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Abstract
Given a set of probability measures P representing
an agent’s knowledge on the elements of a sigma-
algebra F , we can compute upper and lower bounds
for the probability of any event 𝐴 ∈ F of interest. A
procedure generating a new assessment of beliefs is
said to constrict 𝐴 if the bounds on the probability of
𝐴 after the procedure are contained in those before
the procedure. It is well documented that (generalized)
Bayes’ updating does not allow for constriction, for all
𝐴 ∈ F . In this work, we show that constriction can
take place with and without evidence being observed,
and we characterize these possibilities.
Keywords: constriction, dilation, sets of probabilities,
evidence, conditioning, forgetting

1. Introduction

Call 𝛥(𝛺, F ) the space of countably additive probabil-
ity measures on a measurable space (𝛺, F ) of interest
and let P ⊆ 𝛥(𝛺, F ) be a set of probability measures.
Then 𝑃(𝐴) = inf𝑃∈P 𝑃(𝐴) is called the lower probabil-
ity of 𝐴, and its conjugate 𝑃(𝐴) = 1 − inf𝑃∈P 𝑃(𝐴𝑐) =

sup𝑃∈P 𝑃(𝐴) is called the upper probability of 𝐴. They are
two of the main building blocks of the literature known
as imprecise probability theory [33]. Like in measure the-
ory, where if outer and inner measures of a set coincide,
then we say that the set has a measure, if upper and lower
probabilities coincide, then they are an ordinary probability
measure, and P is a singleton. The parallel we just drew
between imprecise probability theory and measure theory
is not merely heuristic in nature: [33, Section 3.1.5] shows
that the natural extension of a coherent lower probability
from an algebra to the power set is the corresponding inner
measure.
The reasons for studying imprecise probabilities are

discussed at length in [1, 33] and references therein; in this
work we focus especially on the motivations expressed in
[12, 25]. There, the authors point out how specifying sets of
probabilities – and thus their “boundary elements”, namely
lower and upper probabilities – accounts for the ambiguity
faced by the agent carrying out the analysis. This means

that since the agent does not know the true data generating
process governing the experiment of interest, they may want
to take advantage of the flexibility of IP theory and specify
a set of probability measures to represent their ignorance.
The set will be “wider”, that is, the difference between
𝑃(𝐴) and 𝑃(𝐴) will be larger for all 𝐴 ∈ F , the higher the
uncertainty faced by the agent.
The aim of this paper is to study the constriction phe-

nomenon that takes place after a given procedure.

Definition 1 Consider an event of interest 𝐴 ∈ F , a
generic set of probability measures P ⊆ 𝛥(𝛺, F ), and
denote by 𝑃 and 𝑃 the lower and upper probabilities as-
sociated with P, respectively. Call נֹ! a generic procedure
that produces a new assessment of beliefs, and denote by
𝑃 נֹ! and 𝑃 נֹ! the lower and upper probabilities resulting from
such procedure, respectively.1 Then, we say that procedure
נֹ! (strictly) constricts 𝐴, in symbols "נֹ! 𝐴, if 𝑃 נֹ! (𝐴) > 𝑃(𝐴)
and 𝑃 נֹ! (𝐴) < 𝑃(𝐴). We say that נֹ! weakly constricts 𝐴 if one
of the two inequalities is weak.

Trivially, if נֹ! strictly constricts 𝐴, then נֹ! weakly constricts
𝐴. Constriction is sometimes called contraction [7, 15, 19].
We prefer constriction – as denoted in [20] – because
contraction is used in the belief revision literature to denote
an instance of corrigibility for full beliefs, which happens
when an agent gives up some current evidence by moving
to a logically weaker body of evidence [24]. In addition
when we say that נֹ! produces a new assessment of beliefs,
we mean that procedure נֹ! outputs (a set of) probabilities
that represent the belief of the agent around the elements
of F . This should not be confused with AGM theory [19]
where procedures generate a new set of full beliefs (sets
of sentences). We keep the same terminology as, given the
context, no confusion arises.
Our interest for constriction stems from surprising results

involving the opposite phenomenon, called dilation, which

1We use Hebrew letter נֹ! to denote the procedure because the Hebrew
word for procedure, נֹהַל! (pronounced nohal), begins with .נֹ! In addition,
Latin, Greek, and Cyrillic letters 𝑝, 𝑃, 𝜋, 𝛱 – that could be associated
with the word “procedure” – are usually associated with probabilities and
partitions, while Greek letter 𝜛 can be easily confused with 𝜔, which we
will use to denote an element of the state space 𝛺 of interest.
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was first observed in the context of (generalized) Bayes’
updating of P [30]. We remark that P need not be closed or
convex. Pick any 𝐴 ∈ F , and callP(𝐴) := {𝑃(𝐴) : 𝑃 ∈ P}.
Let 𝑋 : 𝛺 → ℝ be a P-measurable random variable, that
is, let it be 𝑃-measurable for all 𝑃 ∈ P. Call then I a
generic index set, and let X := {𝑋 = 𝑥𝑖}𝑖∈I be the sample
space of measurable events associated with 𝑋 . Denote
by P(𝐴 | 𝑥𝑖) := {𝑃(𝐴 | 𝑋 = 𝑥𝑖) : 𝑃 ∈ P} the set of
conditional probabilities of event 𝐴, given 𝑋 = 𝑥𝑖 . In order
to avoid issues with conditional probability given a 𝑃-null
event, 𝑃 ∈ P, we assume that the 𝑃’s in P agree on
those outcomes {𝑋 = 𝑥𝑖} that are 𝑃-null. Let us denote by
𝐸 = 𝑋−1 (𝑥) ⊆ 𝛺 the evidence collected after experiment
X. A weaker notion of constriction is the following.

Definition 2 The (generalized) Bayes’ updating procedure,
denoted by נֹ! = (𝐵, 𝐸),2 strictly pointwise constricts 𝐴 if,
for each 𝑥𝑖 in a set of P-probability 1 (that is, a set of
𝑃-probability 1, for all 𝑃 ∈ P), 𝑃(𝐴) < 𝑃(𝐴 | 𝑋 = 𝑥𝑖)
and 𝑃(𝐴) > 𝑃(𝐴 | 𝑋 = 𝑥𝑖). It weakly pointwise constricts
𝐴 if one of the two inequalities is weak.

Generalized Bayes’ updating merely pointwise constricts
𝐴 if it pointwise constricts 𝐴, but inf𝑖∈I 𝑃(𝐴 | 𝑋 = 𝑥𝑖) =
𝑃(𝐴) and sup𝑖∈I 𝑃(𝐴 | 𝑋 = 𝑥𝑖) = 𝑃(𝐴). Strict and weak
mere pointwise constriction are defined similarly to before.

To see that pointwise constriction is weaker than constric-
tion, notice that we obtain strict constriction if inf𝑖∈I 𝑃(𝐴 |
𝑋 = 𝑥𝑖) > 𝑃(𝐴) and sup𝑖∈I 𝑃(𝐴 | 𝑋 = 𝑥𝑖) < 𝑃(𝐴), and
weak constriction if one of the latter two inequalities is
weak.
Define now, for all 𝑃 ∈ P, X𝐴+

𝑃
:= {𝑥 ∈ X : 𝑃(𝐴 | 𝑋 =

𝑥) > 𝑃(𝐴)} and X𝐴−
𝑃
:= {𝑥 ∈ X : 𝑃(𝐴 | 𝑋 = 𝑥) < 𝑃(𝐴)}.

The following lemma comes immediately from the law of
conditional expectations.

Lemma 3 Pick any 𝐴 ∈ F . Then, for all 𝑃 ∈ P, 𝑃(X𝐴+
𝑃
) >

0 if and only if 𝑃(X𝐴−
𝑃

) > 0.

We then have two propositions that give sufficient condi-
tions that preclude even weak constriction when collecting
evidence in the form of an experiment to learn the value
of the random variable 𝑋 and using generalized Bayes’
updating.

