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Abstract
Traditionally the conjunction of conditional events has
been defined as a three-valued object. However, in this
way classical logical and probabilistic properties are
not preserved. In recent literature, a notion of conjunc-
tion of two conditional events as a suitable conditional
random quantity, which satisfies classical probabilistic
properties, has been deepened in the setting of coher-
ence. In this framework the conjunction (𝐴|𝐻)∧(𝐵 |𝐾)
of two conditional events 𝐴|𝐻 and 𝐵 |𝐾 is defined
as a five-valued object with set of possible values
{1, 0, 𝑥, 𝑦, 𝑧}, where 𝑥 = 𝑃(𝐴|𝐻), 𝑦 = 𝑃(𝐵 |𝐾), and
𝑧 = ℙ[(𝐴|𝐻) ∧ (𝐵 |𝐾)]. In this paper we propose a gen-
eralization of this object, denoted by (𝐴|𝐻)∧𝑎,𝑏 (𝐵 |𝐾),
where the values 𝑥 and 𝑦 are replaced by two arbitrary
values 𝑎, 𝑏 ∈ [0, 1]. Then, by means of a geometrical
approach, we compute the set of all coherent assess-
ments on the family {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)},
by also showing that in the general case the Fréchet-
Hoeffding bounds for the conjunction are not satisfied.
We also analyze some particular cases. Finally, we
study coherence in the imprecise case of an interval-
valued probability assessment and we consider further
aspects on (𝐴|𝐻) ∧𝑎,𝑏 (𝐵|𝐾).
Keywords: coherence, conjunction, conditional events,
conditional random quantity, prevision, imprecise prob-
ability, Fréchet-Hoeffding bounds, quasi conjunction

1. Introduction
Conditionals have been largely studied in many fields (see,
e.g., [1, 9, 10, 11, 13, 14, 15, 17, 20, 36, 37, 39, 40, 41,
42, 43, 46, 51, 53]). Bruno de Finetti introduced condi-
tional events as tri-events and proposed a three-valued logic
([12]). Traditionally logical operations among condition-
als or conditional events have been defined, and deeply
analyzed, in the context of three-valued logic (see, e.g.,
[1, 3, 4, 7, 12, 16, 34]). However, these approaches lead to
some problems in preserving classical logical and probabilis-
tic properties, for example the Fréchet-Hoeffding bounds
for the conjunction are not satisfied ([6, 23, 50]). In recent
literature, the study of conjunction and disjunction of con-
ditionals, seen as a suitable conditional random quantities
which satisfy classical probabilistic properties, has been
deepened in the setting of coherence ([26, 27, 28, 29, 31]).

We recall that the notions of conjoined and disjoined condi-
tionals in terms of conditional random quantities involve
the conditional probabilities of the basic conditional events.
The three-valued logic view of conditional events sepa-
rates the conditional from its probability. More in general,
the Boolean approach of conditionals given in ([17]) is a
super-structure that contains the three-valued algebra as a
substructure. In the setting of Boolean algebras of condi-
tionals ([17]) a general theory of compound conditionals
as suitable conditional random quantities has been devel-
oped in [18]. The probabilistic properties on conjunction
and disjunction of conditionals in the conditional Boolean
algebras are consistent with the results obtained in the field
of conditional random quantities under coherence ([19]).
Based on the notion of conjunction, a suitable notion of
iterated conditionals has been defined ([24]). For some appli-
cations of iterated conditionals see e.g. [30, 47, 48, 51, 52].
Given two conditional events 𝐴|𝐻 and 𝐵 |𝐾 , their conjunc-
tion (𝐴|𝐻) ∧ (𝐵 |𝐾) is defined as the five-valued random
quantity (𝐴|𝐻)∧(𝐵 |𝐾) = [𝐴𝐻𝐵𝐾+𝑥𝐻𝐵𝐾+𝑦𝐴𝐻𝐾] | (𝐻∨
𝐾) ∈ [0, 1], where 𝑥 = 𝑃(𝐴|𝐻), 𝑦 = 𝑃(𝐵 |𝐾). In this pa-
per we propose a generalization of this object, denoted by
(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾), that, instead of being dependent on the
probabilities 𝑥 and 𝑦 of the two conditional events, is de-
fined by means of two arbitrary values 𝑎, 𝑏 ∈ [0, 1], which
may be related to 𝑥 and 𝑦. The values 𝑎 and 𝑏 represent the
numerical counterpart of the value ‘partially’ true of the
conjunction, which is obtained when a conjunct is true and
the other is void ([5]). Moreover, by exploiting a geometrical
approach, we compute the set of all coherent assessments
on the family {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻)∧𝑎,𝑏 (𝐵 |𝐾)}, by also show-
ing that in the general case the Fréchet-Hoeffding bounds
for the conjunction are not satisfied. We analyze some
particular cases and we consider interval-valued prevision
assessments.
The paper is organized as follows. After briefly recall-
ing the basics on coherence and on the conjunction of
conditional events (Section 2), in Section 3 we give the
definition of generalized conjunction of conditional events,
(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) and we present the main result which
characterizes the set of all coherent prevision assessments
on the family F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)}. In Sec-
tion 4 we analyze the particular case where 𝐻𝐾 = ∅ and
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the case where the generalized conjunction reduces to some
conditional events. Then, in Section 5 we study the coher-
ence of some interval-valued prevision assessments. We
deepen further aspects on the generalized conjunction in
Section 6. Finally, in Section 7, we conclude and we point
out future work.

2. Preliminary Notions and Results
We use the same symbol to refer to an event, that is a
two-valued logical entity which can be true, or false, and
its indicator, which can be 1, or 0. We denote by 𝛺 and
∅, the sure event and the impossible one, respectively. The
negation of an event 𝐴 is denoted by 𝐴. We denote by 𝐴∧𝐵
(resp., 𝐴 ∨ 𝐵), or simply by 𝐴𝐵, the conjunction (resp.,
disjunction) of 𝐴 and 𝐵. When, an event 𝐴 logically implies
an event 𝐵, i.e., 𝐴𝐵 = ∅, we write 𝐴 ⊆ 𝐵. We say that 𝑛
events 𝐸1, . . . , 𝐸𝑛 are logically independent when there are
no logical relations among them. Given two events 𝐴 and
𝐻, with 𝐻 ≠ ∅, the conditional event 𝐴|𝐻 is a three-valued
logical entity which is true, or false, or void, according to
whether 𝐴𝐻 is true, or 𝐴𝐻 is true, or 𝐻 is true, respectively.
The negation 𝐴|𝐻 of a conditional event 𝐴|𝐻 is defined as
𝐴|𝐻 = 𝐴|𝐻. We recall the relation of logical implication
(also called Goodman-Nguyen inclusion relation) between
two conditional events ([33], see also [44]).

Definition 1 Given two conditional events 𝐴|𝐻 and 𝐵 |𝐾,
we say that 𝐴|𝐻 logically implies 𝐵 |𝐾, denoted by
𝐴|𝐻 ⊆ 𝐵 |𝐾 if and only if 𝐴𝐻 ⊆ 𝐵𝐾 and 𝐵𝐾 ⊆ 𝐴𝐻.

Conditional Prevision and Coherence. We denote by 𝑋
random quantity and by ℙ(𝑋) its prevision. In the betting
scheme, given any event 𝐻 ≠ ∅, agreeing to the betting
metaphor, if you assess that ℙ(𝑋 |𝐻), is equal to 𝜇, this
means that for any given real number 𝑠 you are willing
to pay an amount 𝑠𝜇 and to receive 𝑠𝑋 , or 𝑠𝜇, according
to whether 𝐻 is true, or false (bet called off), respectively.
In particular, when 𝑋 is (the indicator of) an event 𝐴,
then ℙ(𝑋 |𝐻) = 𝑃(𝐴|𝐻), where 𝑃(𝐴|𝐻) is the conditional
probability on 𝐴|𝐻. As we will see the conjunction of two
conditional events is a conditional random quantity with
a finite number of possible (numerical) values. Then, in
what follows, for any given conditional random quantity
𝑋 |𝐻, we assume that, when 𝐻 is true, the set of possible
values of 𝑋 is a finite set of real numbers. In this case we
say that 𝑋 |𝐻 is a finite conditional random quantity. Given
a prevision function ℙ defined on an arbitrary family K
of finite conditional random quantities, consider a finite
subfamily F = {𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛} ⊆ K and the vector
M = (𝜇1, . . . , 𝜇𝑛), where 𝜇𝑖 = ℙ(𝑋𝑖 |𝐻𝑖) is the assessed
prevision for the conditional random quantity 𝑋𝑖 |𝐻𝑖 , 𝑖 ∈
{1, . . . , 𝑛}. With the pair (F ,M) we associate the random
gain 𝐺 =

∑𝑛
𝑖=1 𝑠𝑖𝐻𝑖 (𝑋𝑖 − 𝜇𝑖) =

∑𝑛
𝑖=1 𝑠𝑖 (𝑋𝑖 |𝐻𝑖 − 𝜇𝑖). We

denote by GH𝑛
the set of values of 𝐺 restricted to H𝑛 =

𝐻1 ∨ · · · ∨ 𝐻𝑛.

Definition 2 The functionℙ defined onK is coherent if and
only if,∀𝑛 ≥ 1,∀ 𝑠1, . . . , 𝑠𝑛,∀F = {𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛} ⊆
K, it holds that: min GH𝑛

≤ 0 ≤ max GH𝑛
.

In otherwords,ℙ onK is incoherent if and only if there exists
a finite combination of 𝑛 bets such that, after discarding the
casewhere all the bets are called off, the values of the random
gain are all positive or all negative. In the particular case
where K is a family of conditional events, then Definition
2 becomes the well known definition of coherence for
a conditional probability function, denoted as 𝑃. Notice
that, in the general case where the conditional random
quantities in K are bounded but possibly infinitely valued,
the condition minGH𝑛

≤ 0 ≤ maxGH𝑛
in Definition 2

becomes inf GH𝑛
≤ 0 ≤ supGH𝑛

.

Remark 3 By Definition 2, given any (finite) conditional
random quantity 𝑋 |𝐻 and denoting by 𝑥1, . . . , 𝑥𝑟 , the
possible values of 𝑋 when 𝐻 is true, and let 𝜇 be a
prevision assessment on 𝑋 |𝐻. Then, coherence requires
that 𝜇 ∈ [min{𝑥1, . . . , 𝑥𝑟 },max{𝑥1, . . . , 𝑥𝑟 }]. Indeed, if
you pay 𝜇 < min{𝑥1, . . . , 𝑥𝑟 } in a bet on 𝑋 |𝐻, it holds
that 𝑋 − 𝜇 > 0 and hence minG𝐻 > 0. Likewise,
if you pay 𝜇 > max{𝑥1, . . . , 𝑥𝑟 } in a bet on 𝑋 |𝐻, it
holds that 𝑋 − 𝜇 < 0 and hence maxG𝐻 < 0. Thus,
𝑋 |𝐻 = 𝑋𝐻 + 𝜇𝐻 ∈ [min{𝑥1, . . . , 𝑥𝑟 },max{𝑥1, . . . , 𝑥𝑟 }].

