant act 𝐵 iff 𝑔(𝑢, 𝐴)−𝜖 ∈
𝐷𝑃 .

6. Bridge Type 2
Formally, a bridge of type 2 exists when, for any 𝑃 there is
a set of desirable gambles 𝐷 s.t. ∀𝑢 ∈ 𝕌, for any two acts

12Andrew Bacon refers to this quantity as the “actual value” of the
act 𝐴, which he interprets as representing “the utility of the world that
would have obtained if 𝐴 had been true” [1, p. 3]. This interpretation
assumes that 𝑓 (𝐴, 𝜔) represents the agent’s beliefs about which worlds
might have resulted, when the actual world is 𝜔, if they had performed
act 𝐴; but I don’t think every SDT representable with a general imaging
function does (or should) interpret 𝑓 this way. E.g., it seems likely that
Functional Decision Theory is formally representable by general imaging.
If it is, 𝑓 (𝐴, 𝜔) (𝜔′) for FDT represents something more like: if the
actual world is 𝜔, the probability that the kind of agent who would decide
to perform 𝐴 would end up at world 𝜔′; proponents of FDT are quite
clear that (something like) this is how they think agents should evaluate
acts even when the agent knows that they are in a state of the world where
𝜔′ cannot result from their actions. See the discussion of the transparent
Newcomb problem and Parfit’s hitchhiker in [19].

13To see why: by assumption, 𝑓 (𝐴, 𝜔) (𝜔′) is nonzero only for 𝜔′ ∈
𝐴 (supposition always involves certainty the supposed proposition obtains);
𝑢 (𝜔′) = 𝜖 for all 𝜔′ ∈ 𝐴; for every 𝜔 ∈ 𝛺, 𝑓 (𝐴, 𝜔) is a probability
function (and thus must assign total probability 1); and so 𝑔 (𝑢, 𝐴) (𝜔) =∑

𝜔′∈𝛺 𝑓 (𝐴, 𝜔) (𝜔′)𝑢 (𝜔′) = ∑
𝜔′∈𝐴 𝑓 (𝐴, 𝜔) (𝜔′) 𝜖 = 𝜖 , ∀𝜔 ∈ 𝛺,

no matter what else is true of 𝑓 .

𝐴, 𝐵 ∈ A, 𝐴 �𝑠,𝑢,𝑃 𝐵 iff 𝑔𝐴−𝑔𝐵 ∈ 𝐷, with 𝑔𝐴, 𝑔𝐵 defined
as in Equation 1; and for any 𝜖 ∈ ℝ, (∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) >
𝜖) iff 𝑔𝐴−𝕀𝐴𝜖 ∈ 𝐷; (∀𝑝 ∈ 𝑃) (𝜖 > 𝑉 (𝑝, 𝑢, 𝐴)) iff 𝕀𝐴𝜖−𝑔𝐴 ∈
𝐷𝑃 . That is, for any 𝑃 representing an agent’s beliefs, we
can find some set of desirable gambles, 𝐷, which encodes
the recommendations that the SDT makes given 𝑃, for all
utility functions;𝐷 also encodes the agent’s price judgments
for all acts, though in a slightly different form than a bridge
of type 1 does.
To see how, let’s first consider the precise case: 𝑃 =

{𝑝}. Define 𝑝𝑒 𝑓 𝑓 as the probability function which has
𝑝𝑒 𝑓 𝑓 (·|𝐴) = 𝑠(𝑝, 𝐴) (·), for all 𝐴 ∈ A, and is uni-
form over the acts themselves. (Viz.: for any 𝐴, 𝐵 ∈ A,
𝑝𝑒 𝑓 𝑓 (𝐴) =

∑
𝜔∈𝐴 𝑝𝑒 𝑓 𝑓 (𝜔) = 𝑝𝑢 (𝐵).) In particular, then,

𝑝𝑒 𝑓 𝑓 (𝜔) = 𝑝𝑒 𝑓 𝑓 ((𝐴, 𝑋)) = 𝑠 (𝑝,𝐴) (𝜔)
| |A | | . If we define char-

acteristic gambles for acts as above, it’s not difficult to
see that, for any two acts 𝐴, 𝐵, 𝑉 (𝑝, 𝑢, 𝐴) > 𝑉 (𝑝, 𝑢𝐵) iff
𝐸𝑝𝑢 (𝑔𝐴 − 𝑔𝐵) > 0.14
𝐸𝑝𝑒 𝑓 𝑓

(𝑔𝐴 − 𝑔𝐵) =
𝐸𝑠 (𝑝,𝐴) (𝑔𝐴)−𝐸𝑠 (𝑝,𝐵) (𝑔𝐵)

| |A | | =

𝑉 (𝑝,𝑢,𝐴)−𝑉 (𝑝,𝑢,𝐵)
| |A | | .

Similarly, for an imprecise (non-singleton) 𝑃, let 𝑃𝑒 𝑓 𝑓 =

{𝑞 ∈ ℙ : (∃𝑝 ∈ 𝑃) (∀𝐴 ∈ A, 𝑋 ∈ X)(𝑞((𝐴, 𝑋)) =
𝑠 (𝑝,𝐴) ( (𝐴,𝑋 ))

| |A | | )}. For the same reason, it’s clear that for
any two 𝐴, 𝐵 ∈ A, 𝑉 (𝑝, 𝑢, 𝐴) > 𝑉 (𝑝, 𝑢, 𝐵) for all 𝑝 ∈ 𝑃

iff 𝐸𝑞 (𝑔𝐴 − 𝑔𝐵) > 0 for all 𝑞 ∈ 𝑃𝑒 𝑓 𝑓 .
So, we can always represent the recommendations of an