Proposition 4 Pick any 𝐴 ∈ F . If P(𝐴) is closed in the
Euclidean topology, then no experiment X is such that
(𝐵, 𝐸) weakly pointwise constricts 𝐴.

Proposition 5 Pick any 𝐴 ∈ F . No simple experiment X
is such that (𝐵, 𝐸) weakly pointwise constricts 𝐴. That is,

2In נֹ! = (𝐵, 𝐸) , letter 𝐵 denotes generalized Bayes’ updating, and
𝐸 = 𝑋−1 (𝑥) is the conditioning set. Throughout the paper, we refer
to generalized Bayes’ updating simply as “conditioning”, while other
techniques are referred to as “updating rules”.

if 𝑋 is a simple random variable (i.e. if the index set I for
the sample space X is finite with 𝑃-probability 1, for all
𝑃 ∈ P), then (𝐵, 𝐸) does not weakly pointwise constrict 𝐴.

The next example shows that if P(𝐴) is open and 𝑋 is
not simple, we can have strict mere pointwise constriction.
Togetherwith Propositions 4 and 5, this exhausts the possible
cases for generalized Bayes’ updating.

Example 1 Let 𝐴 be a (measurable) event. For 0.4 < 𝑥 <
0.6 stipulate that 𝑃𝑥 (𝐴) = 𝑥, and let P(𝐴) = {𝑃𝑥 (𝐴)}.
So, 𝑃(𝐴) = 0.4 and 𝑃(𝐴) = 0.6, but P(𝐴) is an open
set. Let 𝑓 be a well ordering of the rational numbers in
the open interval (0.4, 0.6), denoted as the set ℚ(0.4,0.6) .
So letting ℕ = {1, 2, . . .} denote the natural numbers, we
have 𝑓 : ℚ(0.4,0.6) ↔ ℕ is a 1 − 1 (onto) function. Denote
by 𝑞𝑛 = 𝑓 −1 (𝑛). Again, 𝑞𝑛 ∈ ℚ(0.4,0.6) . Let 𝑁 be a 𝑃𝑋 -
measurable random variable where for each 0.4 < 𝑥 < 0.6,
the likelihood ratio satisfies

𝑃𝑥 (𝑁 = 𝑛 | 𝐴)
𝑃𝑥 (𝑁 = 𝑛 | 𝐴𝑐) =

(1 − 𝑥)𝑞𝑛
𝑥(1 − 𝑞𝑛)

. (1)

Note that (1) constraints the distribution 𝑃𝑥 (𝑁) without
defining it. But (1) is coherent since, for each 0.4 < 𝑥 < 0.6,
there are infinitely many values of 𝑞𝑛 for which the likelihood
ratio is greater than 1, and infinitely many values 𝑞𝑛 for
which the ratio is less than 1.3 By a trivial application of
Bayes’ Theorem,

𝑃𝑥 (𝐴 | 𝑁 = 𝑛)
𝑃𝑥 (𝐴𝑐 | 𝑁 = 𝑛) =

𝑞𝑛

1 − 𝑞𝑛
,

which is constant over P(𝐴). That is, with respect to set
P(𝐴), the family of conditional probabilities of 𝐴, given
𝑁 = 𝑛, is determinate despite the fact that the family of
unconditional probabilities of 𝐴 is indeterminate. Thus, for
each 𝑛 ∈ ℕ,

0.4 < 𝑃(𝐴 | 𝑁 = 𝑛) = 𝑞𝑛 = 𝑃(𝐴 | 𝑁 = 𝑛) < 0.6

and Bayes’ updating, given 𝑁 = 𝑛, strictly merely pointwise
constricts 𝐴. Note well that the strict constriction is merely
pointwise as inf𝑛∈ℕ 𝑃(𝐴 | 𝑁 = 𝑛) = 0.4 = 𝑃(𝐴), and
sup𝑛∈ℕ 𝑃(𝐴 | 𝑁 = 𝑛) = 0.6 = 𝑃(𝐴).

Let us now give an example of dilation, borrowed from
[30]. It illustrates how, using generalized Bayes’ updating,
imprecise probabilities for an event 𝐴 increase imprecision,
for each possible outcome of an experiment.

3Herewe seewhere the condition that P(𝐴) is an open set is necessary.
Condition (1) is incoherent when 𝑃𝑥 (𝐴) = 0.4 or 𝑃𝑥 (𝐴) = 0.6. Then,
for all values of 𝑞𝑛, the likelihood ratio (1) would have values only to one
side of 1, in contradiction with the law of total probability.
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Example 2 Suppose we flip a fair coin twice so that the flips
may be dependent. Denote by 𝐻𝑖 and 𝑇𝑖 outcome “heads”
and “tails”, respectively, in tosses 𝑖 ∈ {1, 2}. Let

P :=
{
𝑃 : 𝑃(𝐻1) = 𝑃(𝐻2) =

1
2

, 𝑃(𝐻1 ∩ 𝐻2) = 𝑝
}
𝑝∈[0, 12 ]

.

Now, suppose we flip the coin; we have 𝑃(𝐻2) = 1/2, but

0 = 𝑃𝐵 (𝐻2 | 𝐻1) < 𝑃(𝐻2) =
1
2
= 𝑃(𝐻2) < 𝑃

𝐵 (𝐻2 | 𝐻1)

and

0 = 𝑃𝐵 (𝐻2 | 𝑇1) < 𝑃(𝐻2) =
1
2
= 𝑃(𝐻2) < 𝑃

𝐵 (𝐻2 | 𝑇1),

where 𝑃𝐵 (𝐻2 | 𝐻1) = 𝑃
𝐵 (𝐻2 | 𝑇1) = 1. As we can see,

we start with a precise belief about the second toss and,
no matter what the outcome of the first toss is, we end up
having vacuous beliefs about the second toss.

The fact that Bayes’ rule of conditioning – arguably the
most popular beliefs updating procedure – can give rise to
dilation is one motivation for exploring updating techniques
that instead admit constriction. That is the focus of our
work.
The paper is divided as follows. Section 2 studies pro-

cedures that allow constriction to take place when no new
evidence is collected. Theorems 8 and 9 are the main results
and give very general conditions for procedures to give the
opportunity for constriction in the absence of new collected
evidence. In section 3, each individual in a group applies a
(convex) personal pooling rule with “precise” inputs from
the others in order to form their revised opinion. The process
iterates until the individual opinions merge to a fixed point.
Because the pooling rules are convex, the fixed point is a
constriction of the original set of opinions. Section 4 studies
constriction when evidence is collected and non-Bayesian
updating rules are used to revise the agent’s beliefs. For a
countably additive probability, given a generic partition E
of 𝛺, conditioning does not allow constriction for all 𝐸 ∈ E.
So the only way of obtaining constriction for all 𝐸 ∈ E is
to intentionally forget the experiment associated with E.
But if we are able to make assumptions about the nature
of 𝑃, we can give conditions for constriction to take place
for all 𝐸 ∈ E. Section 5 concludes our work. We study op-
portunities for constriction when we forego the assumption
of countably additive probabilities in Appendix A, and we
prove our results in Appendix B.

2. Constricting Without Evidence
In this section, we study procedures that give the opportunity
for constriction when no data are collected.

2.1. Coherent Extension of a Precise Probability

Recall that, for de Finetti, a probability measure 𝑃 is co-
herent if for any finite collection {𝐴𝑖}𝑛𝑖=1 of nonempty
subsets of a state space 𝛺 of interest, we have that
sup𝜔∈𝛺

∑𝑛
𝑖=1 𝑐𝑖 [𝐼𝐴𝑖

(𝜔) − 𝑃(𝐴𝑖)] ≥ 0, for all 𝑐1, . . . , 𝑐𝑛 ∈
ℝ, where 𝐼𝐴𝑖

denotes the indicator function for set 𝐴𝑖 . De
Finetti’s Fundamental Theorem of Probability [8, Section
3.10] is the following.