Geometrical Characterization of Coherence. Given a
family F = {𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛}, for each 𝑖 ∈ {1, . . . , 𝑛}
we denote by {𝑥𝑖1, . . . , 𝑥𝑖𝑟𝑖 } the set of possible values
of 𝑋𝑖 when 𝐻𝑖 is true; then, we set 𝐴𝑖 𝑗 = (𝑋𝑖 = 𝑥𝑖 𝑗 ),
𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑟𝑖 . We set 𝐶0 = 𝐻1 · · ·𝐻𝑛 (it may
be 𝐶0 = ∅) and we denote by 𝐶1, . . . , 𝐶𝑚 the constituents
contained inH𝑛 = 𝐻1 ∨ · · · ∨ 𝐻𝑛. Hence

∧𝑛
𝑖=1 (𝐴𝑖1 ∨ · · · ∨

𝐴𝑖𝑟𝑖 ∨ 𝐻𝑖) =
∨𝑚
ℎ=0 𝐶ℎ. With each 𝐶ℎ , ℎ ∈ {1, . . . , 𝑚}, we

associate a vector 𝑄ℎ = (𝑞ℎ1, . . . , 𝑞ℎ𝑛), where 𝑞ℎ𝑖 = 𝑥𝑖 𝑗
if 𝐶ℎ ⊆ 𝐴𝑖 𝑗 , 𝑗 = 1, . . . , 𝑟𝑖 , while 𝑞ℎ𝑖 = 𝜇𝑖 if 𝐶ℎ ⊆ 𝐻𝑖;
with 𝐶0 we associate 𝑄0 = M = (𝜇1, . . . , 𝜇𝑛). Denoting
by I the convex hull of 𝑄1, . . . , 𝑄𝑚, the conditionM ∈ I
amounts to the existence of a vector (𝜆1, . . . , 𝜆𝑚) such that:∑𝑚
ℎ=1 𝜆ℎ𝑄ℎ = M ,

∑𝑚
ℎ=1 𝜆ℎ = 1 , 𝜆ℎ ≥ 0 , ∀ ℎ; in other

words,M ∈ I is equivalent to the solvability of the system
(𝛴), associated with (F ,M),

(𝛴)
{ ∑𝑚

ℎ=1 𝜆ℎ𝑞ℎ𝑖 = 𝜇𝑖 , 𝑖 ∈ {1, . . . , 𝑛} ,∑𝑚
ℎ=1 𝜆ℎ = 1, 𝜆ℎ ≥ 0 , ℎ ∈ {1, . . . , 𝑚} . (1)

Given the assessment M = (𝜇1, . . . , 𝜇𝑛) on F =

{𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛}, let 𝑆 be the set of solutions 𝛬 =

(𝜆1, . . . , 𝜆𝑚) of system (𝛴). We point out that the solv-
ability of system (𝛴) is a necessary (but not sufficient)
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condition for coherence ofM on F . When (𝛴) is solvable,
that is 𝑆 ≠ ∅, we define:

𝛷𝑖 (𝛬) =𝛷 𝑗 (𝜆1, . . . , 𝜆𝑚) =
∑
𝑟 :𝐶𝑟 ⊆𝐻𝑖

𝜆𝑟 , ; 𝛬 ∈ 𝑆 ,
𝑀𝑖 = max𝛬∈𝑆 ,𝛷𝑖 (𝛬), 𝑖 ∈ {1, . . . , 𝑛} ;
𝐼0 = {𝑖 : 𝑀𝑖 = 0} , F0 = {𝑋𝑖 |𝐻𝑖 , 𝑖 ∈ 𝐼0},
M0 = (𝜇𝑖 , 𝑖 ∈ 𝐼0).

(2)
Then, the following theorem can be proved ([2, Thm 3]):

Theorem 4 A conditional prevision assessment M =

(𝜇1, . . . , 𝜇𝑛) on the family F = {𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛} is
coherent if and only if the following conditions are satisfied:
(i) the system (𝛴) defined in (1) is solvable; (ii) if 𝐼0 ≠ ∅,
thenM0 is coherent.

Remark 5 We observe that if 𝛬 is a solution of System
(𝛴), associated with the pair (F ,M), such that𝛷 𝑗 (𝛬) > 0,
𝑗 = 1, . . . , 𝑛, then it holds that 𝐼0 = ∅ and hence by
Theorem 4 the assessment M on F is coherent.

We recall the following extension theorem for condi-
tional previsions, which is a generalization of de Finetti’s
fundamental theorem of probability to conditional random
quantities (see, e.g.,[35, 49, 55])

Theorem 6 LetM = (𝜇1, . . . , 𝜇𝑛) be a coherent prevision
assessment on a family of bounded conditional random
quantities F = {𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛}. Moreover, let 𝑋 |𝐻
be a further bounded conditional random quantity. Then,
there exists a suitable closed interval [𝜇′, 𝜇′′] such that
the extension 𝜇 = ℙ(𝑋 |𝐻) is coherent if and only if 𝜇 ∈
[𝜇′, 𝜇′′].

Imprecise Assessments. We recall below the notions
of coherence, for imprecise, or set-valued, prevision as-
sessments. As, in this paper we only consider conditional
random quantities with possible values in the unit interval,
in our case the imprecise assessments are subsets of the
unitary hypercube.

Definition 7 Let be given a family of 𝑛 conditional random
quantities F = {𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛}. An imprecise, or set-
valued, assessment A on F is a set of precise assessments
M on F .

Let A be an imprecise assessment of F . For each
𝑗 ∈ {1, 2, . . . , 𝑛}, the projection 𝜌 𝑗 (A) be an imprecise
assessment of F . For each 𝑗 ∈ {1, 2, . . . , 𝑛}, the projection
𝜌 𝑗 (A) of A onto the 𝑗-th coordinate, is defined as ) of A
onto the 𝑗-th coordinate, is defined as

𝜌 𝑗 (A) = {𝑥 𝑗 : 𝜇 𝑗 = 𝑥 𝑗 , for some (𝜇1, . . . , 𝜇𝑛) ∈ I}.

Definition 8 Let be given a family of 𝑛 conditional ran-
dom quantities F = {𝑋1 |𝐻1, . . . , 𝑋𝑛 |𝐻𝑛}. An imprecise
assessment A on F is coherent if and only if, for every
𝑗 ∈ {1, . . . , 𝑛} and for every 𝑥 𝑗 ∈ 𝜌 𝑗 (A), there exists a
coherent precise assessment M = (𝑝1, . . . , 𝑝𝑛) on F , such
that M ∈ A and 𝑝 𝑗 = 𝑥 𝑗 .

In the context of imprecise assessments the notions of g-
coherence and total coherence have been also introduced
([22, 32]).

Remark 9 We observe that an interval-valued prevision
assessment A = [𝑙1, 𝑢1] × · · · × [𝑙𝑛, 𝑢𝑛] is an imprecise
prevision assessment. In this case it holds that 𝜌 𝑗 (A) =
[𝑙 𝑗 , 𝑢 𝑗 ]. Then, based on Definition 8, the imprecise prevision
assessment A on F is coherent if and only if, given any
𝑗 ∈ {1, . . . , 𝑛} and any 𝑥 𝑗 ∈ [𝑙 𝑗 , 𝑢 𝑗 ], there exists a coherent
precise prevision assessment M = (𝜇1, . . . , 𝜇𝑛) on F , with
𝑙𝑖 ≤ 𝜇𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛, and such that 𝑝 𝑗 = 𝑥 𝑗 .

Indicator of a Conditional Event. Given a conditional
event 𝐴|𝐻 and a probability assessment 𝑃(𝐴|𝐻) = 𝑥, the
indicator of 𝐴|𝐻, denoted by the same symbol, is

𝐴|𝐻 = 𝐴𝐻+𝑥𝐻 = 𝐴𝐻+𝑥(1−𝐻) =

1, if 𝐴𝐻 is true,
0, if 𝐴𝐻 is true,
𝑥, if 𝐻 is true.

(3)
Notice that it holds thatℙ(𝐴𝐻+𝑥𝐻) = 𝑥𝑃(𝐻)+𝑥𝑃(𝐻) = 𝑥.
For the indicator of the negation of 𝐴|𝐻 it holds that
𝐴|𝐻 = 1 − 𝐴|𝐻. Given two conditional events 𝐴|𝐻 and
𝐵 |𝐾 , for every coherent assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾},
it holds that ([29, formula (15)])

𝐴𝐻 + 𝑥𝐻 ≤ 𝐵𝐾 + 𝑦𝐾
⇐⇒ 𝐴|𝐻 ⊆ 𝐵 |𝐾, or 𝐴𝐻 = ∅, or 𝐾 ⊆ 𝐵,

that is, between the numerical values of 𝐴|𝐻 and 𝐵 |𝐾,
under coherence it holds that

𝐴|𝐻 ≤ 𝐵 |𝐾 ⇐⇒ 𝐴|𝐻 ⊆ 𝐵 |𝐾, or 𝐴𝐻 = ∅, or 𝐾 ⊆ 𝐵.

(4)
By following the approach given in [8, 26, 38], once a co-
herent assessment 𝜇 = ℙ(𝑋 |𝐻) is specified, the conditional
random quantity 𝑋 |𝐻 is not looked at as the restriction of
𝑋 to 𝐻, but is defined as 𝑋 , or 𝜇, according to whether 𝐻
is true, or 𝐻 is true; that is,

𝑋 |𝐻 = 𝑋𝐻 + 𝜇𝐻. (5)

Notice that the representation (5) is not circular. Once the
value 𝜇 = ℙ(𝑋 |𝐻) is (coherently) specified by the betting
scheme, the object 𝑋 |𝐻 in (5) is (subjectively) determined.
We observe that ℙ(𝑋𝐻 + 𝜇𝐻) = ℙ(𝑋 |𝐻). Indeed,

ℙ(𝑋𝐻 + 𝜇𝐻) = ℙ(𝑋 |𝐻)𝑃(𝐻) + 𝜇𝑃(𝐻) = 𝜇.
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Conjunction of Two Conditional Events. We recall
below the notion of conjunction of two conditional events
in the framework of conditional random quantities ([26],
see also [36, 39]).