SDT by 𝐷𝑃𝑒 𝑓 𝑓
= {𝑔 ∈ L(𝛺) : 𝐸𝑞 (𝑔) > 0,∀𝑞 ∈ 𝑃𝑒 𝑓 𝑓 }.15

As for prices: note that, for any 𝜖 ∈ ℝ, (∀𝑝 ∈
𝑃) (𝑉 (𝑝, 𝑢, 𝐴) > 𝜖) iff (∀𝑝 ∈ 𝑃) (𝐸𝑝𝑒 𝑓 𝑓 (𝑔𝐴) > 𝜖

| |A | | =
𝐸𝑝𝑒 𝑓 𝑓 (𝕀𝐴𝜖)); which is to say, (∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) > 𝜖)
iff 𝑔𝐴−𝕀𝐴𝜖 ∈ 𝐷𝑃𝑒 𝑓 𝑓

. In parallel fashion, we find that for any
𝜖 ∈ ℝ, (∀𝑝 ∈ 𝑃) (𝜖 > 𝑉 (𝑝, 𝑢, 𝐴)) iff 𝕀𝐴𝜖 − 𝑔𝐴 ∈ 𝐷𝑃𝑒 𝑓 𝑓

.
The next obvious question to ask is: will 𝐷𝑃𝑒 𝑓 𝑓

typically
be coherent? As we will see in the next section, the answer
is technically “no”, but we can make it coherent without
causing any problems. But first, we should briefly discuss
the way that a bridge of type 2 prices gambles.

6.1. Pricing for Bridge Type 2

In Subsection 5.1, I cautioned against regarding the compar-
isons 𝑔 − 𝜖 and 𝜖 − 𝑔 as the natural analogues of how prices
of gambles are normally determined; let me say just a little
bit about why here. The gamble −𝜖 represents a cost to the
agent that they must pay at all possible outcomes; in our
setting, that means it’s not only constant over the states of

14I want to stress here, again, that this is the only rationale for the use
of 𝑝𝑒 𝑓 𝑓 ; we can use it to encode the agent’s preferences over acts, and
prices, in line with the SDT. It is not intended to represent the agent’s
beliefs; “eff” stands for “fake” as much as “effective”.

15Readers who are already familiar with the sets of desirable gambles
framework might notice that this set of desirable gambles won’t generally
be coherent; we’ll get to that in the next section.
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the world, but also constant over the acts the agent chooses
which of to perform. If we want to interpret a buying price
for an act as a utility that the agent would be willing to
pay to perform it, 𝑔𝐴 − 𝜖 ∈ 𝐷𝑃𝑒 𝑓 𝑓

doesn’t represent this;
whether the agent prefers 𝑔𝐴 − 𝜖 to the status quo depends
not only on how valuable act 𝐴 would be, if performed, but
on the agent’s beliefs about whether they will perform it. If
we wanted to give an interpretation to 𝑔𝐴 − 𝜖 , it would be
more like buying the option or right to perform act 𝐴, where
that allows for uncertainty about whether the option will be
exercised.16 The more natural understanding of paying to
perform an act is a cost 𝜖 the agent pays iff they perform
the act: 𝕀𝐴𝜖 . Whether 𝑔𝐴 − 𝕀𝐴𝜖 is desirable or not doesn’t
depend on the agent’s beliefs about whether they’ll perform
act 𝐴; it purely reflects how valuable they would expect it
to be, if performed.
Similarly, 𝜖 − 𝑔𝐴 doesn’t properly reflect an agent’s

willingness to sell the rewards of act 𝐴. If they perform
any other act 𝐵, they pocket 𝜖 and certainly won’t have to
pay the buyer anything, because 𝑔𝐴((𝐵, ·)) = 0. Again, for
basically the same reasons, I claim the natural comparison
is 𝕀𝐴𝜖 − 𝑔𝐴. Personally, I find the way that bridge type 2
prices acts much more natural than the way bridge type 1
does.

7. Coherence for Suppositional Decision
Theories

The standard coherence axioms for sets of desirable gambles
are (see, e.g., [2, Definition 1]):
D1. 0 ∉ 𝐷

D2. L>0 ⊆ 𝐷

D3. If 𝑓, 𝑔 ∈ 𝐷 , then 𝑓 + 𝑔 ∈ 𝐷
D4. If 𝑓 ∈ 𝐷 and _ ∈ ℝ>0, then _ 𝑓 ∈ 𝐷.
D1 (together with D3 and D2) encodes the rational re-

quirement of avoiding Dutch books (or avoiding partial
loss): there is no package of bets you can offer the agent
which they find (individually) desirable but which combine
into a gamble that is guaranteed to never make utility for
the agent and which might lose utility in some outcome.17
Although willingness to accept the zero gamble doesn’t

seem like a rational problem in the same way that accepting
a Dutch book does, it is convenient to exclude the zero
gamble from desirability, because it lets us associate desir-
ability with preference to the status quo, with the status quo

16But note that bridge type 2 cannot properly evaluate this, because the
uniform probabilities that 𝑃𝑒 𝑓 𝑓 assigns to acts are fake. For any hope of
either bridge representing buying act options correctly, I think we would
need to represent it as a sequential decision problem, which is outside the
scope of this paper.

17Satisfying both D3 and D2 entails that if 𝐷 accepts a partial loss, 𝐷
must also contain 0. For any 𝑔 which is nonpositive in every component
and negative in at least one, −𝑔 is nonnegative in every component and
positive in at least one, so −𝑔 ∈ 𝐷; and 𝑔 + −𝑔 = 0, so 0 ∈ 𝐷.

understood as the zero gamble. It doesn’t make sense to (pos-
itively) prefer the status quo to itself, so on this conception
of desirability the zero gamble is never desirable.
D3 and D4 are both closure axioms that follow from