Theorem 6 Call 𝛺 the state space of interest. Given
the probabilities 𝑃(𝐴𝑖) of a finite number of events
𝐴1, . . . , 𝐴𝑛 ⊆ 𝛺, the probability 𝑃(𝐴𝑛+1) of a further
event 𝐴𝑛+1

1. either turns out to be determined if 𝐴𝑛+1 is linearly
dependent on the 𝐴𝑖’s;

2. or can be assigned, coherently, any value in a closed
interval [𝑝′, 𝑝′′].

More precisely, 𝑝′ is the greatest lower bound (GLB)
sup 𝑃(𝑋) of the evaluations from below of the 𝑃(𝑋) given
by the random quantities 𝑋 linearly dependent on the 𝐴𝑖’s
for which we certainly have 𝑋 ≤ 𝐴𝑛+1.4 The same can be
said for 𝑝′′ (replacing sup by inf, maximum by minimum,
𝐴′
𝑛+1 by 𝐴′′

𝑛+1, and changing the direction of the inequalities,
etc. It is the least upper bound of evaluations from above).

Notice that [𝑝′, 𝑝′′] can be an illusory restriction, for
example if 𝑝′ = 0 and 𝑝′′ = 1. The interpretation to this
result is the following. Suppose we express our subjective
beliefs around events 𝐴1, . . . , 𝐴𝑛 via a precise probability
distribution 𝑃. The fact that 𝑃 is precise is a crucial tenet
of de Finetti’s subjective probability theory. Then, if we
want to coherently extend our beliefs to a new event 𝐴𝑛+1
of interest, either we can do that “for free” if 𝐴𝑛+1 is
a linear combination of the other events, or we have an
interval [𝑝′, 𝑝′′] within which to select the value to assign
to 𝑃(𝐴𝑛+1). De Finetti himself does not say specifically
how to choose a value within [𝑝′, 𝑝′′]. The takeaway seems
to be along the lines of “you should be able to think hard
enough to come up with a precise number 𝑝 ∈ [𝑝′, 𝑝′′] to
attach to 𝑃(𝐴𝑛+1)”.
Denote by נֹ! = deFin the procedure of choosing any value

in [𝑝′, 𝑝′′] to assign to the probability of event 𝐴𝑛+1. Then,
the following holds.

Theorem 7 Suppose – in the notation of Theorem 6 – that
𝑝′ ≠ 𝑝′′. Then, deFin " 𝐴𝑛+1 if 𝑃deFin (𝐴𝑛+1) ∈ (𝑝′, 𝑝′′);
the constriction is weak if 𝑃deFin (𝐴𝑛+1) ∈ {𝑝′, 𝑝′′}.

Recall that, for Walley, a lower probability measure 𝑃 is
coherent if for any finite collection {𝐴𝑖}𝑛𝑖=0 of nonempty

4This inequality has to be interpreted as 𝑋 (𝜔) ≤ 𝐼𝐴𝑛+1 (𝜔) , for all
𝜔 ∈ 𝛺.

86



Constriction for Sets of Probabilities

subsets of a state space 𝛺 of interest, we have that

sup
𝜔∈𝛺

[
𝑛∑︁
𝑖=1

(
𝐼𝐴𝑖

(𝜔) − 𝑃(𝐴𝑖)
)
− 𝑠

(
𝐼𝐴0 (𝜔) − 𝑃(𝐴0)

) ]
≥ 0,

for all 𝑠, 𝑛 ∈ ℤ+. In [33, Section 3.1] the author gives the
imprecise probabilities (IP) counterpart of Theorem 6. That
is, Walley presents a method to extend coherently lower and
upper probabilities 𝑃(𝐴𝑖), 𝑃(𝐴𝑖) from a finite collection of
sets {𝐴1, . . . , 𝐴𝑛} ⊆ 2𝛺 to any other 𝐴𝑛+1 ⊆ 𝛺. However,
this result is not intended to prompt constriction, in contrast
with de Finetti’s Fundamental Theorem. The central idea
in IP theory is to be “comfortable” working with sets of
probabilities, and not being forced to select a precise value
inside the set.
Notice that Theorems 6 and 7, and the results in [33,

Section 3.1], are given in de Finetti’s and Walley’s frame-
works, respectively. They both rely on the finitely additive
probabilities. Because we consider finitely many events,
though, this distinction is immaterial. That being said, it
is important to point out that de Finetti’s and Walley’s
extensions procedures apply also starting from an arbi-
trary (possibly infinite) set of events, where the distinction
between finite and countable additivity matters, see for
example Appendix A.
Let # denote the cardinality operator, Conv(𝐻) the convex

hull of a generic set 𝐻, and ex[𝐾] the extreme points of a
generic convex set 𝐾 . We can generalize Theorem 7 to the
following.

Theorem 8 Suppose a generic procedure נֹ! generates a set
P ⊆ 𝛥(𝛺, F ) of probabilities on (𝛺, F ) such that #P ≥ 2,
and then prescribes a way of selecting one element 𝑃★ =

𝑃 נֹ! = 𝑃
נֹ! from Conv(P). Assume that ∅ ≠ ex[Conv(P)] =

{𝑃𝑒𝑥
𝑗
} 𝑗∈J , where J is a generic index set. Then, we have

that

• if 𝑃★ ∈ ex[Conv(P)], then there may exist a collection
{ �̃�} ⊆ F for which נֹ! weakly constricts �̃�. In addition,
"נֹ! 𝐴, for all 𝐴 ∈ F \ { �̃�};

• if instead 𝑃★ =
∑

𝑗∈J 𝛼 𝑗𝑃
𝑒𝑥
𝑗

, 𝛼 𝑗 > 0 for all 𝑗 , then
"נֹ! 𝐴, for all 𝐴 ∈ F .

We can also give a topological version of Theorem 8; call
𝜕𝑋𝐻 and int𝑋𝐻 the boundary and the interior of a generic
set 𝐻 in 𝑋 , respectively.

Theorem 9 Endow [0, 1] with the Euclidean topology,
and call B([0, 1]) the Borel sigma-algebra on [0, 1]. Fix
a generic 𝐴 ∈ F , and assume that P(𝐴) := {𝑃(𝐴) : 𝑃 ∈
P} ⊆ B([0, 1]) and that #P(𝐴) ≥ 2. Then,

• if P(𝐴) is closed in the Euclidean topology and
𝑃★(𝐴) ∈ 𝜕B( [0,1])P(𝐴), then נֹ! weakly constricts 𝐴;

• if instead 𝑃★(𝐴) ∈ intB( [0,1])P(𝐴), then "נֹ! 𝐴.

Remark 10 Notice that the assumption that P(𝐴) ⊆
B([0, 1]) is verified in the case that P is convex.

It is immediate to see how Theorem 7 is a special case
of Theorems 8 and 9. Another procedure that fits the re-
quirement of Theorems 8 and 9 is Halmos’ extension [17,
Exercise 48.4], [5, Section 4.13]. Consider two generic
measurable spaces (𝑋,X) and (𝑌,Y). Let 𝜇 ∈ 𝛥(𝑋,X)
and, for all 𝑥 ∈ 𝑋 , 𝜈𝑥 ∈ 𝛥(𝑌,Y). Suppose further that for
all 𝐵 ∈ Y, 𝜈• (𝐵) : 𝑋 → [0, 1] is X-measurable. Then,

(i) map 𝐸 ↦→ 𝜈𝑥 ({𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝐸}) is X-measurable,
for all 𝐸 ∈ X × Y;

(ii) map 𝜋 : X ×Y → [0, 1],

𝐸 ↦→ 𝜋(𝐸) :=
∫
𝑋

𝜈𝑥 ({𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝐸})𝜇(d𝑥)

is a probability measure on X ×Y.