Definition 10 Given two conditional events 𝐴|𝐻, 𝐵 |𝐾 and
a (coherent) probability assessment𝑃(𝐴|𝐻) = 𝑥, 𝑃(𝐵 |𝐾) =
𝑦, the conjunction (𝐴|𝐻)∧ (𝐵 |𝐾) is defined as the following
conditional random quantity

(𝐴|𝐻)∧(𝐵 |𝐾) = (𝐴𝐻𝐵𝐾+𝑥𝐻𝐵𝐾+𝑦𝐴𝐻𝐾) | (𝐻∨𝐾). (6)

Remark 11 Notice that the conjunction in (6) and can
be represented as 𝑋 |𝐻 in (5) and, once the (coherent)
assessment (𝑥, 𝑦, 𝑧), where 𝑧 = ℙ[(𝐴|𝐻) ∧ (𝐵 |𝐾)], is given,
the conjunction is (subjectively) determined by

(𝐴|𝐻) ∧ (𝐵 |𝐾) = 𝐴𝐻𝐵𝐾 + 𝑥𝐻𝐵𝐾 + 𝑦𝐴𝐻𝐾 + 𝑧𝐻 𝐾.

Then, the set of possible values of (𝐴|𝐻) ∧ (𝐵 |𝐾), i.e.
{1, 0, 𝑥, 𝑦, 𝑧}, is associated to a given (coherent) subjective
assessment (𝑥, 𝑦, 𝑧).

Within the betting scheme, by starting with a coherent
assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}, if you extend (𝑥, 𝑦) (in
a coherent way) by adding the assessment ℙ[(𝐴|𝐻) ∧
(𝐵 |𝐾)] = 𝑧, then you agree for instance to pay 𝑧, by
receiving the random amount
1, if both conditional events 𝐴|𝐻 and 𝐵 |𝐾 are true;
0, if 𝐴|𝐻 or 𝐵|𝐾 is false;
𝑥 = 𝑃(𝐴|𝐻), if 𝐴|𝐻 is void and 𝐵 |𝐾 is true ;
𝑦 = 𝑃(𝐵 |𝐾), if 𝐴|𝐻 is true and 𝐵 |𝐾 is void
𝑧, that is the paid amount, if both conditional events 𝐴|𝐻
and 𝐵 |𝐾 are void. Notice that, in some particular case, the
conjunction (𝐴|𝐻) ∧ (𝐵 |𝐾), which is a five-valued object,
reduces to a conditional event, that is a three-valued object.
We recall that, the Fréchet-Hoeffding bounds, i.e., the

lower and upper bounds

𝑧′ = max{𝑥 + 𝑦 − 1, 0}, 𝑧′′ = min{𝑥, 𝑦} (7)

obtained under logical independence in the unconditional
case for the coherent extensions 𝑧 = 𝑃(𝐴 ∧ 𝐵) of 𝑃(𝐴) = 𝑥
and 𝑃(𝐵) = 𝑦, are still valid when 𝑃(𝐴), 𝑃(𝐵), and 𝑃(𝐴 ∧
𝐵) are replaced by𝑃(𝐴|𝐻),𝑃(𝐵 |𝐾), andℙ[(𝐴|𝐻)∧(𝐵 |𝐾)]
([26]). We recall that the Fréchet-Hoeffding bounds are not
satisfied by other notions of conjunction, e.g., the quasi
conjunction, defined in suitable trivalent logics ([50]).

Quasi Conjunction. The Sobocinski conjunction (∧𝑆),
or quasi conjunction ([1]), of two conditional events 𝐴|𝐻
and 𝐵 |𝐾 is defined, in a trivalent logic, as the following
conditional event

(𝐴|𝐻) ∧𝑆 (𝐵 |𝐾) = [(𝐴𝐻 ∨ 𝐻) ∧ (𝐵𝐾 ∨ 𝐾)] | (𝐻 ∨ 𝐾).

In terms of conditional random quantity, it holds that

(𝐴|𝐻) ∧𝑆 (𝐵 |𝐾) = (𝐴𝐻𝐵𝐾 + 𝐻𝐵𝐾 + 𝐴𝐻𝐾) | (𝐻 ∨ 𝐾).
(8)

We recall that, by setting 𝑥 = 𝑃(𝐴|𝐻), 𝑦 = 𝑃(𝐵 |𝐾), under
logical independence, the lower and upper bounds 𝑧′

𝑆
, 𝑧′′
𝑆

for (𝐴|𝐻) ∧𝑆 (𝐵 |𝐾) are ([21])

𝑧′𝑆 = max{𝑥+𝑦−1, 0}, 𝑧′′𝑆 =

{ 𝑥+𝑦−2𝑥𝑦
1−𝑥𝑦 , if (𝑥, 𝑦) ≠ (1, 1)
1, if (𝑥, 𝑦) = (1, 1).

(9)

3. A Generalized Notion of Conjunction
We generalize the notion of conjunction between two con-
ditional events given in Definition 10 by replacing 𝑥 and 𝑦
with two arbitrary values 𝑎, 𝑏 in [0, 1].

Definition 12 Given four events 𝐴, 𝐵, 𝐻, 𝐾, with 𝐻 ≠ ∅
and 𝐾 ≠ ∅, and two values 𝑎, 𝑏 ∈ [0, 1], we define the the
generalized conjunction w.r.t. 𝑎 and 𝑏 of the conditional
events 𝐴|𝐻 and 𝐵 |𝐾 as the following conditional random
quantity

(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) = (𝐴𝐻𝐵𝐾 +𝑎𝐻𝐵𝐾 + 𝑏𝐴𝐻𝐾) | (𝐻∨𝐾).
(10)

In the betting framework, if you assess 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏
(𝐵 |𝐾)], then you agree for instance to pay 𝑧, by receiving
the random amount

(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) =


1, if 𝐴𝐻𝐵𝐾 is true,
0, if 𝐴𝐻 ∨ 𝐵𝐾 is true,
𝑎, if 𝐻𝐵𝐾 is true,
𝑏, if 𝐴𝐻𝐾 is true,
𝑧, if 𝐻 𝐾 is true.

In other words, you agree to pay 𝑧 in order to receive:
1, if both conditional events 𝐴|𝐻 and 𝐵 |𝐾 are true;
0, if 𝐴|𝐻 or 𝐵 |𝐾 is false;
𝑎, if 𝐴|𝐻 is void and 𝐵 |𝐾 is true ;
𝑏, if 𝐴|𝐻 is true and 𝐵 |𝐾 is void;
𝑧, that is the paid amount, if both conditional events 𝐴|𝐻
and 𝐵 |𝐾 are void. Therefore

ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] = 𝑃(𝐴𝐻𝐵𝐾 | (𝐻 ∨ 𝐾))+
+𝑎𝑃(𝐻𝐵𝐾 | (𝐻 ∨ 𝐾)) + 𝑏𝑃(𝐴𝐻𝐾 | (𝐻 ∨ 𝐾)). (11)

We observe that (𝐴|𝐻) ∧𝑎,𝑏 (𝐵|𝐾), when 𝐻 ∨ 𝐾 is true,
assumes values in [0, 1]. Then, by coherence (see Remark 3)
it must be 𝑧 ∈ [0, 1] and hence (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) ∈ [0, 1].
Of course, (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) = (𝐵 |𝐾) ∧𝑏,𝑎 (𝐴|𝐻).

Remark 13 When we assess 𝑃(𝐴|𝐻) = 𝑥 and 𝑃(𝐵 |𝐾) = 𝑦,
from definitions 6 and 10 it holds that

(𝐴|𝐻) ∧𝑥,𝑦 (𝐵 |𝐾) = (𝐴|𝐻) ∧ (𝐵 |𝐾),
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that is (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) reduces to (𝐴|𝐻) ∧ (𝐵|𝐾), when
𝑎 = 𝑥 and 𝑏 = 𝑦. Moreover,

ℙ[(𝐴|𝐻) ∧𝑥,𝑦 (𝐵 |𝐾)] = 𝑃(𝐴𝐻𝐵𝐾 | (𝐻 ∨ 𝐾))+
+𝑃(𝐴|𝐻)𝑃(𝐻𝐵𝐾 | (𝐻∨𝐾))+𝑃(𝐵 |𝐾)𝑃(𝐴𝐻𝐾 | (𝐻∨𝐾)).

(12)

We also observe that, if 𝐻 = 𝐾, then 𝐻𝐵𝐾 = 𝐴𝐻𝐾 = ∅,
and hence (𝐴|𝐻) ∧𝑎,𝑏 (𝐵|𝐻) = 𝐴𝐵|𝐻 = 𝐴𝐵𝐻 |𝐻 = 𝐴𝐵 |𝐻
and 𝑧 = 𝑃(𝐴𝐵𝐻 |𝐻) = 𝑃(𝐴𝐵|𝐻).

The next result allows to compute the set of all coherent
assessments (𝑥, 𝑦, 𝑧) on the family {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑎,𝑏
(𝐵 |𝐾)}, where 𝑎, 𝑏 are arbitrary numbers in [0, 1].

Theorem 14 Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically inde-
pendent events. A prevision assessment M = (𝑥, 𝑦, 𝑧)
on the family of conditional random quantities F =

{𝐴|𝐻, (𝐵 |𝐾), (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)} is coherent if and only if
(𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where

𝑧′ =

{
(𝑥 + 𝑦 − 1) ·min{ 𝑎

𝑥
, 𝑏
𝑦
, 1}, if 𝑥 + 𝑦 − 1 > 0,

0, otherwise
(13)

and
𝑧′′ = max{𝑧′′1 , 𝑧

′′
2 ,min{𝑧

′′
3 , 𝑧

′′
4 }}, (14)

where

𝑧′′1 = min{𝑥, 𝑦},

𝑧′′2 =


𝑥(𝑏 − 𝑎𝑦) + 𝑦(𝑎 − 𝑏𝑥)

1 − 𝑥𝑦 , if (𝑥, 𝑦) ≠ (1, 1),
1, if (𝑥, 𝑦) = (1, 1),

𝑧′′3 =

{
𝑥(1 − 𝑎) + 𝑦(𝑎 − 𝑥)

1 − 𝑥 , if 𝑥 ≠ 1,
1, if 𝑥 = 1,

𝑧′′4 =


𝑥(𝑏 − 𝑦) + 𝑦(1 − 𝑏)

1 − 𝑦 , if 𝑦 ≠ 1,

1, if 𝑦 = 1.

