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Abstract
We identify the logic behind the recent theory of coher-
ent sets of desirable (sets of) things, which generalise
coherent sets of desirable (sets of) gambles and coher-
ent choice functions, and show that this identification
allows us to establish various representation results for
such coherent models in terms of simpler ones.
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1. Introduction
The theory of imprecise probabilities [1, 15, 23, 25] allows
for partial specification of probability models and, equally
importantly, allows for conservative inference: if we specify
bounds on the probabilities of a number of events, then the
theory is concerned with, amongst other things, inferring
the implied bounds on the probabilities of other events.
Conservative probabilistic inference can be represented

intuitively and effectively by considering simple desirability
statements [21, 26]: if some uncertain rewards—called
gambles—are considered desirable to a subject, what does
that imply about the desirability (or otherwise) of other
gambles? That a subject considers a given gamble to be
desirable is then a simple statement very much like asserting
a proposition in a propositional logic context. Inferring
from a collection of such desirability statements which
other gambles are desirable, is then a matter of deductive
inference based on a number of so-called coherence rules,
very much like logical inference is based on the conjunction
and modus ponens rules. This observation has led to a
theory of coherent sets of desirable gambles [3, 5, 11, 12,
16, 17, 26]: sets of gambles that are deductively closed
under the inference based on the coherence rules.
A desirability statement for a gamble is tantamount to

a pairwise comparison—a strict preference—between this
gamble and the zero gamble. Isaac Levi [15] recognised
quite early on that certain aspects of conservative probabil-
istic inference demand looking further than merely pairwise

preferences between gambles. This has led to the introduc-
tion of so-called coherent choice functions into the field
of imprecise probabilities [14, 19, 22, 24]. Recently, we’ve
shown [6, 8, 9, 10] that working with such choice functions
is mathematically equivalent to doing inferences with de-
sirable sets of gambles, rather than with desirable gambles,
where a set of gambles is judged to be desirable as soon
as at least one of its elements is: coherent choice functions
can be seen as a special case of coherent—deductively
closed—sets of desirable sets of gambles.
In very recent work [7], JasperDeBock has taken this idea

further: in his abstract generalisation, gambles are replaced
by abstract objects—things—and it’s assumed that some
abstract property of things, called their desirability, can be
inferred from the desirability of other things through infer-
ence rules that are summarised by the action of some closure
operator. This leads to a theory of coherent—deductively
closed—sets of desirable sets of things.
At about the same time, Catrin Campbell–Moore [2]

showed that statements about, and the inference behind,
the desirability of (some types of sets of) gambles can be
represented by filters of sets of probability measures: the
conservative inference mechanism behind such models can
be interpreted as that of propositional logic involving state-
ments about some ‘ideal unknown’ probability measure.1
Here, we draw inspiration from these recent develop-

ments, and show that the conservative inference mechanism
behind coherent—deductively closed—sets of desirable sets
of things is essentially that of propositional logic involving
statements about some ‘unknown’ coherent set of desirable
things. Our results allow us to prove powerful representation
theorems for such coherent sets of desirable sets of things
in terms of simpler, so-called conjunctive, models.
We’ll freely use basic concepts and results from order

theory [4], and assume familiarity with most of them.

1She has since (private communication) extended this idea to repres-
entations by filters of sets of coherent sets of desirable gambles, along the
lines of, but independently from, what we’ll achieve for the more general
coherent sets of things in Section 6.
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Our argumentation is structured as follows. In Section 2,
we summarise the basic ideas behind coherent sets of
desirable sets of things, and identify the order-theoretic
underpinnings of the inference mechanism behind them.
We show that the coherent sets of desirable things can be
embedded into the coherent sets of desirable sets of things,
in the form of the conjunctive models. In Section 3, we
explain how each desirability statement for a given set of
things can be identified with a so-called event: the specific
subset of the collection of all coherent sets of desirable
things it’s compatible with. In Section 4, we identify the
order-theoretic nature of the collection of all such events as a
bounded distributive lattice. Section 5 is a very short primer
on order- and set-theoretic filters. In Sections 6–8, we relate
by order isomorphisms the (various types of) coherent
sets of desirable sets of things to (various types of) proper
filters, and then explain how such order isomorphisms lead
to representation of these (various types of) coherent sets
of desirable sets of things in terms of conjunctive ones,
providing simple alternative ways to derive similar results
as in Ref. [7]. Due to a lack of space, we’ve had to exclude
the proofs for our results; we refer the interested reader to a
longer arXiv version [13] of this paper.