Suppose now that there exists a set 𝐴 ⊆ 𝑌 such that its inner
and outer measures do not coincide, that is, for all 𝑥 ∈ 𝑋 ,
𝜈★𝑥 (𝐴) ≠ 𝜈★𝑥 (𝐴). Then, consider 𝐴′ = 𝑋 × 𝐴. We have that

𝜋𝐴′ ≡ 𝜋(𝐴′) =
∫
𝑋

𝜈𝑥 ({𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝐴′})𝜇(d𝑥) ,

and 𝜋𝐴′ ∈ [𝜈★𝑥 (𝐴), 𝜈★𝑥 (𝐴)]. So Halmos’ extension pre-
scribes a way to extend a countable additive probability
measure on Y to another countably additive probability
measure on X × Y that gives a well defined measure to a
Y-non-measurable set 𝐴. This value belongs to the interval
whose endpoints are the inner and outer measures of 𝐴,
respectively. It is immediate to see, then, how Halmos’
extension satisfies the conditions of Theorems 8 and 9.

Remark 11 Before going on, we need to mention a note-
worthy difference between נֹ! = deFin and extension theorems
from measure theory (à la Halmos). The relevant contrast is
that for the Fundamental Theorem (applied to probability),
de Finetti uses as his domains linear spans of, e.g. indicator
functions. And for the measure theorists, the extension of
probabilities to a larger ring of sets uses (countable) sums
of indicators defined: in the finite case from an algebra,
and in the infinite case from a sigma-algebra. Two addi-
tional meaningful differences are (1) for finite structures, de
Finetti does not require that probabilities are defined over
an algebra, whereas, the others do; (2) for infinite structures,
as de Finetti does not require countable additivity, his inner
and outer approximations are by finite sums of indicators.
By contrast, the measure theorists require countably ad-
ditive probabilities, and so they use countable sums for
constructing inner and outer measure approximations.
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We now briefly present three procedures that fit the
requirements of Theorems 8 and 9:

(i) convex pooling [32, Section 2], in which the opinions
of 𝑘 agents (expressed via precise probabilities 𝑃 𝑗 ,
𝑗 ∈ {1, . . . , 𝑘}) are first pooled in a convex way, thus
forming a set

P =

𝑃 ∈ 𝛥(𝛺, F ) : 𝑃 =

𝑘∑︁
𝑗=1

𝜁 𝑗𝑃 𝑗

 ,
where 𝜁 𝑗 ≥ 0, for all 𝑗 ∈ {1, . . . , 𝑘} and ∑𝑘

𝑗=1 𝜁 𝑗 = 1,
from which a unique pooled opinion 𝑃★ is selected;

(ii) Jaynes’ MaxEnt [21], in which, given a set of con-
straints C, the set of probabilities of interest to the
researcher is P = {𝑃 ∈ 𝛥(𝛺, F ) : 𝑃 satisfies C}, and
𝑃★ is selected by maximizing the Shannon entropy in
P;

(iii) generalized fiducial inference (GFI) [18], in which
a set of data-dependent measures on the parame-
ter space 𝛺 – called generalized fiducial distribu-
tions – is defined by carefully inverting a deter-
ministic data-generating equation without the use
of Bayes’ theorem. Mathematically, we can write
P = {𝑃 ∈ 𝛥(𝛺, F ) : 𝑃 satisfies [18, Equation (2)]}.
As pointed out in [18, Remark 4], 𝑃★ is then selected
by choosing the appropriate norm to endow the sample
space. In [18, Section 1], the authors point out how,
while GFI is different philosophically from Dempster-
Shafer theory [10] and inferential models [26], the
resulting solutions of these three methods are often
mathematically closely related to one another.

3. Constricting Based on Convex Pooling
As an example of a procedure that allows agents to collect
new evidence, but does not use conditioning to update
an agent’s beliefs, we present the famous model in [9].
There, the author supposes that there are 𝑘 individuals,
each having their own subjective probability distribution
𝐹𝑖 for the unknown value of some parameter 𝜔 ∈ 𝛺.5
For agent 𝑖, the opinions of all the other 𝑘 − 1 agents
represent new evidence. Instead of conditioning on those,
agent 𝑖 pools their own opinion with that of the other agents.
DeGroot shows that, repeating this process for all agent
𝑖, the group reaches (asymptotically) an agreement on a
common subjective probability distribution. After updating

5Usually the elements of the parameter space 𝛩 are denoted by 𝜃 ,
while the elements of the state space𝛺 by 𝜔. Since the focus of DeGroot’s
model is the parameter space only, we used – just in this section – the
𝜔 ∈ 𝛺 notation for the parameter space to maintain the notation consistent
with other sections.

their opinions, the probability distribution for every member
of the group belongs to the set

P =

𝐹 =

𝑘∑︁
𝑗=1

𝜁 𝑗𝐹𝑗

 , (2)

where 𝜁 𝑗 ∈ [0, 1], for all 𝑗 ∈ {1, . . . , 𝑘}, and ∑𝑘
𝑗=1 𝜁 𝑗 = 1.

In particular, for all 𝑖 ∈ {1, . . . , 𝑘}, we write that after the
first (pooling) iteration, the updated probability measure
for agent 𝑖, denoted by 𝐹𝑖1 is given by 𝐹𝑖1 =

∑𝑘
𝑗=1 𝑝𝑖 𝑗𝐹𝑗 .

This means that individual 𝑖 weighs the opinion of all the
agents, including themselves, via coefficients 𝑝𝑖1, . . . , 𝑝𝑖𝑘
representing the relative importance that agent 𝑖 assigns to
the opinion of the other members of the group. Because this
is true for all agents, we can give a linear algebra notation
to the updating process. Call P the 𝑘 × 𝑘 stochastic matrix
whose rows are given by probability vectors (𝑝𝑖1, . . . , 𝑝𝑖𝑘 ),
𝑖 ∈ {1, . . . , 𝑘}. Call then F = (𝐹1, . . . , 𝐹𝑘 )>; we have that
F(1) = PF, where F(1) := (𝐹11, . . . , 𝐹𝑘1)>. Of course this
holds for all iterations, so in turn we have that F(𝑛) =

PF(𝑛−1) = P𝑛F, for all 𝑛 ∈ ℕ. The members continue to
make these revisions indefinitely or until F(𝑛) = F(𝑛−1) , for
all 𝑛 ≥ 𝑁 , for some 𝑁 ∈ ℕ, so further revisions would not
change the opinions of the members. The following is the
main result of [9].

Theorem 12 If there exists 𝑛 ∈ ℕ such that every element
in at least one column of P𝑛 is positive, then a consensus is
reached.

That is, if the condition in Theorem 12 is satisfied, then
there exists a 𝑘 × 1 dimensional vector 𝝅 = (𝜋1, . . . , 𝜋𝑘 )
(that is unique, as guaranteed by [9, Theorem 3]) whose
elements are non-negative and sum up to 1, and such that
𝝅P = 𝝅. In turn, this entails that if we call 𝜫 the 𝑘 × 𝑘
stochastic matrix whose rows are all the same and equal
to 𝝅, we have that F★ = 𝜫F, where F★ = (𝐹★

1 , . . . , 𝐹
★
𝑘
)>

such that 𝐹★ = 𝐹★
1 = · · · 𝐹★

𝑘
=
∑𝑘

𝑗=1 𝜋 𝑗𝐹𝑗 , where 𝐹★ is
the common subjective distribution that is reached in the
consensus. Notice that 𝐹★ belongs to P in (2).
Call P𝑛 := Conv(𝐹1𝑛, . . . , 𝐹𝑘𝑛), for all 𝑛 ∈ ℕ. In this

example we have that P𝑛 ⊆ P𝑛−1, for all 𝑛 ∈ ℤ+, where P0
is setP in equation (2). Thismeans that the limit of sequence
(P𝑛) is set ∩𝑛∈ℤ+P𝑛. If the condition in Theorem 12 is
satisfied, then∩𝑛∈ℤ+P𝑛 = {𝐹★}. Given a generic set 𝐴 ∈ F ,
DeGroot procedure נֹ! = DeGr may only weakly constrict
𝐴 in general, for example if 𝐹★ belongs to the extrema of
P ≡ P0. That is, 𝐹★(𝐴) ≥ 𝐹 (𝐴) and 𝐹★(𝐴) < 𝐹 (𝐴), or
𝐹★(𝐴) > 𝐹 (𝐴) and 𝐹★(𝐴) ≤ 𝐹 (𝐴). Nevertheless, there
may exist 𝑟, 𝑠 ∈ ℤ+, 𝑟 < 𝑠, such that 𝐹𝑠 (𝐴) > 𝐹𝑟 (𝐴) and
𝐹𝑠 (𝐴) < 𝐹𝑟 (𝐴), where 𝐹𝑠 (𝐴) = inf𝐹 ∈P𝑠