Proof First of all we observe that, by logical indepen-
dence of 𝐴, 𝐻, 𝐵, 𝐾, the assessment (𝑥, 𝑦) is coherent for
every (𝑥, 𝑦) ∈ [0, 1]2. The constituents 𝐶ℎ’s contained in
𝐻 ∨ 𝐾 and the points 𝑄ℎ’s associated with the assessment
M = (𝑥, 𝑦, 𝑧) on F are 𝐶1 = 𝐴𝐻𝐵𝐾,𝐶2 = 𝐴𝐻𝐵𝐾,𝐶3 =
𝐴𝐻𝐵𝐾,𝐶4 = 𝐴𝐻𝐵𝐾,𝐶5 = 𝐴𝐻𝐾,𝐶6 = 𝐻𝐵𝐾,𝐶7 =

𝐴𝐻𝐾,𝐶8 = 𝐻 𝐵𝐾 and 𝑄1 = (1, 1, 1), 𝑄2 = (1, 0, 0), 𝑄3 =
(0, 1, 0), 𝑄4 = (0, 0, 0), 𝑄5 = (1, 𝑦, 𝑏), 𝑄6 =

(𝑥, 1, 𝑎), 𝑄7 = (0, 𝑦, 0), 𝑄8 = (𝑥, 0, 0). Considering the
convex hull I of 𝑄1, . . . , 𝑄8, the coherence ofM requires
that the conditionM ∈ I be satisfied, that is

M =
∑8
ℎ=1 𝜆ℎ𝑄ℎ ,

∑8
ℎ=1 𝜆ℎ = 1, 𝜆ℎ ≥ 0, ℎ = 1, . . . , 8 .

We observe that 𝑄7 = 𝑦𝑄3 (1 − 𝑦)𝑄4 and 𝑄8 = 𝑥𝑄2 +
(1 − 𝑥)𝑄4. Then, I is the convex hull of 𝑄1, . . . , 𝑄6. Thus,
the condition M ∈ I amounts to the solvability of the
following system in the unknowns 𝜆1, . . . , 𝜆6

M =
∑6
ℎ=1 𝜆ℎ𝑄ℎ ,

∑6
ℎ=1 𝜆ℎ = 1, 𝜆ℎ ≥ 0, ℎ = 1, . . . , 6

(15)
that is

𝜆1 + 𝜆2 + 𝜆5 + 𝑥𝜆6 = 𝑥,
𝜆1 + 𝜆3 + 𝑦𝜆5 + 𝜆6 = 𝑦,
𝜆1 + 𝑏𝜆5 + 𝑎𝜆6 = 𝑧,
𝜆1 + · · · + 𝜆6 = 1, 𝜆𝑖 ≥ 0, ∀𝑖 = 1, . . . , 6.

(16)

For each solution 𝛬 = (𝜆1, . . . , 𝜆6) of system (16) we have
that the functions𝛷 𝑗 defined in (2) are

𝛷1 (𝛬) =
∑
ℎ:𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5,

𝛷2 (𝛬) =
∑
ℎ:𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆6,

𝛷3 (𝛬) =
∑
ℎ:𝐶ℎ⊆𝐻∨𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6.

(17)
For each given (𝑥, 𝑦) ∈ [0, 1], based on Theorem 6 we

determine the lower and upper bounds 𝑧′, 𝑧′′ for the coherent
extension 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)].

Lower Bound. Wedistinguish two cases: (A) 𝑥+𝑦−1 ≤ 0;
(B) 𝑥 + 𝑦 − 1 > 0.
Case (A). We show that 𝑧′ = 0 is the lower bound
for 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] by proving that the
assessment (𝑥, 𝑦, 0) on F is coherent. Let a pair
(𝑥, 𝑦) ∈ [0, 1]2 be given. We first observe that
M = (𝑥, 𝑦, 0) = 𝑥𝑄2 + 𝑦𝑄3 + (1 − 𝑥 − 𝑦)𝑄4. Then,
M ∈ I, where I is the convex hull of 𝑄1, . . . , 𝑄6, with
a solution of (16) given by 𝛬 = (0, 𝑥, 𝑦, 1 − 𝑥 − 𝑦, 0, 0).
For the functions 𝛷 𝑗 given in (17) it holds that
𝛷1 (𝛬) = 𝛷2 (𝛬) = 𝛷3 (𝛬) = 1 > 0. Then, from Remark 5,
the assessment (𝑥, 𝑦, 0) on F is coherent. Thus, for every
(𝑥, 𝑦) ∈ [0, 1]2 the assessment (𝑥, 𝑦, 0) is coherent and
hence 𝑧′ = 0.
Case (B). As 𝑥 + 𝑦 − 1 > 0, it holds that 𝑥 ≠ 0 and 𝑦 ≠ 0.
We consider three subcases: (B.1) min{ 𝑎

𝑥
, 𝑏
𝑦
, 1} = 1; (B.2)

min{ 𝑎
𝑥
, 𝑏
𝑦
, 1} = 𝑎

𝑥
; (B.3) min{ 𝑎

𝑥
, 𝑏
𝑦
, 1} = 𝑏

𝑦
.

Case (B.1). We observe that 𝑎 ≥ 𝑥 and 𝑏 ≥ 𝑦. We
first prove that the assessment (𝑥, 𝑦, 𝑥 + 𝑦 − 1) is coherent.
Then, we show that 𝑧′ = 𝑥 + 𝑦 − 1 is the lower bound
for 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵|𝐾)]. As M = (𝑥, 𝑦, 𝑥 + 𝑦 −
1) = (𝑥 + 𝑦 − 1)𝑄1 + (1 − 𝑦)𝑄2 + (1 − 𝑥)𝑄3, it follows
thatM ∈ I. Then, a solution of system (16) is given by
𝛬 = (𝑥 + 𝑦 − 1, 1 − 𝑦, 1 − 𝑥, 0, 0, 0). From (17) it holds that
𝛷1 (𝛬) = 𝛷2 (𝛬) = 𝛷3 (𝛬) = 1 > 0. Then, from Remark 5,
the assessment (𝑥, 𝑦, 𝑥 + 𝑦 − 1) on F is coherent.
In order to prove that 𝑧′ = 𝑥 + 𝑦− 1 is the lower bound for

𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)], we verify that the assessment
M = (𝑥, 𝑦, 𝑧), with (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 < 𝑧′ = 𝑥 + 𝑦 − 1,
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is not coherent because (𝑥, 𝑦, 𝑧) ∉ I. We observe that the
points 𝑄1, 𝑄2, 𝑄3 belong to the plane 𝜋 : 𝑋 + 𝑌 − 𝑍 = 1.
We set 𝑓 (𝑋,𝑌, 𝑍) = 𝑋 +𝑌 − 𝑍 − 1 and we obtain 𝑓 (𝑄1) =
𝑓 (𝑄2) = 𝑓 (𝑄3) = 0, 𝑓 (𝑄4) = −1 < 0, 𝑓 (𝑄5) = 𝑦 − 𝑏 ≤
0, 𝑓 (𝑄6) = 𝑥 − 𝑎 ≤ 0. Then, by consideringM = (𝑥, 𝑦, 𝑧),
with 𝑧 < 𝑥 + 𝑦 − 1, it holds that

𝑓 (M) = 𝑥 + 𝑦 − 1 − 𝑧 > 0 ≥ 𝑓 (𝑄ℎ), ℎ = 1, . . . , 6,

and henceM = (𝑥, 𝑦, 𝑧) ∉ I. Indeed, if it wereM ∈ I, that
isM linear convex combination of 𝑄1, . . . , 𝑄6, it would
follow that 𝑓 (M) = 𝑓 (∑6ℎ=1 𝜆ℎ𝑄ℎ) =

∑6
ℎ=1 𝜆ℎ 𝑓 (𝑄ℎ) ≤

0. Thus, the lower bound for 𝑧 is 𝑧′ = 𝑥 + 𝑦 − 1, for every
(𝑥, 𝑦) ∈ [0, 1]2 such that min{ 𝑎

𝑥
, 𝑏
𝑦
, 1} = 1.

Case (B.2). We notice that 𝑎 ≤ 𝑥 and 𝑎
𝑥
≤ 𝑏

𝑦
.

We show that in this case

𝑧′ = (𝑥 + 𝑦 − 1)min{ 𝑎
𝑥
,
𝑏

𝑦
, 1} = 𝑎

𝑥
(𝑥 + 𝑦 − 1).

We first prove that that (𝑥, 𝑦, 𝑎
𝑥
(𝑥 + 𝑦 − 1)) is coherent.

Indeed, we observe thatM = (𝑥, 𝑦, 𝑎
𝑥
(𝑥 + 𝑦 − 1)) = (1 −

𝑦)𝑄2 + (1−𝑥) (1−𝑦)
𝑥

𝑄3 + 𝑥+𝑦−1
𝑥

𝑄6. Then,M ∈ I, where I is
the convex hull of𝑄1, . . . , 𝑄6, with a solution of (16) given
by 𝛬 = (0, 1− 𝑦, (1−𝑥) (1−𝑦)

𝑥
, 0, 0, 𝑥+𝑦−1

𝑥
). By recalling (17),

it holds that 𝛷1 (𝛬) = 1−𝑦
𝑥
, 𝛷2 (𝛬) = 𝛷3 (𝛬) = 1 > 0. We

distinguish two cases: (𝑖) 𝑦 ≠ 1, (𝑖𝑖) 𝑦 = 1. In the case (𝑖)
we get 𝛷 𝑗 (𝛬) > 0, 𝑗 = 1, 2, 3 and hence by Remark 5 it
follows that the assessment (𝑥, 𝑦, 𝑎

𝑥
(𝑥 + 𝑦 − 1)) is coherent.