(or characterize) the way we are understanding desirability.
D3 is the “package principle”: if any pair of gambles are
individually desirable, a single gamble that generates their
combined payoffs in any possible outcome must be, too.
D4 can be understood as a consequence of the linearity of
expectation together with the idea that what our agent is
trying to do is maximize expected utility (given imprecise
information). These assumptions are both consonant with
the way we’re understanding (supervaluational) supposi-
tional decision theories, so perhaps it isn’t surprising that
𝐷𝑃𝑒 𝑓 𝑓

also satisfies these axioms.
Not only would it be bad news to find a gamble that’s non-

positive at all worlds desirable; it would also be a problem
if, as a consequence of other gambles you find desirable,
you are implicitly committed to accepting a non-positive
gamble. This requirement is often termed consistency; be-
cause our closure axioms are D3 and D4, this amounts to
the requirement that posi(𝐷) ∩ L≤0 = ∅.18 Consistency
certainly seems rationally required for the decisions recom-
mended by a suppositional decision theory; and as we will
see, 𝐷 𝑝𝑒 𝑓 𝑓

satisfies this requirement.
As stated, 𝐷𝑃𝑒 𝑓 𝑓

will not typically satisfy D2. D2 is the
rational requirement to accept partial gain: if there is a
gamble that can’t lose you utility, but might possibly win
you utility (and taking it is completely free), you would be a
fool not to take it – no matter what your probabilistic beliefs
are.19 This might seem like an unassailable principle of
rational decision making, but we should notice: D3 and D2,
together with our representational assumption that 𝑔 � ℎ

iff 𝑔 − ℎ ∈ 𝐷, entails 𝛺-dominance: if for all 𝜔 ∈ 𝛺

𝑔(𝜔) ≥ ℎ(𝜔) and there is at least one 𝜔 ∈ 𝛺 for which
𝑔(𝜔) > ℎ(𝜔), then 𝑔 � ℎ.
We have already seen, in Section 1, that (state-relative)

dominance reasoning (for acts) is not always correct. Should
we be similarly suspicious of dominance reasoning for
gambles defined on the entire possibility space (including
acts)? I argue that we shouldn’t for two reasons: (1) unlike
state-relative dominance, dominance on the total possibility
space never positively conflicts with the recommendations
of any SDT (viz.: there cannot be a case where act 𝐴 �𝑆𝐷𝑇

𝐵 but 𝑔𝐵 𝛺-dominates 𝑔𝐴); and (2) although adding 𝛺-
dominance can sometimes sharpen our agent’s preferences
(make slightly more desirability judgments between acts

18posi(𝐷) , for 𝐷 ⊆ L, is the set of all positively-weighted, finite,
combinations of gambles in 𝐷. Put another way: posi(𝐷) is the closure
of 𝐷 under D3 and D4.

19Note that this assumes that there are events you might regard as
possible, but having probability zero.
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than the SDT alone does), it only adds a very specific kind
of judgment that is both innocuous and intuitive.

Theorem 2 If 𝑔𝐴, 𝑔𝐵 are the characteristic gambles (as
defined in Equation 1) for two acts 𝐴, 𝐵, respectively, then
𝑔𝐴 𝛺-dominates 𝑔𝐵 only if 𝑔𝐵 ≤ 0 and 𝑔𝐴 ≥ 0; further-
more, either 𝑔𝐴 > 0, 𝑔𝐵 < 0, or both.

Proof Because 𝑔𝐴 is the characteristic gamble of act 𝐴,
𝑔𝐴((𝐵, 𝑋)) = 0 for all 𝑋 ∈ X. So if 𝑔𝐴(𝜔) ≥ 𝑔𝐵 (𝜔), for
all 𝜔 ∈ 𝛺, 𝑔𝐵 ((𝐵, 𝑋)) ≤ 0 for all 𝑋 ∈ X. And because 𝑔𝐵
is the characteristic gamble of 𝐵, 𝑔𝐵 (𝜔) = 0 for all 𝜔 ∉ 𝐵;
so 𝑔𝐵 (𝜔) ≤ 0 for all 𝜔.
Similarly, 𝑔𝐵 ((𝐴, 𝑋)) = 0 for all 𝑋 ∈ X, so if 𝑔𝐴

𝛺-dominates 𝑔𝐵, then 𝑔𝐴((𝐴, 𝑋)) ≥ 0 for all 𝑋 ∈ X;
𝑔𝐴(𝜔) = 0 for all 𝜔 ∉ 𝐴, and so 𝑔𝐴(𝜔) ≥ 0 for all 𝜔.
If 𝑔𝐴 𝛺-dominates 𝑔𝐵, then there must also be at least

one𝜔 ∈ 𝛺 for which 𝑔𝐴(𝜔) > 𝑔𝐵 (𝜔), whichmeans that 𝑔𝐴
and 𝑔𝐵 cannot both be the zero gamble. Since 𝑔𝐴(𝜔) ≥ 0
and 𝑔𝐵 (𝜔) ≤ 0 for all 𝜔, if they can’t both be identically 0,
either 𝑔𝐴 is positive for some 𝜔, 𝑔𝐵 is negative for some 𝜔,
or both.

Theorem 3 There is no SDT, 𝑃 ⊆ ℙ, and 𝑢 ∈ 𝕌 for which
act 𝐴 is recommended over act 𝐵 but 𝑔𝐵 𝛺-dominates 𝑔𝐴.

Proof First observe, from the previous theorem, that 𝑔𝐵
can 𝛺-dominate 𝑔𝐴 only if 𝑔𝐵 has no negative component
and 𝑔𝐴 has no positive component. So, there is no 𝑝 ∈ ℙ
such that 𝐸𝑝 (𝑔𝐴) > 𝐸𝑝 (𝑔𝐵); ∀𝑝 ∈ ℙ, 𝐸𝑝 (𝑔𝐴) ≤ 0 and
𝐸𝑝 (𝑔𝐵) ≥ 0. So there is no 𝐷𝑃𝑒 𝑓 𝑓

s.t. 𝑔𝐴 − 𝑔𝐵 ∈ 𝐷𝑃𝑒 𝑓 𝑓
.