2. Sets of Desirable (Sets of) Things
We give a brief overview of (a version of) the theory of
desirable (sets of) things [7] that’ll be sufficient for our
purposes here.

2.1. Desirable Things

Consider a set 𝑇 of things 𝑡 that may have a certain property;
having this property makes a thing desirable.
You, our subject, may entertain ideas about which things

are desirable, and You represent these ideas by providing
a (not necessarily exhaustive) set of things that You find
desirable. We’ll call such a subset 𝑆 ⊆ 𝑇 a set of desirable
things, or SDT for short (plural: SDTs): a set with the
property that You think each of its elements desirable. We
denote by 𝒫(𝑇) the set of all subsets 𝑆 of 𝑇, or in other
words, the collection of all candidate SDTs.
SDTs can be ordered by set inclusion. We interpret

𝑆1 ⊆ 𝑆2 to mean that 𝑆1 is less informative, or more
conservative, than 𝑆2, simply because a subject with SDT 𝑆1
finds fewer things desirable than a subject with SDT 𝑆2.
Our basic assumption is that there are rules that underlie

the notion of desirability for things, and that the net effect
of these rules can be captured by a closure operator and a
set of forbidden things.
We recall that a closure operator on a non-empty set 𝐺

is a map Cl: 𝒫(𝐺) → 𝒫(𝐺) satisfying:
C1. 𝐴 ⊆ Cl(𝐴) for all 𝐴 ⊆ 𝐺;

C2. if 𝐴 ⊆ 𝐵 then Cl(𝐴) ⊆ Cl(𝐵) for all 𝐴, 𝐵 ⊆ 𝐺;
C3. Cl(Cl(𝐴)) = Cl(𝐴) for all 𝐴 ⊆ 𝐺.
A closure operator Cl is called finitary if it’s enough to
know the closure of finite sets, in the following sense:

Cl(𝐴) =
⋃

{Cl(𝐹) : 𝐹 ∈ 𝒫(𝐺) and 𝐹 b 𝐴}, 𝐴 ∈ 𝒫(𝐺),

where we use the notation ‘b’ to mean ‘is a finite subset
of’, and agree to call the empty set ∅ finite.
First of all, as already suggested above, we assume that

there’s some inference mechanism that allows us to infer
the desirability of a thing from the desirability of other
things. This inferencemechanism is represented by a closure
operator ClD : 𝒫(𝑇) → 𝒫(𝑇), in the following sense:
D1. if all things in 𝑆 are desirable, then so are all things

in ClD (𝑆).
The set D B {𝑆 ∈ 𝒫(𝑇) : ClD (𝑆) = 𝑆} collects all closed
sets of things.
Secondly, we assume that there’s a set of so-called for-

bidden things 𝑇−, which are never desirable:
D2. no thing in 𝑇− is desirable, so if all things in 𝑆 are

desirable, then 𝑆 ∩ 𝑇− = ∅.
Of course, because we assume that all things in an SDT are
desirable, it can never intersect the set 𝑇−, so this leaves us
with the collection

D B {𝑆 ∈ D : 𝑆 ∩ 𝑇− = ∅} ⊆ D

of the closed SDTs that we’ll call coherent. We’ll use the
generic notation 𝐷 for such coherent SDTs. It’s a standard
result in order theory, and easy to check, that they constitute
an intersection structure: the intersection of any non-empty
family 𝐼 ≠ ∅ of them is still coherent:(

(∀𝑖 ∈ 𝐼)𝐷𝑖 ∈ D
)
⇒

⋂
𝑖∈𝐼
𝐷𝑖 ∈ D.