In case (𝑖𝑖), as 𝛷1 (𝛬) = 0, it holds that I0 ⊆ {1}, with
the sub-assessment M0 = 𝑥 on F0 = {𝐴|𝐻} coherent
because 𝑥 ∈ [0, 1]. Then, by Theorem 4, the assessment
(𝑥, 𝑦, 𝑎

𝑥
(𝑥+𝑦−1)) = (𝑥, 1, 𝑎) on F is coherent. Thus, in this

sub-case the assessment (𝑥, 𝑦, 𝑎
𝑥
(𝑥+𝑦−1)) on F is coherent

for every (𝑥, 𝑦) ∈ [0, 1]2. In order to prove that 𝑎
𝑥
(𝑥+𝑦−1) is

the lower bound 𝑧′ for 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)], we verify
that (𝑥, 𝑦, 𝑧), with (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 < 𝑎

𝑥
(𝑥+𝑦−1), is not

coherent because (𝑥, 𝑦, 𝑧) ∉ I. We observe that the points
𝑄2, 𝑄3, 𝑄6 belong to the plane 𝜋 : 𝑎𝑋 + 𝑎𝑌 − 𝑥𝑍 = 𝑎. We
set 𝑓 (𝑋,𝑌, 𝑍) = 𝑎(𝑋 +𝑌 − 1) − 𝑥𝑍 and we obtain 𝑓 (𝑄2) =
𝑓 (𝑄3) = 𝑓 (𝑄6) = 0, 𝑓 (𝑄1) = 𝑎−𝑥 ≤ 0, 𝑓 (𝑄4) = −𝑎 ≤ 0,
𝑓 (𝑄5) = 𝑎𝑦 − 𝑏𝑥 ≤ 0. Then, by consideringM = (𝑥, 𝑦, 𝑧),
with 𝑧 < 𝑎

𝑥
(𝑥 + 𝑦 − 1), it holds that 𝑓 (M) = 𝑓 (𝑥, 𝑦, 𝑧) =

𝑎(𝑥+𝑦−1)−𝑥𝑧 > 0 ≥ 𝑓 (𝑄ℎ), ℎ = 1, . . . , 6, and henceM =

(𝑥, 𝑦, 𝑧) ∉ I. Indeed, if it wereM ∈ I, that isM linear
convex combination of 𝑄1, . . . , 𝑄6, it would follow that
𝑓 (M) = 𝑓 (∑6ℎ=1 𝜆ℎ𝑄ℎ) = ∑6

ℎ=1 𝜆ℎ 𝑓 (𝑄ℎ) ≤ 0. Thus, in
this sub-case the lower bound for 𝑧 = ℙ((𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾))
is 𝑧′ = 𝑎

𝑥
(𝑥 + 𝑦 − 1), for every (𝑥, 𝑦) ∈ [0, 1]2 such that

min{ 𝑎
𝑥
, 𝑏
𝑦
, 1} = 𝑎

𝑥
.

Case (B.3). We notice that 𝑏 ≤ 𝑦 and 𝑎
𝑥
≥ 𝑏

𝑦
. We prove that

(𝑥, 𝑦, 𝑏
𝑦
(𝑥 + 𝑦 − 1)) is coherent and that 𝑧′ = 𝑏

𝑦
(𝑥 + 𝑦 − 1)

is the lower bound for 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵|𝐾)].

We observe thatM = (𝑥, 𝑦, 𝑏
𝑦
(𝑥 + 𝑦−1)) = (1−𝑥) (1−𝑦)

𝑦
𝑄2 +

(1− 𝑥)𝑄3 + 𝑥+𝑦−1
𝑦

𝑄5. Then,M ∈ I, with a solution of (16)
given by 𝛬 = (0, (1−𝑥) (1−𝑦)

𝑦
, 1 − 𝑥, 0, 𝑥+𝑦−1

𝑦
, 0).It holds that

𝛷1 (𝛬) = 𝛷3 (𝛬) = 1, 𝛷2 (𝛬) = 1−𝑥
𝑦
. We distinguish two

cases: (𝑖) 𝑥 ≠ 1, (𝑖𝑖) 𝑥 = 1. In the case (𝑖) we get𝛷 𝑗 (𝛬) >
0, 𝑗 = 1, 2, 3, and hence by Remark 5, the assessment
(𝑥, 𝑦, 𝑏

𝑦
(𝑥 + 𝑦 − 1)) is coherent. In the case (𝑖𝑖) we get

I0 ⊆ {2}, with the sub-assessmentM0 = 𝑦 on F0 = {𝐵 |𝐾}
coherent because 𝑦 ∈ [0, 1]. Then, by Theorem 4, the
assessment (𝑥, 𝑦, 𝑏

𝑦
(𝑥 + 𝑦−1)) = (1, 𝑦, 𝑏) on F is coherent.

Thus, the assessment (𝑥, 𝑦, 𝑏
𝑦
(𝑥 + 𝑦 − 1)) on F is coherent

for every (𝑥, 𝑦) ∈ [0, 1]2 such that min{ 𝑎
𝑥
, 𝑏
𝑦
, 1} = 𝑏

𝑦
. In

order to prove that 𝑏
𝑦
(𝑥 + 𝑦 − 1) is the lower bound 𝑧′ for

𝑧 = ℙ((𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)), we verify that (𝑥, 𝑦, 𝑧), with
(𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 < 𝑏

𝑦
(𝑥+𝑦−1), is not coherent because

(𝑥, 𝑦, 𝑧) ∉ I. We observe that the points 𝑄2, 𝑄3, 𝑄5 belong
to the plane 𝜋 : 𝑏𝑋 + 𝑏𝑌 − 𝑦𝑍 = 𝑏. We set 𝑓 (𝑋,𝑌, 𝑍) =
𝑏(𝑋 + 𝑌 − 1) − 𝑦𝑍 and we obtain 𝑓 (𝑄2) = 𝑓 (𝑄3) =

𝑓 (𝑄5) = 0, 𝑓 (𝑄1) = 𝑏 − 𝑦 < 0, 𝑓 (𝑄4) = −𝑏 ≤ 0,
𝑓 (𝑄5) = 𝑏𝑥 − 𝑎𝑦 ≤ 𝑦. Then, by consideringM = (𝑥, 𝑦, 𝑧),
with 𝑧 < 𝑏

𝑦
(𝑥 + 𝑦 − 1), it holds that 𝑓 (M) = 𝑓 (𝑥, 𝑦, 𝑧) =

𝑏(𝑥 + 𝑦 − 1) − 𝑦𝑧 > 0 ≥ 𝑓 (𝑄ℎ), ℎ = 1, . . . , 6, and hence
M = (𝑥, 𝑦, 𝑧) ∉ I. Indeed, if it wereM ∈ I, that isM
linear convex combination of 𝑄1, . . . , 𝑄6, it would follow
that 𝑓 (M) = 𝑓 (∑6ℎ=1 𝜆ℎ𝑄ℎ) = ∑6

ℎ=1 𝜆ℎ 𝑓 (𝑄ℎ) ≤ 0. Thus,
the lower bound for 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] is 𝑧′ =
𝑏
𝑦
(𝑥 + 𝑦 − 1).
Therefore, for every (𝑥, 𝑦) ∈ [0, 1]2 the value 𝑧′ given in
formula (13) is the lower bound for 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏
(𝐵 |𝐾)].

Upper Bound. Due to lack of space this part of the proof
is omitted.

A summary of the different values of the lower and upper
bounds 𝑧′ and 𝑧′′ for the prevision of (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)
are given in Table1 and in Table 2, respectively. Moreover,

Table 1: Values of the lower bound 𝑧′ of 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏
(𝐵 |𝐾)] for different values of 𝑥 = 𝑃(𝐴|𝐻), 𝑦 =

𝑃(𝐵|𝐾), 𝑎, 𝑏 ∈ [0, 1].

Case 𝑧′

(A): 𝑥 + 𝑦 − 1 ≤ 0 0
(B): 𝑥 + 𝑦 − 1 > 0
Sub-cases:

(B.1):𝑎 ≥ 𝑥 and 𝑏 ≥ 𝑦 𝑥 + 𝑦 − 1
(B.2):𝑎 < 𝑥 and 𝑎

𝑥
≤ 𝑏

𝑦
𝑎
𝑥
(𝑥 + 𝑦 − 1)

(B.3):𝑏 < 𝑦 and 𝑏
𝑦
≤ 𝑎

𝑥
𝑏
𝑦
(𝑥 + 𝑦 − 1)
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Table 2: Values of the upper bound 𝑧′′ of 𝑧 = ℙ[(𝐴|𝐻)∧𝑎,𝑏
(𝐵 |𝐾)] for different values of 𝑥 = 𝑃(𝐴|𝐻), 𝑦 =

𝑃(𝐵 |𝐾), 𝑎, 𝑏 ∈ [0, 1].

Case 𝑧′′

(C)
𝑎(1 − 𝑦) + 𝑏(1 − 𝑥) > 1 − 𝑥𝑦 𝑧′′2 =

𝑥 (𝑏−𝑎𝑦)+𝑦 (𝑎−𝑏𝑥)
1−𝑥𝑦

(D)
𝑎(1 − 𝑦) + 𝑏(1 − 𝑥) ≤ 1 − 𝑥𝑦

Sub-cases:
𝑥 ≤ 𝑦 and 𝑎 ≤ 𝑥 𝑧′′1 = 𝑥

𝑥 ≤ 𝑦 and 𝑎 > 𝑥 𝑧′′3 =
𝑥 (1−𝑎)+𝑦 (𝑎−𝑥)

1−𝑥
𝑦 < 𝑥 and 𝑏 ≤ 𝑦 𝑧′′1 = 𝑦

𝑦 < 𝑥 and 𝑏 > 𝑦 𝑧′′4 =
𝑥 (𝑏−𝑦)+𝑦 (1−𝑏)

1−𝑦

from Theorem 14 it follows that

Corollary 15 Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent
events. Then, the set 𝛱 of all coherent prevision assessments
(𝑥, 𝑦, 𝑧) on F = {𝐴|𝐻, (𝐵 |𝐾), (𝐴|𝐻) ∧𝑎,𝑏 (𝐵|𝐾)}, is

𝛱𝑎,𝑏 = {(𝑥, 𝑦, 𝑧) : (𝑥, 𝑦) ∈ [0, 1]2, 𝑧 ∈ [𝑧′, 𝑧′′]}, (18)

where 𝑧′ and 𝑧′′ are defined in (13) and (14), respectively.

We recall that, under logical independence,
the set of all coherent assessment (𝑥, 𝑦, 𝑧) on
{𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧ (𝐵 |𝐾)} is the the Tetrahedron
T of points (1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0), that
is ([26]) T = {(𝑥, 𝑦, 𝑧) : (𝑥, 𝑦) ∈ [0, 1]2, 𝑧 ∈
[max{𝑥 + 𝑦 − 1, 0},min{𝑥, 𝑦}]}. As, from (13) and
(14), 𝑧′ ≤ max{𝑥 + 𝑦 − 1, 0} and 𝑧′′ ≥ min{𝑥, 𝑦} for every
(𝑎, 𝑏) ∈ [0, 1]2, it holds that

T ⊆ 𝛱𝑎,𝑏 ∀(𝑎, 𝑏) ∈ [0, 1]2.