So, as alluded to earlier, we have that requiring our
agent to satisfy 𝛺-dominance will never conflict with the
desirability judgments of any SDT; and the only desirability
judgments that it will (sometimes) add is that some acts
which cannot yield positive utility in any outcome will be
dispreferred to certain acts which cannot lose utility in any
outcome – and where, further, there must be at least one
outcome where the “good” act wins utility or the “bad” act
loses utility. As long as we take the relevant outcomes to be
genuinely possible, this seems intuitive: to trade the “bad”
act for the “good” is a riskless improvement.
So I think the relevant coherence axioms for suppositional

decision theories are just the standard ones. That might
be surprising (it surprised me), but I hope the preceding
discussion was convincing.
In any case, it is very simple to adjust 𝐷𝑃𝑒 𝑓 𝑓

to satisfy
the coherence axioms: let 𝐷𝑃𝑒 𝑓 𝑓

= {𝑔 ∈ L(𝛺) : 𝑔 ∈
L>0 or ∃ℎ ∈ 𝐷𝑃𝑒 𝑓 𝑓

: 𝑔 ≥ ℎ}.

Theorem 4 𝐷𝑃𝑒 𝑓 𝑓
is the natural extension of 𝐷𝑃𝑒 𝑓 𝑓

; it
is the smallest set of gambles which includes 𝐷𝑃𝑒 𝑓 𝑓

and
satisfies all of D1-D4.

Proof First, we’ll check that 𝐷𝑃𝑒 𝑓 𝑓
satisfies the coherence

axioms.
D2: holds by definition.
D3, D4: suppose 𝑓 , 𝑔 ∈ 𝐷𝑃𝑒 𝑓 𝑓

. So, either 𝑓 ∈ L>0 or
there’s some 𝑓 ′ : 𝑓 ≥ 𝑓 ′ and (∀𝑞 ∈ 𝑃𝑒 𝑓 𝑓 ) (𝐸𝑞 ( 𝑓 ′) >
0); similarly for 𝑔. If 𝑓 , 𝑔 are both in L>0, then so is
𝑓 + 𝑔, so by definition 𝑓 + 𝑔 ∈ 𝐷𝑃𝑒 𝑓 𝑓

. If only one is
in L>0, assume WLOG it’s 𝑔. Then 𝑓 + 𝑔 > 𝑓 ′, and so
𝑓 + 𝑔 ∈ 𝐷𝑃𝑒 𝑓 𝑓

. If neither is in L>0, then consider 𝑓 ′ + 𝑔′.
(∀𝑞 ∈ 𝑃𝑒 𝑓 𝑓 ) (𝐸𝑞 ( 𝑓 ′ + 𝑔′) = 𝐸𝑞 ( 𝑓 ′) + 𝐸𝑞 (𝑔′) > 0), and
𝑓 + 𝑔 ≥ 𝑓 ′ + 𝑔′, so 𝑓 + 𝑔 ∈ 𝐷𝑃𝑒 𝑓 𝑓

.
Similarly: let _ ∈ ℝ>0. If 𝑓 ∈ L>0, then so is _ 𝑓 . If

not, then (∀𝑞 ∈ 𝑃𝑒 𝑓 𝑓 ) (𝐸𝑞 (_ 𝑓 ′) = _𝐸𝑞 ( 𝑓 ′) > 0) and
_ 𝑓 ≥ _ 𝑓 ′, so _ 𝑓 ∈ 𝐷𝑃𝑒 𝑓 𝑓

.
D1: suppose (for reductio) 0 ∈ 𝐷𝑃𝑒 𝑓 𝑓

. 0 ∉ L>0, so there
must be some ℎ : 0 > ℎ and (∀𝑞 ∈ 𝑃𝑒 𝑓 𝑓 ) (𝐸𝑞 (ℎ) > 0). But
if ℎ < 0, 𝐸𝑝 (ℎ) ≤ 0 for any probability 𝑝. Contradiction.
To verify it’s the smallest set of gambles including

𝐷𝑃𝑒 𝑓 𝑓
which is coherent, observe that 𝐷𝑃𝑒 𝑓 𝑓

= {𝑔 ∈
L(𝛺) : (∃ℎ ∈ 𝐷𝑃𝑒 𝑓 𝑓

) (𝑔 ≥ ℎ)} ∪ L>0. Axioms D3 and
D2 entail 𝛺-dominance (any gamble which 𝛺-dominates
a desirable gamble must also be desirable) and {𝑔 ∈
L(𝛺) : (∃ℎ ∈ 𝐷𝑃𝑒 𝑓 𝑓

) (𝑔 ≥ ℎ)} is just the closure of𝐷𝑃𝑒 𝑓 𝑓

under𝛺-dominance.Any coherent𝐷which includes𝐷𝑃𝑒 𝑓 𝑓

must have 𝐷 ⊇ {𝑔 ∈ L(𝛺) : (∃ℎ ∈ 𝐷𝑃𝑒 𝑓 𝑓
) (𝑔 ≥ ℎ)} and

𝐷 ⊇ L>0, so 𝐷 ⊇ 𝐷𝑃𝑒 𝑓 𝑓
.

So, for any SDT and any 𝑃 ⊆ ℙ, we can identify
a coherent set of desirable gambles, which sometimes
(very slightly!) sharpens the recommendations that the (su-
pervaluated) suppositional decision theory makes given
our agent’s beliefs: for any 𝑢 ∈ 𝕌 and any pair of
acts 𝐴, 𝐵, if (∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) > 𝑉 (𝑝, 𝑢, 𝐵)), then
𝑔𝐴 − 𝑔𝐵 ∈ 𝐷𝑃𝑒 𝑓 𝑓

. And if 𝑔𝐴 − 𝑔𝐵 ∈ 𝐷𝑃𝑒 𝑓 𝑓
, then either

(∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) > 𝑉 (𝑝, 𝑢, 𝐵)) or 𝑔𝐴 𝛺-dominates
𝑔𝐵.