𝐹 (𝐴), 𝐹𝑠 (𝐴) =
sup𝐹 ∈P𝑠

𝐹 (𝐴), and similarly for P𝑟 .
DeGroot model is one of the possible examples of an

agent collecting evidence and then revising their initial
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opinion using a rule that is different from conditioning on
the gathered data. We showed that there is at least one such
procedure in which constriction can take place if all the
gathered information is used.
Notice that, in contrast with deGroot’s model for consen-

sus, in the light of Proposition 4, there is no opportunity for
constriction in Aumann’s important “Agreeing to Disagree”
model [2]. We outline the reason why here. Identify the
group’s initial IP set of probabilities P(𝐴) about the event
of interest 𝐴, with the lower and upper probabilities 𝑃(𝐴)
and 𝑃(𝐴), taken with respect to minimum and maximum
of the precise individual opinions about 𝐴 that results after
each agent learns their “private” information. That is, P(𝐴)
obtains at round 1 in Aumann’s process. Since there are
finitely many agents in the group, this IP set is closed. In
Aumann’s model, the agents then iteratively share their in-
dividual, precise probabilities about 𝐴. At each subsequent
round after the first, they use Bayes’ updating to revise
their individual probability of 𝐴, given the new, shared
evidence of what they learn about the other’s probability
of 𝐴. This procedure amounts to (iteratively) using gener-
alized Bayes’ updating for the closed IP set P(𝐴) given
the updated individual precise probabilities for event 𝐴. By
Aumann’s theorem, after finitely many rounds the process
reaches a fixed point where a consensus 𝑃★(𝐴) is reached.
But if 𝑃(𝐴) < 𝑃(𝐴), then Proposition 4 establishes that
it cannot be that the consensus opinion, 𝑃★(𝐴), always
satisfies 𝑃(𝐴) < 𝑃★(𝐴) < 𝑃(𝐴).

4. Constricting Based on Non-Bayesian
Updating

Suppose the results of an experiment induce a partition
E = {𝐸 𝑗 } of the state space of interest 𝛺. Then, if we retain
the assumption that probability measures are countably
additive, conditioning on 𝐸 𝑗 does not allow for constriction,
for all 𝐸 𝑗 ∈ E. So in general we have that constriction for
all 𝐸 𝑗 ∈ E can take place only if we intentionally forget the
whole experiment that induces partition E. But if we are
able to make assumptions on the nature of lower probability
𝑃 associated with the set P of probabilities representing the
agent’s beliefs, and if we consider updating procedures that
are alternative to Bayes’ conditioning, we have opportunities
for constriction.

4.1. Background

In this section, we give some background concepts that are
needed to better understand the results that follow. Lower
and upper probabilities (LP and UP, respectively) are a
particular type of Choquet capacities.

Definition 13 Given a measurable space (𝛺, F ) with
𝛺 ≠ ∅, we say that a set function 𝜈 : F → [0, 1] is a

Choquet capacity if 𝜈(∅) = 0, 𝜈(𝛺) = 1, and 𝜈(𝐴) ≤ 𝜈(𝐵)
for all 𝐴, 𝐵 ∈ F such that 𝐴 ⊆ 𝐵.

Denote byM := {𝑃 ∈ 𝛥(𝛺, F ) : 𝑃(𝐴) ≥ 𝑃(𝐴), ∀𝐴 ∈
F } the set of (countably additive) probability measures
compatible with 𝑃 [15], and assume it is nonempty and
relatively compact. Notice also that M is convex. The
following are special cases of lower probabilities.

Definition 14 LP 𝑃 is a Choquet capacity of or-
der 𝑘 , or 𝑘-monotone capacity, if for every collection
{𝐴, 𝐴1, . . . , 𝐴𝑘 } ⊆ F such that 𝐴𝑖 ⊆ 𝐴, for all 𝑖 ∈
{1, . . . , 𝑘}, we have

𝑃(𝐴) ≥
∑︁

∅≠I⊆{1,...,𝑘 }
(−1)#I−1𝑃(∩𝑖∈I𝐴𝑖). (3)

Its conjugate UP 𝑃 is called a 𝑘-alternating capacity be-
cause it satisfies that for every collection {𝐴, 𝐴1, . . . , 𝐴𝑘 } ⊆
F such that 𝐴 ⊆ 𝐴𝑖 , for all 𝑖 ∈ {1, . . . , 𝑘},

𝑃(𝐴) ≤
∑︁

∅≠I⊆{1,...,𝑘 }
(−1)#I−1𝑃(∪𝑖∈I𝐴𝑖), (4)

A special case of LP that we will use in the remainder of
the paper are convex LP’s, that are Choquet capacities of
order 2; they satisfy 𝑃(𝐴∪ 𝐵) ≥ 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴∩ 𝐵),
for all 𝐴, 𝐵 ∈ F . Another special case of LP that we will
use are belief functions.

Definition 15 A LP 𝑃 is called a belief function if it is a
Choquet capacity of order ∞, i.e., if (3) holds for every 𝑘 .

Unique to a belief function is its intuitive interpretation
as a random set object that realizes itself as subsets of 𝛺.

Definition 16 If 𝑃 is a belief function, its associated mass
function is the non-negative set function 𝑚 : F → [0, 1],

𝐴 ↦→ 𝑚(𝐴) :=
∑︁
𝐵⊆𝐴

(−1)#(𝐴−𝐵)𝑃(𝐵), (5)

where 𝐴 − 𝐵 ≡ 𝐴 ∩ 𝐵𝑐 , and the subsets 𝐵 of 𝐴 have to
belong to F as well.

Properties of mass function 𝑚 are the following

(a) 𝑚(∅) = 0;

(b)
∑

𝐵⊆𝛺 𝑚(𝐵) = 1;

(c) 𝑃(𝐴) = ∑
𝐵⊆𝐴𝑚(𝐵), and is unique to 𝑃.

Formula (5) is called the Möbius transform of 𝑃 [34]. A
mass function 𝑚 induces a precise probability distribution
on F , as the distribution of a random set. These concepts
are further studied in [15]. Notice also that Definition 16
only applies if 𝛺 is a finite set. A general definition and
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Möbius characterization of belief functions on infinite sets
has been given in [29].
To update a set of probabilities P given a set 𝐸 ∈ F is to

replace set function 𝑃 with a version of the conditional set
function 𝑃× (· | 𝐸). The definition of 𝑃× is precisely the job
of the updating rule. Recall that we introduced generalized
Bayes’ rule of conditioning נֹ! = (𝐵, 𝐸) in section 1.
We now give the formal definitions of three additional up-

dating rules for lower and upper probabilities. Generalized
Bayes’, geometric, and Dempster’s rules are the ones that
are most commonly used and studied in the literature, while
Gärdenfors’ rule is a very general updating mechanism
that subsumes many other methods of belief revision. The
reasons for why an agent endorses one instead of another
are explored in [15, 31].