Remark 16 Given a probability assessment (𝑥, 𝑦) on
{𝐴|𝐻, 𝐵|𝐾}, it holds that 𝑧′ = max{𝑥 + 𝑦 − 1, 0} and
𝑧′′ = min{𝑥, 𝑦}, when 𝑎 = 𝑥, 𝑏 = 𝑦. That is, (𝐴|𝐻) ∧𝑥,𝑦
(𝐵 |𝐾) = (𝐴|𝐻) ∧ (𝐵|𝐾) satisfies the Fréchet-Hoeffding
bounds. In general, it may happen that, for some values of 𝑎
and 𝑏, the extension 𝑧 on (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) is coherent also
when 𝑧 ∉ [max{𝑥+𝑦−1, 0},min{𝑥, 𝑦}]. That is the Fréchet-
Hoeffding bounds (7) are not satisfied by the conjunction
(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) for some values of 𝑎, 𝑏. For example, if
𝑥 = 𝑦 = 1, we have thatmax{𝑥 + 𝑦 − 1, 0} = min{𝑥, 𝑦} = 1;
then, from (13) and (14) it holds that 𝑧′ = 𝑧′′ = 1 only
when 𝑎 = 𝑏 = 1. However, if 𝑥 = 𝑦 = 0, we have that
max{𝑥 + 𝑦 − 1, 0} = min{𝑥, 𝑦} = 0; then, from (13) and
(14) it holds that 𝑧′ = 𝑧′′ = 0 for every (𝑎, 𝑏) [0, 1]2,
that is th Fréchet-Hoeffding bounds (7) are satisfied by
(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) for every (𝑎, 𝑏) ∈ [0, 1]2.

4. Some Particular Cases
In this section we consider some particular cases of the
generalized conjunction obtained under some logical rela-
tions and for some given values of 𝑎 and 𝑏. In particular
we consider the case where the conditioning events 𝐻 and
𝐾 are incompatible. Then, we consider the cases where
𝑎 = 𝑏 = 1 and 𝑎 = 𝑏 = 0.

4.1. The Case 𝐻 and 𝐾 Incompatible

Weanalyze the particular casewhere the conditioning events
𝐻 and 𝐾 are incompatible, i.e. 𝐻𝐾 = ∅.

Theorem 17 Let 𝐴|𝐻, 𝐵 |𝐾 ,be two conditional events with
𝐻 ≠ ∅, 𝐾 ≠ ∅, and 𝐻𝐾 = ∅. A prevision assessment
M = (𝑥, 𝑦, 𝑧) on F = {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)} is
coherent if and only if (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′],
where

𝑧′ = min{𝑎𝑦, 𝑏𝑥}, 𝑧′′ = max{𝑎𝑦, 𝑏𝑥}. (19)

Proof The constituents and the points 𝑄ℎ’s as-
sociated with the family (M, F ) are 𝐶1 = 𝐴𝐻𝐾,
𝐶2 = 𝐻𝐵𝐾, 𝐶3 = 𝐴𝐻𝐾, 𝐶4 = 𝐻 𝐵𝐾, 𝐶0 = 𝐻 𝐾, and
𝑄1 = (1, 𝑦, 𝑏), 𝑄2 = (𝑥, 1, 𝑎), 𝑄3 = (0, 𝑦, 0), 𝑄4 =

(𝑥, 0, 0), 𝑄0 = 𝑃 = (𝑥, 𝑦, 𝑧).We observe thatH𝑛 = 𝐻 ∨ 𝐾
and that I is the convex hull of points 𝑄1, . . . 𝑄4. For each
given assessment (𝑥, 𝑦) based on Theorem 6 we determine
the lower and upper bounds 𝑧′, 𝑧′′ for the coherent
extension 𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵|𝐾)]. We distinguish two
cases: (𝑖)𝑎𝑦 ≤ 𝑏𝑥, (𝑖𝑖)𝑏𝑥 < 𝑎𝑦. Case (𝑖). We show that
the assessment (𝑥, 𝑦, 𝑧) on F is coherent if and only
(𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where 𝑧′ = 𝑎𝑦 and
𝑧′′ = 𝑏𝑦.

Lower Bound. First we prove that (𝑥, 𝑦, 𝑎𝑦), is coherent,
and then that 𝑧′ = 𝑎𝑦 is the lower bound for 𝑧. We observe
thatM = (𝑥, 𝑦, 𝑎𝑦) = 𝑦𝑄2 + (1− 𝑦)𝑄4. Then,M ∈ I with
a solution of (16) given by 𝛬 = (0, 𝑦, 0, 1 − 𝑦). It follows
that

𝛷1 (𝛬) =
∑
ℎ:𝐶ℎ⊆𝐻 𝜆ℎ = 𝜆1 + 𝜆3 = 0,

𝛷2 (𝛬) =
∑
ℎ:𝐶ℎ⊆𝐾 𝜆ℎ = 𝜆2 + 𝜆4 = 1,

𝛷3 (𝛬) =
∑
ℎ:𝐶ℎ⊆𝐻∨𝐾 𝜆ℎ = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1.

As 𝛷1 (𝛬) = 0, it holds that I0 ⊆ {1}, with the sub-
assessment M0 = 𝑥 on F0 = {𝐴|𝐻} coherent because
𝑥 ∈ [0, 1]. Then, by Theorem 4 the assessment M =

(𝑥, 𝑦, 𝑎𝑦) on F is coherent. Now we show that 𝑧′ = 𝑎𝑦

is the lower bound. Of course, if 𝑥 = 0, as 𝑎𝑦 ≤ 𝑏𝑥 = 0,
it holds that 𝑎𝑦 = 0. In this case we have that 𝑧′ = 0 is
the lower bound because (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) ∈ [0, 1]. We
assume now that 𝑥 ≠ 0. We observe that 𝑄2, 𝑄3, 𝑄4 belong
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to the plane 𝜋 : 𝑎𝑦𝑋 + 𝑎𝑥𝑌 − 𝑥𝑍 − 𝑎𝑥𝑦 = 0. By setting
𝑓 (𝑋,𝑌, 𝑍) = 𝑎𝑦𝑋 + 𝑎𝑥𝑌 − 𝑥𝑍 − 𝑎𝑥𝑦, it holds that

𝑓 (𝑄1) = 𝑎𝑦 − 𝑏𝑥 ≤ 0, 𝑓 (𝑄2) = 𝑓 (𝑄3) = 𝑓 (𝑄4) = 0.

Then, for every M ∈ I it holds that 𝑓 (M) =

𝑓 (∑4ℎ=1 𝜆ℎ𝑄ℎ) =
∑4
ℎ=1 𝜆ℎ 𝑓 (𝑄ℎ) ≤ 0. Then, by con-

sidering M = (𝑥, 𝑦, 𝑧), with 𝑧 < 𝑎𝑦, it holds that
𝑓 (M) = 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥(𝑎𝑦 − 𝑧) > 0, and henceM ∉ I.
Thus, as (𝑥, 𝑦, 𝑎𝑦) is coherent and (𝑥, 𝑦, 𝑧), with 𝑧 < 𝑎𝑦 is
not coherent, it follows that 𝑧′ = 𝑎𝑦 it the lower bound for
(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾).

Upper Bound. We show that the assessment M =

(𝑥, 𝑦, 𝑏𝑥) on F is coherent. We observe that (𝑥, 𝑦, 𝑏𝑥) =
𝑥𝑄1 + (1 − 𝑥)𝑄3. Then, M ∈ I with a solution of (16)
given by 𝛬 = (𝑥, 0, 1 − 𝑥, 0). It follows that

𝛷1 (𝛬) =𝛷3 (𝛬) = 1, 𝛷2 (𝛬) = 0.

As 𝛷2 (𝛬) = 0, it holds that I0 ⊆ {2}, with the sub-
assessmentM0 = 𝑦 on F0 = {𝐵 |𝐾} coherent because 𝑦 ∈
[0, 1]. Then, by Theorem 4 the assessmentM = (𝑥, 𝑦, 𝑏𝑥)
on F is coherent. We show that 𝑧′′ = 𝑏𝑥 is the upper bound
for 𝑧. We distinguish two cases: 𝑦 > 0 and 𝑦 = 0. Let us
suppose for now that 𝑦 > 0. We observe that 𝑄1, 𝑄3, 𝑄4
belong to the plane 𝜋 : 𝑏𝑦𝑋 +𝑏𝑥𝑌 − 𝑦𝑍 = 𝑏𝑥𝑦. Considering
the function 𝑓 (𝑋,𝑌, 𝑍) = 𝑏𝑦𝑋 + 𝑏𝑥𝑌 − 𝑦𝑍 − 𝑏𝑥𝑦, it holds
that

𝑓 (𝑄1) = 𝑓 (𝑄3) = 𝑓 (𝑄4) = 0, 𝑓 (𝑄2) = 𝑏𝑥 − 𝑎𝑦 ≥ 0.

Then, for every M ∈ I it holds that 𝑓 (M) =

𝑓 (∑6ℎ=1 𝜆ℎ𝑄ℎ) =
∑6
ℎ=1 𝜆ℎ 𝑓 (𝑄ℎ) ≥ 0. Then, by con-

sidering M = (𝑥, 𝑦, 𝑧), with 𝑧 > 𝑏𝑥, it holds that
𝑓 (M) = 𝑓 (𝑥, 𝑦, 𝑧) = 𝑦(𝑏𝑥 − 𝑧) < 0 and hence M ∉ I.
Thus, the assessment M = (𝑥, 𝑦, 𝑧) with 𝑧 > 𝑏𝑥 is not
coherent and hence 𝑧′′ = 𝑏𝑥.
If 𝑦 = 0, we observe that 𝑄1, 𝑄2, 𝑄3 belong to the plane
𝜋 : −𝑏𝑋 + (𝑏𝑥 − 𝑎)𝑌 + 𝑍 = 0. We set 𝑓 (𝑋,𝑌, 𝑍) = −𝑏𝑋 +
(𝑏𝑥−𝑎)𝑌+𝑍 and it holds that 𝑓 (𝑄1) = 𝑓 (𝑄2) = 𝑓 (𝑄3) = 0,
𝑓 (𝑄4) = −𝑏𝑥 ≤ 0. Then, for everyM ∈ I it holds that
𝑓 (M) = 𝑓 (∑6ℎ=1 𝜆ℎ𝑄ℎ) =

∑6
ℎ=1 𝜆ℎ 𝑓 (𝑄ℎ) ≤ 0. Then,

by consideringM = (𝑥, 0, 𝑧), with 𝑧 > 𝑏𝑥, it holds that
𝑓 (M) = 𝑓 (𝑥, 0, 𝑧) = −𝑏𝑥+ 𝑧 > 0, and henceM ∉ I. Thus,
the assessmentM = (𝑥, 0, 𝑧), with 𝑧 > 𝑏𝑥, is not coherent
and hence 𝑧′′ = 𝑏𝑥.

Case (𝑖𝑖). The proof can be obtained in a way similar to
the proof in Case (𝑖), when switching 𝑥 with 𝑦 and 𝑎 with 𝑏.