8. Representation with Local Desirability
Assessments?

The construction of 𝐷𝑃𝑒 𝑓 𝑓
from an SDT and the agent’s set

of credence functions 𝑃 is not conceptually difficult, but it
might be computationally demanding. We might hope that
there is a way of representing the same information directly
in terms of the local, suppositional desirability assessments
– that is, from the beliefs that the agent would have about X
suppositional on each candidate act in A.
Let’s return again to the precise case: 𝑃 = {𝑞}. Here is an

alternative way of constructing 𝐷𝑃𝑒 𝑓 𝑓
= 𝐷𝑞𝑒 𝑓 𝑓

in this case
(which yields the same result). First, consider the gambles
(defined onX) that the agent would find desirable under the
supposition of each act. Let 𝑚 = | |A||. For each 𝑖 ∈ 1 : 𝑚,

54



Representing Suppositional Decision Theories with Sets of Desirable Gambles

let 𝐷𝑞

𝑖
= {𝑔 ∈ L(X) : 𝐸𝑠 (𝑞,𝐴𝑖) (𝑔) > 0} – the gambles

(defined on X) that have positive expected value according
to the probability that results from revising 𝑞 by supposing
𝐴𝑖 . Let 𝐷𝑢𝑛𝑖 = { 𝑓 ∈ L(A) :

∑
𝑖 𝑓 (𝐴𝑖) > 0} represent the

gambles (defined onA) which have positive expected utility
according to the uniform probability function defined onA:
𝑝𝑢𝑛𝑖 (𝐴𝑖) = 1

𝑚
. Then let 𝐷𝑠,𝑞 = posi(⋃𝑖 𝕀𝐴𝑖

𝐷
𝑞

𝑖
∪ 𝐷𝑢𝑛𝑖).

Theorem 5 𝐷𝑠,𝑞 = 𝐷𝑞𝑒 𝑓 𝑓
; ℎ ∈ 𝐷𝑠,𝑞 iff ℎ ∈ 𝐷𝑞𝑒 𝑓 𝑓

, for
all ℎ ∈ L(𝛺).20

Moving beyond the precise case, then, we can
generally also construct 𝐷𝑃𝑒 𝑓 𝑓

=
⋂

𝑝∈𝑃 𝐷𝑠, 𝑝 =⋂
𝑝∈𝑃 posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷
𝑝

𝑖
∪ 𝐷𝑢𝑛𝑖).21 The local desirability as-

sessments for 𝑃 suppositional on 𝐴𝑖 are given by 𝐷𝑖 =⋂
𝑝∈𝑃 𝐷

𝑝

𝑖
. If it were true that

⋂
𝑝∈𝑃 posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷
𝑝

𝑖
∪

𝐷𝑢𝑛𝑖) = posi(
⋃

𝑖 𝕀𝐴𝑖

⋂
𝑝∈𝑃 𝐷

𝑝

𝑖
∪ 𝐷𝑢𝑛𝑖), then we would

have a very nice representation of 𝐷𝑃𝑒 𝑓 𝑓
in terms of the

local, suppositional desirability assessments.
As the reader may guess from the wording of the

previous conditional: unfortunately, 𝐷𝑃𝑒 𝑓 𝑓
is not gen-

erally equivalent to posi(⋃𝑖 𝕀𝐴𝑖
𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖). However:

posi(⋃𝑖 𝕀𝐴𝑖
𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖) ⊆ 𝐷𝑃𝑒 𝑓 𝑓

. Any desirability judg-
ment that posi(⋃𝑖 𝕀𝐴𝑖

𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖) makes, 𝐷𝑃𝑒 𝑓 𝑓
also en-

dorses; but 𝐷𝑃𝑒 𝑓 𝑓
will (typically)22 find some gambles

desirable that posi(⋃𝑖 𝕀𝐴𝑖
𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖) takes no stance on.

In this sense, 𝐷𝑃𝑒 𝑓 𝑓
is generally at least as informative as

posi(⋃𝑖 𝕀𝐴𝑖
𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖).

It turns out that posi(⋃𝑖 𝕀𝐴𝑖
𝐷𝑖∪𝐷𝑢𝑛𝑖) actually represents

a less informative judgment aggregation rule than 𝐷𝑃𝑒 𝑓 𝑓
.

So far, we’ve been considering a supervaluated/unanimous-
decision approach: act 𝐴 is preferred to act 𝐵 iff for every
𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐴) > 𝑉 (𝑝, 𝑢, 𝐵).

Theorem 6 For any 𝑃 ⊆ ℙ, 𝑢 ∈ 𝕌, and any two acts,
𝐴, 𝐵 ∈ A, 𝑔𝐴 − 𝑔𝐵 ∈ posi(

⋃
𝑖 𝕀𝐴𝑖

𝐷𝑖 ∪ 𝐷𝑢𝑛𝑖) iff either:
(1) ∃𝜖1, 𝜖2 ∈ ℝ such that (∀𝑝 ∈ 𝑃) (𝑉 (𝑝, 𝑢, 𝐴) > 𝜖1 >

𝜖2 > 𝑉 (𝑝, 𝑢, 𝐵)); (2) 𝑔𝐴 = 0 and ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐵) < 0;
(3) 𝑔𝐵 = 0 and ∀𝑝 ∈ 𝑃, 𝑉 (𝑝, 𝑢, 𝐴) > 0; or (4) ∀𝑝 ∈ 𝑃,
𝑉 (𝑝, 𝑢, 𝐴) > 0 and 𝑉 (𝑝, 𝑢, 𝐵) < 0.23

This aggregation rule is clearly less informative than
supervaluation, because all 4 conditions entail that ∀𝑝 ∈ 𝑃,
𝑉 (𝑝, 𝑢, 𝐴) > 𝑉 (𝑝, 𝑢, 𝐵), but the latter can be true without
satisfying any of the four conditions; put another way, it’s a
stricter notion of preference derivable from the SDT and
the agent’s beliefs.

20For lack of space, the proof has been relegated to the supplement.
21This amounts to taking the marginal extension of the agent’s actual

suppositional assessments with the fake uniform prior over acts.
22There are special cases where they will be equal. One that we’ve

already seen is for any precise 𝑃 = {𝑞 }.
23For lack of space, the proof has been relegated to the supplement.