Clearly, an SDT 𝑆 ⊆ 𝑇 can be extended to a coherent one
iff ClD (𝑆) ∈ D, or equivalently, if ClD (𝑆) ∩ 𝑇− = ∅, and
in that case we’ll call this 𝑆 consistent. For any consistent
SDT 𝑆 , it’s easy to see that

ClD (𝑆) =
⋂

{𝐷 ∈ D : 𝑆 ⊆ 𝐷 },

so ClD (𝑆) is the smallest, or most conservative, or least
informative, coherent SDT that the consistent 𝑆 can be
extended to. In this sense, the closure operator ClD repres-
ents conservative inference. The following result is then a
standard conclusion in order theory [4, Chapter 7].

Proposition 1 The partially ordered set 〈D, ⊆〉 is a com-
plete lattice with bottom 0D = 𝑇+ and top 1D = 𝑇. For
any non-empty family 𝑆𝑖 , 𝑖 ∈ 𝐼 of elements of D, we
have for its infimum and its supremum that, respect-
ively, inf𝑖∈𝐼 𝑆𝑖 =

⋂
𝑖∈𝐼 𝑆𝑖 and sup𝑖∈𝐼 𝑆𝑖 = ClD (

⋃
𝑖∈𝐼 𝑆𝑖).
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The set 𝑇+ B ClD (∅) =
⋂

D is the smallest closed SDT.
If 𝑇+ is coherent, or in other words if the empty set ∅ is
consistent, then 𝑇+ is the smallest, or most conservative,
coherent SDT. This will be the case iff
D3. 𝑇+ ∩ 𝑇− = ∅, or equivalently, D ≠ ∅.
We’ll from now on also always assume that this ‘sanit-
ary’ condition’s verified. All things in 𝑇+ are then always
implicitly desirable, regardless of any of the desirability
statements You might make.

Running Example As a familiar example, consider a
variable 𝑋 whose value in a finite set𝒳 is unknown. Any
map ℎ : 𝒳 → ℝ then corresponds to a real-valued uncertain
reward ℎ(𝑋), and is called a gamble on 𝑋 . ℎ(𝑋) is typically
expressed in units of some linear utility scale. The set𝒢 of
all such gambles is a linear space.
In a typical decision problem, You are uncertain about

the value of 𝑋 , and are asked to express Your preferences
between several possible decisions or acts, where each such
act has an associated uncertain reward, or gamble.
We consider the strict vector ordering >, defined by

𝑓 > 𝑔 ⇔ (∀𝑥 ∈ 𝒳) 𝑓 (𝑥) > 𝑔 (𝑥), as a background ordering,
reflecting the minimal preferences You always have, regard-
less of Your beliefs about 𝑋 . We denote by𝒢>0 the set of
all positive gambles ℎ > 0, and let𝒢≤0 B −𝒢>0 ∪ {0}.
Your set of desirable gambles 𝐷 ⊆ 𝒢 contains the

gambles that are desirable to You in the sense that You
strictly prefer them to 0. We’ll call it coherent [10] (see also
Refs. [3, 11, 18, 20, 26] for related definitions) when
GD1. 0 ∉ 𝐷 ;
GD2. 𝒢>0 ⊆ 𝐷 ;
GD3. if 𝑓, 𝑔 ∈ 𝐷 and (𝜆, 𝜇) > 0,2 then 𝜆 𝑓 + 𝜇𝑔 ∈ 𝐷 , for

all 𝑓, 𝑔 ∈ 𝒢 and 𝜆, 𝜇 ∈ ℝ.
We can identify gambles as special cases of the abstract
things, let 𝑇 correspond to the set of gambles 𝒢, and
let desirable gambles correspond to desirable things. The
requirements GD1–GD3 correspond to the finitary closure
operator ClD, determined by ClD (𝑆) = posi(𝑆 ∪𝒢>0) for
all consistent 𝑆 , where posi(•) is the set of all positive linear
combinations of ‘•’, that the convex cone𝒢≤0 plays the role
of the set of forbidden things 𝑇−, and that posi(∅ ∪𝒢>0) =
posi(𝒢>0) = 𝒢>0 plays the role of the set 𝑇+. With these
identifications, the axioms D1–D3 are verified.