We observe that the bounds obtained in Theorem 17 (un-
der the logical relation 𝐻𝐾 = ∅) are more restrictive
than the bounds obtained in Theorem 14 (under the as-
sumption of logical independence of 𝐴, 𝐻, 𝐵, 𝐾). That is,

[min{𝑎𝑦, 𝑏𝑥},max{𝑎𝑦, 𝑏𝑥}] ⊆ [𝑧′, 𝑧′′], where 𝑧′ and 𝑧′′
are given in (13) and (14), respectively. Of course, when
𝑎 < 1 and 𝑏 < 1, it holds that 𝑧′′ < 1. This is in agreement
to the fact that (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) can never be 1 in this
case.

Remark 18 The result of Theorem 17 can be also obtained
in a different way by exploiting the linearity of prevision.
Indeed, when 𝐻𝐾 = ∅, it holds that 𝐴𝐻𝐵𝐾 = ∅, 𝐻𝐵𝐾 =

𝐵𝐾 and 𝐴𝐻𝐾 = 𝐴𝐻 and hence

(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) = (𝑎𝐵𝐾 + 𝑏𝐴𝐻) | (𝐻 ∨ 𝐾). (20)

We observe that 𝑃(𝐵𝐾 | (𝐻 ∨ 𝐾)) = 𝑃(𝐵 |𝐾)𝑃(𝐾 | (𝐻 ∨ 𝐾))
and 𝑃[𝐴𝐻 | (𝐻∨𝐾)] = 𝑃(𝐴|𝐻)𝑃[𝐻 | (𝐻∨𝐾)]. Then, from
(20), by the linearity of prevision, it follows that

𝑧 = ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] =
+ 𝑎𝑃(𝐻𝐵𝐾 | (𝐻 ∨ 𝐾)) + 𝑏𝑃(𝐾𝐴𝐻 | (𝐻 ∨ 𝐾)) =
= 𝑎𝑃(𝐵 |𝐾)𝑃(𝐾 | (𝐻 ∨ 𝐾)) + 𝑏𝑃(𝐴|𝐻)𝑃(𝐻 | (𝐻 ∨ 𝐾)).

(21)

Denoting by 𝑥 = 𝑃(𝐴|𝐻), 𝑦 = 𝑃(𝐵 |𝐾), 𝛼 = 𝑃(𝐻 | (𝐻 ∨
𝐾)) = 1 − 𝑃(𝐾 | (𝐻 ∨ 𝐾)), formula (21) becomes

𝑧 = 𝑎𝑦(1 − 𝛼) + 𝑏𝑥𝛼. (22)

It can be proved1 that the assessment (𝑥, 𝑦, 𝛼) on
{𝐴|𝐻, 𝐵|𝐾, 𝐻 | (𝐻 ∨ 𝐾)}, with 𝐻𝐾 = ∅, is coherent for
every (𝑥, 𝑦, 𝛼) ∈ [0, 1]3. Then, from (22) we obtain that
𝑧 ∈ [min{𝑎𝑦, 𝑏𝑥},max{𝑎𝑦, 𝑏𝑥}], because 𝛼 ∈ [0, 1].

Remark 19 When 𝑎 = 𝑥 and 𝑏 = 𝑦, from (19) we obtain
that 𝑧′ = 𝑧′′ = 𝑎𝑦 = 𝑏𝑥 = 𝑥𝑦. That is, when 𝐻𝐾 = ∅, it
holds that

ℙ[(𝐴|𝐻) ∧𝑥,𝑦 (𝐵 |𝐾)] = ℙ[(𝐴|𝐻) ∧ (𝐵 |𝐾)]
= 𝑃(𝐴|𝐻)𝑃(𝐵 |𝐾),

which is in agreement with the result given in [24] (see also
[31]).

4.2. The Case 𝑎 = 𝑏 = 1 and the Quasi Conjunction

It is interesting to notice that quasi conjunction is a particular
case of the generalized conjunction (𝐴|𝐻)∧𝑎,𝑏 (𝐵 |𝐾)where
𝑎 = 1 and 𝑏 = 1. Indeed, by recalling (8)

(𝐴|𝐻) ∧1,1 (𝐵|𝐾) = (𝐴𝐻𝐵𝐾 + 𝐻𝐵𝐾 + 𝐴𝐻𝐾) | (𝐻 ∨ 𝐾)
= (𝐴|𝐻) ∧𝑆 (𝐵 |𝐾).

1For proving that (𝑥, 𝑦, 𝛼) on {𝐴|𝐻, 𝐵 |𝐾, 𝐻 | (𝐻 ∨ 𝐾 ) }, with
𝐻𝐾 = ∅, is coherent for every (𝑥, 𝑦, 𝛼) ∈ [0, 1]3 it is sufficient to check
that each of the eight vertices of the unit cube is coherent.
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Then, when 𝐻 ∨ 𝐾 is true it holds that (𝐴|𝐻) ∧𝑆 (𝐵 |𝐾) ≥
(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾). By applying [27, Theorem 6], it holds
that 𝑃(𝐴|𝐻) ∧𝑆 (𝐵 |𝐾) ≥ ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] and hence

(𝐴|𝐻) ∧𝑆 (𝐵 |𝐾) ≥ (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)

in all cases. Moreover, based on Theorem 14, un-
der logical independence, it follows that (𝑥, 𝑦, 𝑧) on
{𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧1,1 (𝐵 |𝐾)} is coherent if and only if
(𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where 𝑧 ∈ [𝑧′, 𝑧′′] with

𝑧′ =

{
(𝑥 + 𝑦 − 1), if 𝑥 + 𝑦 − 1 > 0,
0, otherwise

= max{𝑥 + 𝑦 − 1, 0}

and

𝑧′′ =


𝑥(𝑏 − 𝑎𝑦) + 𝑦(𝑎 − 𝑏𝑥)

1 − 𝑥𝑦 , if (𝑥, 𝑦) ≠ (1, 1),

1, if (𝑥, 𝑦) = (1, 1),

=


𝑥 + 𝑦 − 2𝑥𝑦
1 − 𝑥𝑦 , if (𝑥, 𝑦) ≠ (1, 1),

1, if (𝑥, 𝑦) = (1, 1),

because 𝑎(1− 𝑦) +𝑏(1−𝑥) +𝑥𝑦−1 = 1− 𝑦+1−𝑥+𝑥𝑦−1 =
1−𝑦−𝑥+𝑥𝑦 = 1−𝑦−𝑥(1−𝑦) = (1−𝑦) (1−𝑥) ≥ 0. Then, the
lower and upper bounds 𝑧′ and 𝑧′′ coincide with 𝑧′

𝑆
and 𝑧′′

𝑆

given in (9). We observe that 𝑧′′
𝑆
is the Hamacher t-conorm

with the parameter 𝜆 = 0 . Then, for every (𝑥, 𝑦) ∈ [0, 1]2,
as max(𝑥, 𝑦) is the smallest t-conorm, it holds that

𝑧′′𝑆 ≥ max{𝑥, 𝑦} ≥ min{𝑥, 𝑦},

and hence the quasi conjunction do not preserve the
bounds in (7). Thus, differently from the unconditional
case where 𝑃(𝐴𝐵) = 0 is the only coherent extension of
(1, 0) on {𝐴, 𝐵}, for the probability of the quasi conjunc-
tion (𝐴|𝐻) ∧𝑆 (𝐵 |𝐾), any value 𝑧𝑆 ∈ [0, 1] is a coherent
extension of (1, 0) on {𝐴|𝐻, 𝐵|𝐾} because 𝑧′

𝑆
= 0 and

𝑧′′
𝑆
= 1. This is not desirable from a probabilistic point of

view because it allows to coherently assess probability 1
for the quasi conjunction even if one of the two conjuncts
has probability 1 and the other one has probability zero. A
similar comment can be also done in the particular case
where 𝐻 and 𝐾 are incompatible. Indeed, when 𝐻𝐾 = ∅,
by instantiating equation (19) with 𝑎 = 𝑏 = 1, we obtain

𝑧′𝑆 = min{𝑥, 𝑦}, 𝑧′′𝑆 = max{𝑥, 𝑦}. (23)

4.3. The Case 𝑎 = 𝑏 = 0

In the case where 𝑎 = 𝑏 = 0 the generalized conjunction
reduces to a conditional event. Indeed,

(𝐴|𝐻) ∧0,0 (𝐵 |𝐾) = 𝐴𝐻𝐵𝐾 | (𝐻 ∨ 𝐾).

Based on Theorem 14, under logical independence, it fol-
lows that (𝑥, 𝑦, 𝑧) on {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧0,0 (𝐵 |𝐾)} is co-
herent if and only if (𝑥, 𝑦) ∈ [0, 1]2 and 𝑧 ∈ [𝑧′, 𝑧′′], where
𝑧′ = 0 and 𝑧′′ = 𝑚𝑖𝑛{𝑥, 𝑦}.

5. Interval-valued Prevision Assessments
We recall that under logical independence any assess-
ment (𝑥, 𝑦) ∈ [0, 1]2 on {𝐴|𝐻, 𝐵|𝐾} is coherent. Based
on Theorem 14, we denote by [𝑧′(𝑥, 𝑦), 𝑧′′(𝑥, 𝑦)] the
interval of coherent prevision extensions of (𝑥, 𝑦) to
(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾). Given the interval-valued assessment
[𝑥1, 𝑥2]×[𝑦1, 𝑦2] ⊆ [0, 1]2 on {𝐴|𝐻, 𝐵|𝐾}, we set [𝑧∗, 𝑧∗∗]
the interval of coherent extensions 𝑧 on (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾),
where

𝑧∗ = min
(𝑥,𝑦) ∈[𝑥1 ,𝑥2 ]×[𝑦1 ,𝑦2 ]

𝑧′(𝑥, 𝑦)

and
𝑧∗∗ = max

(𝑥,𝑦) ∈[𝑥1 ,𝑥2 ]×[𝑦1 ,𝑦2 ]
𝑧′′(𝑥, 𝑦).

The assessment ( [𝑥1, 𝑥2] × [𝑦1, 𝑦2] × [𝑧∗, 𝑧∗∗]) on F =

{𝐴|𝐻, (𝐵 |𝐾), (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)} is coherent w.r.t. Defini-
tion 8.Moreover, any assessment [𝑥1, 𝑥2]× [𝑦1, 𝑦2]× [𝛼, 𝛽],
with [𝛼, 𝛽] ⊃ [𝑧∗, 𝑧∗∗], is not coherent. Then, the interval
[𝑧∗, 𝑧∗∗] is the least committal extension, that is the natu-
ral extension ([54], see also [45]), of the interval-valued
assessment [𝑥1, 𝑥2] × [𝑦1, 𝑦2], which is equivalent to the
lower probability assessment (𝑥1, 𝑥2, 1 − 𝑦1, 1 − 𝑦2) on
{𝐴|𝐻, 𝐵|𝐾, 𝐴|𝐻, 𝐵 |𝐾}. In what follows we compute the
lower and upper bounds, 𝑧∗ and 𝑧∗∗, by also considering the
case where 𝐻𝐾 = ∅.