9. More Uncertainty
Thus far, we’ve been assuming that our agent might have
imprecise credences about 𝛺: they might not be able to
attach precise probabilities to how likely it is that they will
perform the acts in A, or to how likely each state of the
world in X is. However, we have been implicitly assuming
that their suppositional updating rule is precise, in this
sense: 𝑠 maps a pair of probability function and supposed
proposition to a single probability function. In the context
of, e.g., causal decision theory, we might take this to reflect
a kind of precision of belief about the laws themselves. For
instance, this could make sense if our agent was certain
about the objective chances of each state resulting from any
intervention to perform an act. It might also make sense
if our agent had precise probabilities over some different
causal hypotheses which they combined to calculate the
expected chance of each state resulting from performing
each act. But what if our agent has imprecise beliefs about
the laws themselves?
Let 𝕊 be the set of all functions from ℙ × P(𝛺) to ℙ.

Rather than assuming that our agent performs supposition
using a particular 𝑠 ∈ 𝕊, we could represent our agent as
having a set of candidate supposition rules 𝑆 ⊆ 𝕊. Just as
we can aggregate the judgments of an imprecise “credal
committee” by supervaluation, we could do the same with
the recommendations made by any candidate supposition
rule set 𝑆.

Definition 7 (SP-supervaluated SDT) For any 𝑠 ∈ 𝕊,
𝑝 ∈ ℙ, 𝑢 ∈ 𝕌, let 𝑉 (𝑠, 𝑝, 𝑢, ·) = 𝐸𝑠 (𝑝, ·) (𝑢(·)) =∑

𝜔∈𝛺 𝑠(𝑝, ·) (𝜔)𝑢(𝜔).
For an agent with imprecise probabilistic prior rep-

resented by 𝑃 ⊆ ℙ, imprecision about supposition rep-
resented by 𝑆 ⊆ 𝕊, and utility function 𝑢 ∈ 𝕌, an SP-
supervaluated SDT enjoins the agent to prefer act 𝐴 to act
𝐵 iff (∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃) (𝑉 (𝑠, 𝑝, 𝑢, 𝐴) > 𝑉 (𝑠, 𝑝, 𝑢, 𝐵)).

Howmight we represent this kind of decision theory with
sets of desirable gambles? Well, the recipe I’ve cooked up
for a bridge of Type 2 can be adapted, virtually without
modification. We’ve shown, for any 𝑠 ∈ 𝕊, 𝑝 ∈ ℙ, and
𝑢 ∈ 𝕌, that for any 𝐴, 𝐵 ∈ A, 𝑉 (𝑠, 𝑝, 𝑢, 𝐴) > 𝑉 (𝑠, 𝑝, 𝑢, 𝐵)
iff 𝑔𝐴 − 𝑔𝐵 ∈ 𝐷𝑠, 𝑝. So, (∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃) (𝑉 (𝑠, 𝑝, 𝑢, 𝐴) >
𝑉 (𝑠, 𝑝, 𝑢, 𝐵)) iff 𝑔𝐴 − 𝑔𝐵 ∈ ∩𝑠∈𝑆,𝑝∈𝑃𝐷𝑠, 𝑝 – which is
just to say that ∩𝑠∈𝑆,𝑝∈𝑃𝐷𝑠, 𝑝 precisely encodes all of
the recommendations of our SP-supervaluated SDT via a
bridge of type 2. Just as when we were considering only
supervaluation over 𝑃, ∩𝑠∈𝑆,𝑝∈𝑃𝐷𝑠, 𝑝 will not necessarily
be coherent, but it can be made coherent in exactly the
same way: let 𝐷𝑆𝑃 = {𝑔 ∈ L(𝛺) : 𝑔 ∈ L>0 or ∃ℎ ∈
∩𝑠∈𝑆,𝑝∈𝑃𝐷𝑠, 𝑝 : 𝑔 ≥ ℎ}. I won’t go through the proof
(it’s essentially identical to the proof of Theorem 4), but
𝐷𝑆𝑃 is the natural extension of ∩𝑠∈𝑆,𝑝∈𝑃𝐷𝑠, 𝑝. Just as
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before, the only additional act preferences involve cases of
𝛺-dominance.
It’s much less clear to me whether there’s any sensible

way of extending the idea of a bridge of Type 1 to the
SP-supervaluated case.

10. A Simple Numerical Example: Extortion
Revisited

Let’s return to the motivating example and make it more
concrete: our Agent believes that the threatening man (TM)
will decide to break their windshield based on whether or
not Agent pays. Suppose, for some reason, Agent is very
precise about how likely TM is to break the windshield:
they think that if they pay, TM will break the windshield
with probability 1

10 ; but if they don’t, TM will break the
windshield with probability 9

10 . We’ll also assume that
Agent is initially (almost) maximally imprecise about which
act they will choose. (For simplicity, we ignore other factors
that might cause the windshield to break.)24 The causal
structure of the relationship is given by this very simple
graph:

𝐴 𝑊

The agent’s choice of act is represented by the variable
𝐴, while 𝑊 represents what happens to the windshield.
A = {𝑃, 𝐷𝑃}: Pay or Don’t Pay; W = {𝐵, 𝑁𝐵}: the
windshield will be Broken or Not. But note this isn’t quite
a single causal Bayesian network (CBN) in the sense of
[15, p. 24]; although Agent is certain of a single precise
supposition rule, they have an imprecise prior over A. As
we will see, this is a case where EDT and CDT will generate
the same supposition rule (restricted to supposing acts).25
In this kind of case, we can build a bridge of Type 1 for both
EDT and CDT (because the Type 1 model for CDT will
also represent the judgments of EDT); the Type 2 models
for EDT and CDT will also be the same.
Also for simplicity, we assume that Agent has linear

utility in dollars, so that Agent’s utility function is given by
the table in Section 1.

10.1. Bridge Type 1

First, we find the coherent set of desirable gambles which
represents Agent’s prior beliefs. The agent’s prior credal set,
M, is the set of all probabilities defined on 𝛺 = A ×W
which are regular (for all 𝜔 ∈ 𝛺, 𝑝(𝜔) > 0) and which
satisfy 𝑝(𝐵 |𝐷𝑃) = 9

10 and 𝑝(𝐵 |𝑃) =
1
10 (because they are

24In the supplement to the paper, I have included a more complicated
version of this case which might be more reasonable in various ways.