Definition 17 Let P ⊆ 𝛥(𝛺, F ) be closed and convex.
Then, the conditional LP’s and UP’s according to the
geometric rule are set functions 𝑃𝐺 , 𝑃𝐺 such that, for all
𝐴, 𝐸 ∈ F

𝑃 (𝐺,𝐸) (𝐴) ≡ 𝑃𝐺 (𝐴 | 𝐸) :=
𝑃(𝐴 ∩ 𝐸)
𝑃(𝐸) and

𝑃
(𝐺,𝐸) (𝐴) ≡ 𝑃𝐺 (𝐴 | 𝐸) = 1 − 𝑃 (𝐺,𝐸) (𝐴𝑐),

(6)

provided that 𝑃(𝐸) > 0.
So the main difference between generalized Bayes’ and
geometric updating procedures is that the former considers
the infimum of the ratio of 𝑃(𝐴 ∩ 𝐸) and 𝑃(𝐸), while the
latter considers the ratio of the infima. We introduce next
Dempter’s updating rule.

Definition 18 Call 𝐸 ∈ F the collected evidence. Assume
that 𝑃 is a belief function having mass function 𝑚 and such
that 𝑃(𝐸) > 0. Let 𝑃0 be a separate belief function whose
associated mass function 𝑚0 is such that 𝑚0 (𝐸) = 1. The
conditional belief function 𝑃𝐷 (· | 𝐸) is defined as

𝑃 (𝐷,𝐸) (𝐴) ≡ 𝑃𝐷 (𝐴 | 𝐸) := 𝑃(𝐴) ⊕ 𝑃0 (𝐸), ∀𝐴 ∈ F ,

where combination operator ⊕ means that the mass function
associated with 𝑃𝐷 (· | 𝐸) is

𝑚𝐷 (𝐴 | 𝐸) =
∑

𝐶∩𝐸=𝐴𝑚(𝐶)∑
𝐶′∩𝐸≠∅ 𝑚(𝐶 ′) , ∀𝐴 ∈ F .

Consequently, Dempster’s updating rule yields the following.
If P = M, then the LP’s and UP’s according to Dempster’s
updating rule are set functions 𝑃𝐷 , 𝑃𝐷 such that, for all
𝐴, 𝐸 ∈ F

𝑃
(𝐷,𝐸) (𝐴) ≡ 𝑃𝐷 (𝐴 | 𝐸) := 𝑃(𝐴 ∩ 𝐸)

𝑃(𝐸)
and

𝑃 (𝐷,𝐸) (𝐴) ≡ 𝑃𝐷 (𝐴 | 𝐸) = 1 − 𝑃 (𝐷,𝐸) (𝐴𝑐),
(7)

provided that 𝑃(𝐸) > 0.

If 𝑃 is a belief function and P = M, the geometric rule ap-
pears to be a natural dual to Dempster’s rule. Operationally,
though, they differ, as pointed out in [15, Section 2.2]. The
main difference is that Dempster’s rule requires 𝑃 to be
a belief function, while geometric rule does not. A thor-
ough comparison of geometric and Dempster’s rules can
be found in [11, 13]. In addition, an axiomatic extension of
Dempster’s conditioning rule to 2-monotone/2-alternating
capacities has been given in [28].
Finally, we introduce the following.

Definition 19 Call 𝐸 ∈ F the collected evidence. Assume
that 𝑃 is a belief function having mass function𝑚. Consider
a function 𝔣 : F × F → [0, 1] having constraints

(a)
∑

𝐵∈F 𝔣(𝐵, 𝑋) = 1, for all 𝑋 ∈ F ,

(b) 𝐵 ⊆ 𝐸𝑐 =⇒ 𝔣(𝐵, 𝑋) = 0,

(c) 𝔣(∅, 𝑋) = 0, for all 𝑋 ∈ F .

Then, the belief function 𝑃 (𝐼 ,𝐸) (·) ≡ 𝑃𝐼 (· | 𝐸) obtained
according to Gärdenfors’ generalized imaging updating
rule (GGI) is such that its associated mass function is given
by

𝑚𝐼 (𝐴 | 𝐸) =
∑︁
𝑋 ∈F

𝔣(𝐴, 𝑋)𝑚(𝑋), ∀𝐴 ∈ F . (8)

Since 𝐸 is the collected information, we have that 𝐸 t𝐸𝑐 =

𝛺, where t denotes the disjoint union. Equation (8) tells us
that, upon learning that the evidence collected is not in 𝐸𝑐 ,
then the probabilities given by 𝑚 to the (sub)events in 𝐸𝑐

are transferred to the “closest” (sub)events in 𝐸 according
to function 𝔣. Constraint (a) is needed to ensure that the
“probability bits” that are transferred are then normalized.
Constraint (b) corresponds to the closed world assumption,
which can be expressed as the statement “if the evidence
collected is not in 𝐸𝑐 , then it must belong to 𝐸”. Smets [31,
Section C.6] drops requirement (b) because he works under
the open world assumption, which negates the previous
statement to symbolize that the agent may have specified
the state space they work with incorrectly. So if the evidence
collected is not in 𝐸𝑐 , it may be in 𝐸 but also in a superset
of 𝐸 that the agent did not consider at the beginning of the
experiment. Constraint (c) is just a sanity check. Function 𝔣 is
a version of a conditional probability; it was first introduced
in [16] and then generalized by [31]. The choice of function
𝔣 informs how having collected evidence 𝐸 influences our
change of beliefs around 𝐴. GGI subsumes many other
existing updating rules [31].
In the remainder of the paper, we write נֹ! = (×, 𝐸), × ∈

{𝐵, 𝐺, 𝐷, 𝐼}, to indicate the generalized Bayes’, geometric,
Dempster’s, and Gärdenfors’ updating rules, respectively,
given collected evidence 𝐸 . We write that (×, 𝐸) " 𝐴

if given evidence 𝐸 , rule × (strictly) constricts 𝐴, and
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(×, E) " 𝐴 if rule × (strictly) constricts 𝐴 for all elements
of partition E.

4.2. Intentional Forgetting

In this section we show the following claim. If we are not
willing to assume that 𝑃 is at least convex – let alone a belief
function – that is, if we can only use generalized Bayes’
and geometric rules to update our beliefs, then we cannot
obtain constriction for all the elements 𝐸 of a partition E
representing the results of an experiment of interest. In this
very general case, we need to forget in order to constrict.
We retain the assumptions that P is closed and convex.

Lemma 20 Let E be a measurable and denumerable
partition of 𝛺, and let × ∈ {𝐵, 𝐺}. Then, for any 𝐴 ∈ F
we have that

inf
𝐸 ∈E

𝑃× (𝐴 | 𝐸) ≤ 𝑃(𝐴) and sup
𝐸 ∈E

𝑃
× (𝐴 | 𝐸) ≥ 𝑃(𝐴).

An immediate consequence of Lemma 20 is the following.

Theorem 21 Let E be a measurable and denumerable
partition of 𝛺. Then for × ∈ {𝐵, 𝐺}, we have that for all
𝐴 ∈ F , there exists 𝐸 ∈ E such that נֹ! = (×, 𝐸) does not
weakly constrict 𝐴.