Theorem 20 Let 𝐴, 𝐵, 𝐻, 𝐾 be any logically independent
events and let A = ( [𝑥1, 𝑥2] × [𝑦1, 𝑦2]) be an interval-
valued assessment on {𝐴|𝐻, 𝐵|𝐾}. Then, the interval of
coherent extensions of A to (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) is the in-
terval [𝑧∗, 𝑧∗∗] = [𝑧′(𝑥1, 𝑦1), 𝑧′′(𝑥2, 𝑦2)], where 𝑧′(𝑥, 𝑦)
and 𝑧′′(𝑥, 𝑦) are defined in formula (13) and formula (14),
respectively.
Proof The proof is straightforward by showing that

𝑧′(𝑥1, 𝑦1) = min
(𝑥,𝑦) ∈[𝑥1 ,𝑥2 ]×[𝑦1 ,𝑦2 ]

𝑧′(𝑥, 𝑦)

and

𝑧′′(𝑥2, 𝑦2) = max
(𝑥,𝑦) ∈[𝑥1 ,𝑥2 ]×[𝑦1 ,𝑦2 ]

𝑧′′(𝑥, 𝑦).

Due to the lack of space the rest of the proof is omitted.

We now generalize Theorem 17 for interval-valued pre-
vision assessments.
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Theorem 21 Let an interval-valued probability assess-
ment A = ( [𝑥1, 𝑥2] × [𝑦1, 𝑦2]) on {𝐴|𝐻, 𝐵|𝐾}, with 𝐻 ≠ ∅,
𝐾 ≠ ∅, and 𝐻𝐾 = ∅, be given. Then, the interval of coher-
ent extensions of A to (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) is the interval
[𝑧∗, 𝑧∗∗], where

𝑧∗ = min{𝑎𝑦1, 𝑏𝑥1}, 𝑧∗∗ = max{𝑎𝑦2, 𝑏𝑥2}. (24)

Proof The proof is straightforward by recalling that (𝑥, 𝑦) ∈
[0, 1]2 on {𝐴|𝐻, 𝐵|𝐾} is coherent when 𝐻𝐾 = ∅ and by
observing that both the lower and upper bounds 𝑧′ and 𝑧′′
given in Theorem 17 are non-decreasing functions in the
arguments 𝑥 and 𝑦.

6. Further aspects on (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)
In this section we deepen two further aspects of the gen-
eralized conjunction (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾). We first give an
interpretation of (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) when we consider two
individuals𝑂 and𝑂 ′. Then, we examine (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾),
when 𝐴|𝐻 ⊆ 𝐵|𝐾 .
Let us consider two individuals 𝑂 and 𝑂 ′. Suppose that
𝑂 ′ asserts 𝑃′(𝐴|𝐻) = 𝑎 and 𝑃′(𝐵 |𝐾) = 𝑏. Then, based
on Remark 13, for 𝑂 ′ the conjunction (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)
coincides with its conjunction (𝐴𝐻𝐵𝐾 + 𝑃′(𝐴|𝐻)𝐻𝐵𝐾 +
𝑃′(𝐵 |𝐾)𝐴𝐻𝐾) | (𝐻 ∨ 𝐾), which we denote by (𝐴|𝐻) ∧′

(𝐵 |𝐾). Thus, by coherence, ℙ′[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] satis-
fies the Fréchet-Hoeffding bounds, that is:

ℙ′[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)]
= ℙ′[(𝐴|𝐻)∧′(𝐵 |𝐾)] ∈ [max{𝑎+𝑏−1, 0},min{𝑎, 𝑏}] .

Now, suppose that 𝑂 asserts 𝑃(𝐴|𝐻) = 𝑥 and 𝑃(𝐵 |𝐾) = 𝑦.
Then, under logical independence, the lower and upper
bounds 𝑧′ and 𝑧′′ on (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) computed in Theo-
rem 14, for the individual 𝑂, represent the lower and upper
bounds for the coherent extension ℙ[(𝐴|𝐻) ∧′ (𝐵 |𝐾)] of
the assessment (𝑥, 𝑦) on {𝐴|𝐻, 𝐵|𝐾}. Therefore, in general
it holds that

ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] =
= ℙ[(𝐴|𝐻) ∧′ (𝐵 |𝐾)] ≠ ℙ[(𝐴|𝐻) ∧ (𝐵 |𝐾)],

where (𝐴|𝐻) ∧ (𝐵 |𝐾) = (𝐴|𝐻) ∧𝑥,𝑦 (𝐵|𝐾).
We recall that, when 𝐴|𝐻 ⊆ 𝐵 |𝐾, it holds that (𝐴|𝐻) ∧
(𝐵 |𝐾) = 𝐴|𝐻 (see, e.g., [29, formula (16)]) and hence
ℙ[(𝐴|𝐻) ∧ (𝐵 |𝐾)] = 𝑃(𝐴|𝐻). These relations are not
preserved by (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾). Indeed, if 𝐴|𝐻 ⊆ 𝐵 |𝐾 , as
𝐴𝐻𝐵𝐾 = 𝐴𝐻, 𝐾𝐴𝐻 = ∅, and 𝐻𝐵𝐾 = 𝐻𝐾, from (10) it
holds that

(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) = (𝐴𝐻 + 𝑎𝐻𝐾) | (𝐻 ∨ 𝐾) ≠ 𝐴|𝐻,
(25)

because, when 𝐻𝐾 is true, it follows that (𝐴|𝐻) ∧𝑎,𝑏
(𝐵 |𝐾) = 𝑎, while 𝐴|𝐻 = 𝑥, where 𝑥 = 𝑃(𝐴|𝐻). Moreover,
it holds that

ℙ[(𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)] =
= 𝑃(𝐴|𝐻)𝑃(𝐻 |𝐻 ∨ 𝐾) + 𝑎𝑃(𝐻𝐾 |𝐻 ∨ 𝐾) =
= 𝛼𝑥 + (1 − 𝛼)𝑎,

where 𝑥 = 𝑃(𝐴|𝐻), 𝛼 = 𝑃(𝐻 |𝐻∨𝐾). Thus,ℙ[(𝐴|𝐻) ∧𝑎,𝑏
(𝐵 |𝐾)] ∈ [min{𝑥, 𝑎},max{𝑥, 𝑎}], when 𝐴|𝐻 ⊆ 𝐵 |𝐾. In
particular when 𝑎 = 𝑏 = 1, that is (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) =

(𝐴|𝐻) ∧𝑆 (𝐵 |𝐾), from (25) it follows that (𝐴|𝐻) ∧𝑎,𝑏
(𝐵 |𝐾) = (𝐴𝐻 ∨ 𝐻𝐾) | (𝐴 ∨ 𝐾) ⊇ (𝐴|𝐻) (see [25, Re-
mark 4]).

7. Conclusions
We recalled the notion of conjunction of two conditional
events 𝐴|𝐻 and 𝐵 |𝐾 studied in the framework of con-
ditional random quantities defined as (𝐴|𝐻) ∧ (𝐵 |𝐾) =

[𝐴𝐵𝐻𝐾 + 𝑥𝐻𝐵𝐾 + 𝑦𝐴𝐻𝐾] | (𝐻 ∨ 𝐾), where 𝑥 = 𝑃(𝐴|𝐻)
and 𝑦 = 𝑃(𝐵 |𝐾). We also recalled that this notion preserves
some basic probabilistic properties and in particular the
Fréchet-Hoeffding bounds are satisfied. We generalized
the conjunction by replacing the values 𝑥 and 𝑦 with two
arbitrary numbers 𝑎 and 𝑏 in [0, 1]. The values 𝑎 and 𝑏 repre-
sent the values of the conjunction of two conditional events
when one conditional event is true, while the other one is
void. Thus, we defined (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) as the conditional
random [𝐴𝐵𝐻𝐾 + 𝑎𝐻𝐵𝐾 + 𝑏𝐴𝐻𝐾] | (𝐻 ∨ 𝐾). Then, for
each given pair (𝑎, 𝑏), we computed the set of all coherent
assessments on the family {𝐴|𝐻, 𝐵|𝐾, (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)}.
We observed that in the general case the Fréchet-Hoeffding
bounds for the conjunction are not preserved. Then, we
analyzed the particular case where the conditioning events
𝐻 and 𝐾 are incompatible, by also computing the cor-
responding set of coherent assessments. We observed
that ∧𝑎,𝑏 reduces to the quasi conjunction ∧𝑆 , when
(𝑎, 𝑏) = (1, 1). We considered the imprecise case, by
computing the lower and upper bounds, 𝑧∗ and 𝑧∗∗, for
the prevision of (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) in the case of an in-
terval valued probability assessment [𝑥1, 𝑥2] × [𝑦1, 𝑦2] on
{𝐴|𝐻, 𝐵|𝐾}. Then, we analyzed further aspects on the gen-
eralized conjunction, by observing that (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾)
reduces to the conjunction (𝐴|𝐻) ∧′ (𝐵|𝐾) of an individual
𝑂 ′, who asserts 𝑃′(𝐴|𝐻) = 𝑎 and 𝑃′(𝐵 |𝐾) = 𝑏, while
it is different from the conjunction (𝐴|𝐻) ∧ (𝐵 |𝐾) of an
individual 𝑂, who asserts (𝑃(𝐴|𝐻), 𝑃(𝐵 |𝐾)) ≠ (𝑎, 𝑏). Fi-
nally, we observed that, differently from (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾),
the conjunction (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) does not coincide in
general with 𝐴|𝐻, when 𝐴|𝐻 ⊆ 𝐵 |𝐾 . Further work should
concern the study of some other properties of the general-
ized conjunction under some other logical dependencies,
for instance when 𝐴 = 𝐵. Moreover, we recall that the
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random win of a double-bet in soccer betting can be in-
terpreted as a suitable conjunction (𝐴|𝐻) ∧ (𝐵 |𝐾), with
ℙ[(𝐴|𝐻) ∧ (𝐵 |𝐾)] = 𝑃(𝐴|𝐻)𝑃(𝐵 |𝐾) ([18, Example 2.1]).
Then, a real application of (𝐴|𝐻) ∧𝑎,𝑏 (𝐵 |𝐾) can be given
in the soccer betting framework, when, for instance, we
consider the bookmaker and the bettor as the individuals
𝑂 ′ and 𝑂, respectively, discussed in Section 6.
Based on the notion of conjunction of 𝑛 conditional events

given in [27], a suitable generalized version of conjunction
(and iterated conditional) can be introduced also for 𝑛
conditional events.
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