25[19] and [3] both contain very nice discussions of many famous
cases where EDT and CDT come apart, also adding FDT into the mix.

probabilities, they will also satisfy 𝑝(𝑁𝐵 |·) = 1 − 𝑝(𝐵|·)).
Because of the regularity condition, the set of desirable
gambles 𝐷M = {𝑔 ∈ L(𝛺) : ∀𝑝 ∈ M, 𝐸𝑝 (𝑔) > 0} is
already coherent. 𝐷M takes a fairly simple form: 𝐷M =

{𝑔 ∈ L(𝛺) : ∀𝑎 ∈ (0, 1), 𝑎𝑔(𝑃, 𝐵) + 9𝑎𝑔(𝑃, 𝑁𝐵) + (1 −
𝑎)9𝑔(𝐷𝑃, 𝐵) + (1 − 𝑎)𝑔(𝐷𝑃, 𝑁𝐵) > 0}.
Next, we find the supposition operator and corresponding

general imaging function dictated by the agent’s beliefs
about the causal structure. We can associate each precise
𝑝 ∈ M with a CBN. For each 𝑝 ∈ M we can define a
set of interventional distributions, S𝑝 ⊂ ℙ in the sense
of [15, p. 24]: each 𝑆

𝑝

do(𝑋=𝑥) ∈ S𝑝 represents a causal
intervention setting the values of some subset of variables
𝑋 ⊆ V = {𝐴,𝑊} to specific values 𝑥; changes to other
variables “flow downstream”: only the nodes intervened
on and their descendants are affected by the intervention.
This gives us a causal interventionist supposition operator:
for any event 𝐸𝑥 corresponding to some 𝑋 = 𝑥, we define
𝑠𝐶𝐷𝑇 (𝑝, 𝐸𝑥) = 𝑆

𝑝

do(𝑋=𝑥) .
We are interested only in interventions on 𝐴, because

this is the only variable over which the agent has direct
causal control. Let’s pick an arbitrary 𝑝 ∈ M and consider
the results of intervening on 𝐴. First, some notation: given
variable 𝑉 , let 𝑃𝐴(𝑉) be the set of all Markovian parents
of 𝑉 . Let 𝑉𝜔 be the value assigned to variable 𝑉 by total
assignment 𝜔; expressions like 𝑃𝐴(𝑉)𝜔 also make sense,
because we can treat a set of variables as a compound
variable (e.g., a vector where each component represents
one of the variables in the set). Let 𝕀𝑉 =𝑣 (𝜔) be the indicator
function which returns 1 iff 𝑉𝜔 = 𝑣 and 0 otherwise; below,
we will often abbreviate this with 𝕀𝑣 .
Pearl’s general formula for interventional distribu-

tions is [15, Eq. 1.37]: for any total assignment 𝜔 ∈
𝛺 consistent with the partial assignment 𝑋 = 𝑥:
𝑆
𝑝

do(𝑋=𝑥) (𝜔) =
∏

𝑉 ∉𝑋 𝑝(𝑉𝜔 |𝑃𝐴(𝑉)𝜔); for 𝜔 inconsistent
with 𝑥, 𝑆𝑝

do(𝑋=𝑥) (𝜔) = 0. Applying this formula to our very
simple case, we have 𝑆𝑝

do(𝐴=𝑎) (𝜔) = 𝕀𝑎 (𝜔)𝑝(𝑊𝜔 |𝐴𝜔).
So, even though the agent’s prior isn’t described by a

single precise CBN, there’s a single causal supposition op-
erator for acts: 𝑠𝐶𝐷𝑇 (𝑝, 𝐴 = 𝑎) (𝜔′) = 𝕀𝑎 (𝜔′)𝑝(𝑊𝜔′ |𝑎).26
In this very simple case, intervening to set 𝐴 = 𝑎 gives the
same result as Bayesian conditionalization on 𝐴 = 𝑎, which
is why EDT and CDT make the same judgments.
To find the general imaging function which gener-

ates this supposition rule, I’ll use Gallow’s recipe for
constructing imaging functions from interventions on
a CBN [4, Appendix]. Let 𝑁𝐷 (𝐴) be the set of all
Markovian non-descendants of 𝐴, 𝐷𝐸 (𝐴) the set of

26In this example, intervening on 𝐴washes out all imprecision in the
agent’s prior; every 𝑝 ∈ M agrees about the conditional probabilities of
the form 𝑝 (𝑤 |𝑎) , 𝑤 ∈ W, 𝑎 ∈ A. I give an example of a case with
a single supposition operator and more genuinely imprecise “posterior”
(suppositional) beliefs in the supplement.
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all Markovian descendants of 𝐴 except for 𝐴 itself.
Then 𝑓 (𝐴 = 𝑎, 𝜔) (𝜔′) = 𝕀𝑎 (𝜔′) ·

∏
𝑁 ∈𝑁𝐷 (𝐴) 𝕀𝑁𝜔

(𝜔′) ·∏
𝐷∈𝐷𝐸 (𝐴) 𝑝(𝐷𝜔′ |𝑃𝐴(𝐷)𝜔′). In this example, this recipe

yields: 𝑓 (𝐴 = 𝑎, 𝜔) (𝜔′) = 𝕀𝑎 (𝜔′)𝑝(𝑊𝜔′ |𝐴𝜔′); it’s trivial
to verify that 𝑠𝐶𝐷𝑇 (𝑝, 𝐴 = 𝑎) (𝜔′) = 𝕀𝑎 (𝜔′)𝑝(𝑊𝜔′ |𝑎) =∑

𝜔∈𝛺 𝑝(𝜔) 𝑓 (𝐴 = 𝑎, 𝜔) (𝜔′).
With the general imaging function in hand, we can

construct the characteristic gambles of the acts for a
bridge of Type 1: 𝑔(𝑢, 𝐴 = 𝑃) (𝜔′) =