2.2. Desirable Sets of Things

Your claim that a set of things 𝑆 ⊆ 𝑇 is a set of desir-
able things is tantamount to a conjunctive statement: You
state that “all things in 𝑆 are desirable”. In the formalism
described above, there’s no way to deal with disjunctive
statements of the type “at least one of the things in 𝑆 is

2We’ll use the notation (𝜆, 𝜇) > 0 to mean that 𝜆 ≥ 0 and 𝜇 ≥ 0
and 𝜆 + 𝜇 > 0.

desirable”. So let’s look for a way to also allow for such
disjunctive statements.
We’ll say thatYou consider a set of things 𝑆 to be desirable

if You consider at least one thing in 𝑆 to be. In other words,
in a set of desirable things, all things are desirable, whereas
in a desirable set of things, at least one thing is. As with
the desirability of things, You can make many desirability
statements for sets of things, and we then collect all of these
in a set of desirable sets of things—or for short SDS, plural
SDSes—𝑊 ⊆ 𝒫(𝑇). So𝑊 is an SDS for You if all sets of
things 𝑆 ∈ 𝑊 are desirable to You, in the sense that each of
them contains at least one desirable thing.
Sets of desirable sets of things can be ordered by set

inclusion too. We take 𝑊1 ⊆ 𝑊2 to mean that 𝑊1 is less
informative, or more conservative, than𝑊2, simply because
a subject with an SDS𝑊1 finds fewer sets of things desirable
than a subject with SDS𝑊2.
The inference mechanism for the desirability of things

also has its consequences for the desirability of sets of
things, as we’ll now make clear. Consider any set of sets
of things𝑊 ⊆ 𝒫(𝑇), then we denote by𝛷𝑊 the set of all
so-called selection maps

𝜎 : 𝑊 → 𝑇 : 𝑆 ↦→ 𝜎(𝑆) such that 𝜎(𝑆) ∈ 𝑆 for all 𝑆 ∈ 𝑊.

Each such selection map 𝜎 ∈ 𝛷𝑊 selects a thing 𝜎(𝑆)
from each set of things 𝑆 in 𝑊, and we use the notation
𝜎(𝑊) B {𝜎(𝑆) : 𝑆 ∈ 𝑊} ∈ 𝒫(𝑇) for the corresponding
set of all these selected things.
We now call an SDS 𝐾 ⊆ 𝒫(𝑇) coherent if it satisfies

the following conditions:
K1. ∅ ∉ 𝐾;
K2. if 𝑆1 ∈ 𝐾 and 𝑆1 ⊆ 𝑆2 then 𝑆2 ∈ 𝐾, for all 𝑆1, 𝑆2 ∈

𝒫(𝑇);
K3. if 𝑆 ∈ 𝐾 then 𝑆 \ 𝑇− ∈ 𝐾, for all 𝑆 ∈ 𝒫(𝑇);
K4. {𝑡+} ∈ 𝐾 for all 𝑡+ ∈ 𝑇+;
K5. if 𝑡𝜎 ∈ ClD (𝜎(𝑊)) for all 𝜎 ∈ 𝛷𝑊, then {𝑡𝜎 : 𝜎 ∈

𝛷𝑊} ∈ 𝐾, for all ∅ ≠ 𝑊 ⊆ 𝐾.
The first condition K1 takes into account that the empty
set of things can’t be desirable, as it contains no desirable
thing. The second condition K2 reminds us that if a set of
things contains a desirable thing, then of course so do all
its supersets. The third condition K3 reflects that things
in 𝑇− can never be desirable, by D2, and can therefore
safely be removed from any set of things without affecting
the latter’s desirability. And, to conclude, we’ll see further
on that the last two conditions K4 and K5 do a very fine
job of lifting the effects of inferential closure from the
desirability of things to the desirability of sets of things.
They can be justified as follows. For K4, recall from the
discussion above that any element of 𝑇+ is always implicitly
desirable, and so therefore will be any set that contains
it. For K5, recall that ∅ ≠ 𝑊 ⊆ 𝐾 means that each set of
things 𝑆 ∈ 𝑊 contains at least one desirable thing, and
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therefore there must be some selection map 𝜎𝑜 ∈ 𝛷𝑊 such
that 𝜎𝑜 (𝑆) is a desirable thing for all 𝑆 ∈ 𝑊. This implies
that all things in 𝜎𝑜 (𝑊) are desirable, and therefore so
are all things in ClD (𝜎𝑜 (𝑊)), by D1. Whatever 𝑡𝜎𝑜 we
choose in ClD (𝜎𝑜 (𝑊)) will therefore be desirable, which
guarantees that the set of things {𝑡𝜎 : 𝜎 ∈ 𝛷𝑊} must also
be desirable, because it contains the desirable thing 𝑡𝜎𝑜 .
We denote the set of all coherent SDSes by K, and we