This result tells us that for any event 𝐴 ∈ F of interest,
we can never find an element of E that (even weakly)
constricts 𝐴. In turn, this implies that there exist 𝐸1, 𝐸2 ∈ E,
𝐸1 possibly different than 𝐸2, such that [𝑃(𝐴), 𝑃(𝐴)] ⊂
[𝑃𝐵 (𝐴 | 𝐸1), 𝑃

𝐵 (𝐴 | 𝐸1)] and [𝑃(𝐴), 𝑃(𝐴)] ⊂ [𝑃𝐺 (𝐴 |
𝐸2), 𝑃

𝐺 (𝐴 | 𝐸2)]. As it appears clear, if the agent is
unwilling to make any extra assumption on the nature of P,
then there is no opportunity for constriction to take place
for all the elements of partition E.
In [30, Theorem 2.3] the authors give sufficient conditions

for dilation to take place for all 𝐸 ∈ E. Then, intentionally
forgetting altogether the experiment that dilates 𝐴 seems
the only viable option to reach constriction. As the name
suggests, intentional forgetting corresponds to an agent
willingly forgetting pieces of information, for example
because they are redundant, because they may be harmful,
or because they are instructed to do so. If after collecting
evidence 𝐸 our current beliefs are encapsulated in lower and
upper probabilities 𝑃× (· | 𝐸) and 𝑃× (· | 𝐸), respectively,
then by forgetting wemean reversing the learning process so
that our “updated” lower and upper probabilities becomes
what used to be the lower and upper “priors”, i.e. 𝑃(·) and
𝑃(·), respectively.
The topic of forgetting is studied in statistics. In [27], for

example, forgetting is intended in the sense of stabilized
forgetting; with this we mean the following. Suppose that
the agent is operating in an environment that is susceptible

to changes. Then, the agent’s response to surprising events
depends on their beliefs about how likely the environment
is to change. If it is volatile, a single unexpected event
triggers forgetting of past beliefs and relearning of a new
contingency. So at time 𝑡, the agent collects evidence 𝐸𝑡 ;
they use it to infer whether the environment has changed
or not. In the former case, they erase their memory of
past events and reset their prior belief to their initial prior
knowledge. In the latter, they can learn a new posterior belief
of the environment structure based on their previous belief.
Another example is given by limited memory procedures.
In [3, 4], the authors study bandit problems based on limited
memory: working with restricted memory, data that are too
old are forgotten.
Forgetting is studied in machine learning (ML) as well.

In [6], for instance, the authors come up with an algorithm
that features a forgetting factor which balances the relative
importance of new data and past data and adjust the model
to pay more attention to the new data when the concept drift
is detected. In this framework, forgetting is intended as in
past data progressively losing importance as new evidence
is collected. Another example in ML where forgetting is
crucial is continual learning: as data gets discarded and has
a limited lifetime, the ability to forget what is not important
and retain what matters for the future are the main issues
that continual learning targets and focuses on [22].
Finally, and rather unsurprisingly, psychologists and cog-

nitive scientists have thoroughly inspected the phenomenon
of forgetting. The reference textbook that investigates in-
tentional forgetting is [14]. The authors examine the effect
on memory of instructions to forget in a wide variety of
contexts. They point out how with the enormous number of
information available nowadays, online forgetting of some
information is necessary, and how often times replacing
existing information with new information is mandatory
(think of a person changing their phone number). Study
on intentional forgetting stemmed from the phenomenon
of directed forgetting: we are able to deal more effectively
with large amounts of information by following instructions
to treat some of the information as “to be forgotten” (e.g.
evidence presented in a courtroom that, being inadmissible,
is asked to be disregarded). In this way, interference is
reduced and we are able to devote all of our resources to the
remaining to-be-remembered information. It is easy to see
how stabilized forgetting is a particular case of intentional
forgetting, and so is the forgetting factor approach used in
the machine learning literature.
Consider the problem of an agent that expresses their

initial beliefs on (𝛺, F ) via a set of probabilities P = M.
For convenience, we write P ≡ P𝐸0 . As data become
available, they update their beliefs using Bayes’ rule of
conditioning for every element of P. With this we mean
the following. Suppose we collect evidence in the form of
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𝐸1 ⊆ F ; then we update the elements of P to obtain

P𝐸1 :=
{
𝑃𝐸1 ∈ 𝛥(𝛺, F ) : 𝑃𝐸1 (𝐴) ≡ 𝑃(𝐴 | 𝐸1)

=
𝑃(𝐸1 | 𝐴)𝑃(𝐴)

𝑃(𝐸1)
∝ 𝑃(𝐸1 | 𝐴)𝑃(𝐴), ∀𝐴 ∈ F

}
,

where 𝑃 ∈ P represents the prior and 𝑃(𝐸1 | ·) represents
the likelihood. More in general, let the evidence collected
up to time 𝑡 > 0 be encapsulated in collection {𝐸𝑘 }𝑡𝑘=1 ⊆ F .
Then, the agent’s updated opinion is given by set

P𝐸1 · · ·𝐸𝑡
:=

{
𝑃𝐸1 · · ·𝐸𝑡

: 𝑃𝐸1 · · ·𝐸𝑡
(𝐴) ≡ 𝑃𝐸1 · · ·𝐸𝑡−1 (𝐴 | 𝐸𝑡 )

∝ 𝑃(𝐸𝑡 | 𝐴, 𝐸1, . . . , 𝐸𝑡−1)𝑃𝐸1 · · ·𝐸𝑡−1 (𝐴), ∀𝐴 ∈ F
}
,

where P𝐸1 · · ·𝐸𝑡−1 3 𝑃𝐸1 · · ·𝐸𝑡−1 (·) ≡ 𝑃(· | 𝐸1 · · · 𝐸𝑡−1) repre-
sents the “revised” prior (that is, the posterior computed at
time 𝑡 − 1) and 𝑃(𝐸𝑡 | ·) represents the likelihood.
Pick any 𝑘 ∈ ℕ such that 1 ≤ 𝑘 ≤ 𝑡. As-

sume that P𝐸1 · · ·𝐸𝑡−𝑘 and P𝐸1 · · ·𝐸𝑡−𝑘 · · ·𝐸𝑡
are both con-

vex and closed. Fix an event 𝐴 ∈ F of interest
and define P★𝐸1 · · ·𝐸𝑡−𝑘 (𝐴) := {𝑃𝐸1 · · ·𝐸𝑡−𝑘 ∈ P𝐸1 · · ·𝐸𝑡−𝑘 :
𝑃𝐸1 · · ·𝐸𝑡−𝑘 (𝐴) = 𝑃𝐸1 · · ·𝐸𝑡−𝑘

(𝐴)} and P★
𝐸1 · · ·𝐸𝑡−𝑘 (𝐴) :=

{𝑃𝐸1 · · ·𝐸𝑡−𝑘 ∈ P𝐸1 · · ·𝐸𝑡−𝑘 : 𝑃𝐸1 · · ·𝐸𝑡−𝑘 (𝐴) = 𝑃𝐸1 · · ·𝐸𝑡−𝑘 (𝐴)}.
For a generic 𝑃 ∈ 𝛥(𝛺, F ), and generic 𝐴, 𝐵 ∈ F , define
notion of dependence 𝑑𝑃 and sets induced by its value by

𝑑𝑃 (𝐴, 𝐵) := 𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴)𝑃(𝐵),
𝛴+ (𝐴, 𝐵) := {𝑃 ∈ 𝛥(𝛺, F ) : 𝑑𝑃 (𝐴, 𝐵) > 0},
𝛴− (𝐴, 𝐵) := {𝑃 ∈ 𝛥(𝛺, F ) : 𝑑𝑃 (𝐴, 𝐵) < 0}.

Call now נֹ! = (IF×,ℰ) the procedure of intentionally for-
getting evidence ℰ (where ℰ can be an element of F , a
whole partition E of state space 𝛺, or a collection {E} of
partitions) after having updated endorsing rule ×. Then,
the following gives sufficient conditions for intentional
forgetting to induce constriction.

Theorem 22 Fix an event 𝐴 ∈ F of interest and let the
agent endorse any rule × ∈ {𝐵, 𝐺}. If

P★𝐸1 · · ·𝐸𝑡−𝑘 (𝐴) ∩ 𝛴
− (𝐴, 𝐸𝑡−𝑘+1 ∩ · · · ∩ 𝐸𝑡 ) ≠ ∅

and

P★
𝐸1 · · ·𝐸𝑡−𝑘 (𝐴) ∩ 𝛴+ (𝐴, 𝐸𝑡−𝑘+1 ∩ · · · ∩ 𝐸𝑡 ) ≠ ∅,

then forgetting 𝐸𝑡−𝑘+1 ∩ · · · ∩ 𝐸𝑡 strictly constricts 𝐴, in
symbols (IF×, 𝐸𝑡−𝑘+1 ∩ · · · ∩ 𝐸𝑡 ) " 𝐴.