∑
𝜔∈𝛺 𝑓 (𝐴 =

𝑃, 𝜔′) (𝜔)𝑢(𝜔). Using the dollar values from Sec-
tion 1 as Agent’s utilities, we obtain: 𝑔(𝑢, 𝑃) (𝜔′) =

𝑢(𝑃, 𝐵)𝑝(𝐵 |𝑃) + 𝑢(𝑃, 𝑁𝐵)𝑝(𝑁𝐵|𝑃) = −410 · 110 − 10 ·
9
10 = −50. Note that this is a constant gamble on
𝛺! Similarly, we find 𝑔(𝑢, 𝐷𝑃) = 𝑢(𝐷𝑃, 𝐵)𝑝(𝐵 |𝐷𝑃) +
𝑢(𝐷𝑃, 𝑁𝐵)𝑝(𝑁𝐵 |𝐷𝑃) = −400 · 910 − 0 = −360.
That both gambles are negative is indicative of the fact

that Agent is being forced to “choose the lesser of two
evils”; alas, Agent cannot choose the status quo. Agent
prefers 𝑃 to 𝐷𝑃 iff 𝑔(𝑢, 𝑃) − 𝑔(𝑢, 𝐷𝑃) ∈ 𝐷M . With the
utility function given, 𝑔(𝑢, 𝑃) − 𝑔(𝑢, 𝐷𝑃) = −50−−360 =
310 and 𝐷M includes L>0 (𝛺), so both CDT and EDT
recommend Pay over Don’t Pay. More generally, we could
leave 𝑔(𝑢, 𝑃)−𝑔(𝑢, 𝐷𝑃) as a function of utility, and solve for
all utility functions which, given Agent’s prior as encoded
by 𝐷M and causal beliefs as encoded by 𝑓 , recommend
Pay over Don’t.

10.2. Bridge Type 2

We’ve already worked out the supposition operator (for
both EDT and CDT; they are the same for this example),
so this will be much quicker. Let’s pick an arbitrary 𝑝 ∈
M and find 𝑝𝑒 𝑓 𝑓 . Recall, from Section 6, the definition:
𝑝𝑒 𝑓 𝑓 (𝜔) = 𝑝𝑒 𝑓 𝑓 ((𝐴𝜔 , 𝑋𝜔)) = 𝑠 (𝑝,𝐴𝜔) (𝜔)

| |A | | . | |A|| = 2
and 𝑠(𝑝, 𝐴 = 𝑎) (𝜔) = 𝕀𝑎 (𝜔)𝑝(𝑊𝜔 |𝑎), so 𝑝𝑒 𝑓 𝑓 (𝜔) =
𝕀𝐴𝜔 (𝜔)
2 𝑝(𝑊𝜔 |𝐴𝜔) = 𝑝 (𝑊𝜔 |𝐴𝜔)

2 . Note again that one simple
feature of this case is that all probabilities in M agree
about the conditional probabilities of what happens to
the windshield given whether the agent pays or not. So it
happens that 𝑃𝑒 𝑓 𝑓 is a singleton, with 𝑃𝑒 𝑓 𝑓 = {𝑞} and

𝑞(𝜔) =


1
20 , (𝑃, 𝐵)
9
20 , (𝑃, 𝑁𝐵)
9
20 , (𝐷𝑃, 𝐵)
1
20 , (𝐷𝑃, 𝑁𝐵)

(2)

We find 𝐷𝑃𝑒 𝑓 𝑓
= 𝐷𝑞 = {𝑔 ∈ L(𝛺) : 𝐸𝑞 (𝑔) > 0}.

𝐷𝑞 = {𝑔 ∈ L(𝛺) : 𝑔(𝑃, 𝐵) + 9𝑔(𝑃, 𝑁𝐵) + 9𝑔(𝐷𝑃, 𝐵) +
𝑔(𝐷𝑃, 𝑁𝐵) > 0}. Much like 𝐷M in the previous subsec-
tion, the regularity of 𝑞 means that 𝐷𝑞 is already coherent.
For bridge Type 2, the characteristic gambles take the

much more familiar form from Eq. 1.

𝑔𝑃 (𝜔) =


−410, (𝑃, 𝐵)
−10, (𝑃, 𝑁𝐵)
0, (𝐷𝑃, ·)

(3)

.

𝑔𝐷𝑃 (𝜔) =


0, (𝑃, ·)
−400, (𝐷𝑃, 𝐵)
0, (𝐷𝑃, 𝑁𝐵)

(4)

.

𝑔𝑃 − 𝑔𝐷𝑃 =


−410, (𝑃, 𝐵)
−10, (𝑃, 𝑁𝐵)
400, (𝐷𝑃, 𝐵)
0, (𝐷𝑃, 𝑁𝐵)

(5)

.
Agent prefers 𝑃 to 𝐷𝑃 iff 𝑔𝑃 − 𝑔𝐷𝑃 ∈ 𝐷𝑞; we find
−410− 10 · 9+ 400 · 9− 0 = 3100 > 0. Both EDT and CDT
recommend Pay over Don’t Pay. And, like in the previous
section, we could leave 𝑔𝑃 − 𝑔𝐷𝑃 as a function of utility
and solve for all utility functions such that 𝑔𝑃 − 𝑔𝐷𝑃 ∈ 𝐷𝑞;
in both cases, we would get the same result.

11. Conclusion
We have seen that it is indeed possible to represent any sup-
positional decision theory with sets of desirable gambles,
while modeling both imprecise credences and even uncer-
tainty about what supposition procedure the agent should
use. In the special case where the SDT is representable by
general imaging, we have seen that a special representation
(bridge of type 1) is possible, although it is less clear how
to extend this to cases of uncertainty about the supposition
procedure.
There are many topics I was not able to cover in this

paper that I would be interested in exploring in future work,
including: how to represent mixed acts and deliberational
dynamics; sequential choice; learning and updating; and
what this formalism yields in cases of exotic choice.
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