If this holds for all elements 𝐸𝑠 of partition E𝑠, 𝑠 ∈ {𝑡 −
𝑘 + 1, . . . , 𝑡}, we write

(IF×, E𝑡−𝑘+1, . . . , E𝑡 ) " 𝐴,

so we can forget all the experiments that took place after
time 𝑡−𝑘 . If we let 𝑘 = 𝑡, then we obtain stabilized forgetting
as in [27]. Notice that for stabilized forgetting subscript
𝐸1 · · · 𝐸𝑡−𝑘 in Theorem 22 is substituted by 𝐸0. We also
have the following.

Corollary 23 Fix an event 𝐴 ∈ F of interest and let the
agent endorse any rule × ∈ {𝐵, 𝐺}. If

P★𝐸𝑘 · · ·𝐸𝑡
(𝐴) ∩ 𝛴− (𝐴, 𝐸1 ∩ · · · ∩ 𝐸𝑘−1) ≠ ∅

and

P★
𝐸𝑘 · · ·𝐸𝑡

(𝐴) ∩ 𝛴+ (𝐴, 𝐸1 ∩ · · · ∩ 𝐸𝑘−1) ≠ ∅,

then forgetting 𝐸1 ∩ · · · ∩ 𝐸𝑘−1 strictly constricts 𝐴, in
symbols (IF×, 𝐸1 ∩ · · · ∩ 𝐸𝑘−1) " 𝐴.

In this case, we obtain the machine learning version of
forgetting [6]. The agent intentionally forgets data collected
before time 𝑘 . More formally, the authors weight the evi-
dence 𝐸𝑡 collected at each time 𝑡 by a coefficient depending
on 𝑡 that goes to 0 the farther time 𝑡 is from present time 𝑇 ,
that is, it goes to 0 as |𝑡 −𝑇 | grows to infinity. Evidence that
is old enough gets severely discounted, to the point that for
practical purpose we can consider it as being forgotten, and
so the result in Corollary 23 applies.
Notice that intentional forgetting is always a viable way

of inducing constriction, as long as the selected updating
rule induces dilation first. In this section we focused on
× ∈ {𝐵, 𝐺} because generalized Bayes’ and geometric rules
are the most general ones we presented (they do not require
the lower probability of interest to be a belief function).

4.2.1. Levi-Neutrality

A particular type of forgetting is the one inspired by Levi’s
work on corrigible infallibility, see e.g. [23]. Suppose that
at time 𝑡 an agent is equipped with a body of beliefs K𝑡

regarding the events in F , that is, a collection of logical
predicates that describe the beliefs of the agent at time
𝑡.6 For the purpose of studying constriction, we focus on
the (relatively compact and convex) set PK𝑡

of probability
measures representing the agent’s beliefs at time 𝑡 induced
by K𝑡 .7 Consider a generic event 𝐻 ⊆ 𝛺; every element
𝑃K𝑡
of PK𝑡

has the following two properties:

6Not to be confused with belief functions.
7In particular, we assume PK𝑡

= MK𝑡
:= {𝑃 ∈ 𝛥(𝛺, F) : 𝑃 (𝐴) ≥

𝑃K𝑡
(𝐴) , ∀𝐴 ∈ F}.
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• if K𝑡 rules out 𝐻, that is, if given the beliefs at time 𝑡
event 𝐻 is considered impossible – written K𝑡 ↦→ ¬𝐻
–, then 𝑃K𝑡

(𝐴 | 𝐻) is not well defined, for all 𝐴 ∈ F ;

• if instead K𝑡 does not rule out 𝐻, then 𝑃K𝑡
(𝐴 | 𝐻) is

well defined, for all 𝐴 ∈ F , and represents the agent’s
beliefs around the plausibility of 𝐴 if 𝐻 obtains.

The set PK𝑡
is compatible with lower probability 𝑃K𝑡

.
Suppose then that at time 𝑡 +1 the agent collects evidence 𝐸 .
Let K𝑡+1 be the new body of beliefs; abusing notation, we
writeK𝑡 ∪{𝐸}. Then, suppose that the agent endorses either
of generalized Bayes’ or geometric rules, × ∈ {𝐵, 𝐺}; the
updated beliefs of the agent are encapsulated in 𝑃×

K𝑡
(· | 𝐸).

If (according to ×) 𝐸 dilates an event 𝐴′ of interest, then
the agent can neglect 𝐸 to obtain constriction; they run
“reverse conditioning”. We say that the agent is Levi-neutral
towards 𝐸 . Their infallible beliefs, encapsulated in K𝑡+1,
are subject to being corrected, and we haveK𝑡+2 = K𝑡 . The
body of beliefs contracts: K𝑡+1 loses element 𝐸 and goes
back to what used to be at time 𝑡. We write (LN×, 𝐸) " 𝐴′

to denote that being Levi-neutral towards 𝐸 – after having
updated endorsing rule × – constricts 𝐴′. If this holds
for all elements of a partition E of 𝛺 representing the
possible outcomes of an experiment of interest, we write
(LN×, E) " 𝐴′.

4.3. Assumptions on the Nature of 𝑃

If the agent is willing to make some assumptions on the
type of lower probability 𝑃 that represents their beliefs, then
we can have constriction for all 𝐸 ∈ E without resorting to
intentional forgetting. As the proverb goes, there is no free
lunch. The following is Theorem 5.9 in [15].

Theorem 24 Let E = {𝐸, 𝐸𝑐} be the partition associated
with the outcomes of the experiment of interest. Assume
that 𝑃 is a belief function such that 𝑃(𝐸), 𝑃(𝐸𝑐) > 0, and
consider any event 𝐴 ∈ F . Then, if E dilates 𝐴 under the
Geometric rule, then it must constrict 𝐴 under Dempster’s
rule. Similarly, if E dilates 𝐴 under Dempster’s rule, then
it must constrict 𝐴 under the Geometric rule.

The proof of Theorem 24 only requires that 𝑃 is convex, but
we need the assumption that 𝑃 is in fact a belief function
otherwise we would not be able to use Dempster’s rule (see
Definition 18). As we can see, Dempster’s and geometric
rule contradict each other.
Assuming that 𝑃 is a belief function allows us to use

updating rules that are otherwise inaccessible.

Theorem 25 Let 𝐸 be the evidence collected by the agent,
and assume that 𝑃 is a belief function having mass function
𝑚 such that 𝑃(𝐸) > 0. Consider any event 𝐴 ∈ F . We have

that (𝐼, 𝐸) " 𝐴 if and only if∑︁
𝐵⊆𝐴

[∑︁
𝑋 ∈F

𝔣(𝐵, 𝑋)𝑚(𝑋) − 𝑚(𝐵)
]
> 0 and

∑︁
𝐵⊆𝐴𝑐

[∑︁
𝑋 ∈F

𝔣(𝐵, 𝑋)𝑚(𝑋) − 𝑚(𝐵)
]
> 0.

If the conditions in Theorem 25 hold for every elements
of partition E, we write (𝐼, E) " 𝐴.
The main point of this section is that if we are willing to

formulate an assumption on the nature of lower probability
𝑃 associated with set P representing our beliefs, then we
are able to find constriction by using updating rules that
in general do not allow for constriction for all 𝐸 ∈ E, like
the geometric rule. We can also use entirely new updating
techniques like Dempster’s rule or GGI that are otherwise
inapplicable.

5. Conclusion
In this paper, we show that, when updating an agent’s opin-
ions, there are at least three settings for constricting sets of
probabilities (representing the beliefs), namely when belief
revision is performed without evidence, when it is based
on convex pooling, and when it is based on non-Bayesian
updating. Also, we provide examples of procedures for
every such framework.
This is just the first step towards a deeper study of the

constricting phenomenon, that we will carry over in the
next future. In particular, we plan to find more instances in
which constricting is possible, and to find a trait d’union
linking these settings.
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