letK B K∪{𝒫(𝑇)}. Observe that𝒫(𝑇) is never coherent,
by K1. Since each of the axioms K1–K5 is preserved under
taking arbitrary non-empty intersections, the set K of all
coherent SDSes constitutes an intersection structure: the
intersection of any non-empty family of coherent SDSes is
still coherent, or in otherwords, for any non-empty family𝐾𝑖 ,
𝑖 ∈ 𝐼 of elements of K, we see that still

⋂
𝑖∈𝐼 𝐾𝑖 ∈ K. As

explained in Ref. [4, Chapter 7], this allows us to capture
the inferential aspects of desirability at this level using the
closure operator ClK : 𝒫(𝒫(𝑇)) → K associated with the
collection K of closed SDSes, defined by

ClK (𝑊) B
⋂

{𝐾 ∈ K : 𝑊 ⊆ 𝐾} for all𝑊 ⊆ 𝒫(𝑇).

If we call an SDS𝑊 consistent if it can be extended to some
coherent SDS, or equivalently, if ClK (𝑊) ≠ 𝒫(𝑇), then
we find that ClK (𝑊) is the smallest, or most conservative,
coherent SDS that includes 𝑊, for any consistent 𝑊. Of
course, 𝑊 = ClK (𝑊) ⇔ 𝑊 ∈ K for all 𝑊 ⊆ 𝒫(𝑇), so
K = ClK (𝒫(𝒫(𝑇))). The following result’s then again a
standard conclusion in order theory [4, Chapter 7].

Proposition 2 The partially ordered set 〈K, ⊆〉 is a com-
plete lattice with top 1K = 𝒫(𝑇) and bottom 0K = ClK (∅).
For any non-empty family 𝑊𝑖 , 𝑖 ∈ 𝐼 of elements of K,
we have for its infimum and its supremum that, respect-
ively, inf𝑖∈𝐼 𝑊𝑖 =

⋂
𝑖∈𝐼 𝑊𝑖 and sup𝑖∈𝐼 𝑊𝑖 = ClK (⋃𝑖∈𝐼 𝑊𝑖).

Interestingly, the smallest coherent SDS 0K is easy to
identify: 0K =

⋂
K = {𝑆 ∈ 𝒫(𝑇) : 𝑆 ∩ 𝑇+ ≠ ∅}.

2.3. Desirable Sets of Things: The Finitary Case

We call a subset 𝐾 of 𝒫(𝑇) a finitely coherent SDS if
it satisfies conditions K1–K4, together with the following
finitary version of K5:
Kfin5 . if 𝑡𝜎 ∈ ClD (𝜎(𝑊)) for all 𝜎 ∈ 𝛷𝑊, then {𝑡𝜎 : 𝜎 ∈

𝛷𝑊} ∈ 𝐾, for all ∅ ≠ 𝑊 b 𝐾;
We denote by Kfin the set of all finitely coherent SDSes,
and we let Kfin B Kfin ∪ {𝒫(𝑇)}.
For this finitary version, the discussion, definitions and

the ensuing results about the intersection structure Kfin,
the complete lattice 〈Kfin, ⊆〉, and the associated closure
operatorClKfin are completely similar, andwe’ll refrain from
repeating them here. Observe nevertheless that K ⊆ Kfin
and therefore also K ⊆ Kfin: since K5 clearly implies Kfin5 ,

any coherent 𝐾 is also finitely coherent, so finite coherence
is the weaker requirement. As a consequence, we also find
that ClKfin (𝑊) ⊆ ClK (𝑊) for all𝑊 ⊆ 𝒫(𝑇).

Running Example We now can lift the framework of sets
of desirable gambles to sets of desirable gamble sets: rather
than use gambles as things that are potentially desirable,
we now turn to gamble sets, instead. In doing so, we move
from binary preferences between gambles to more general
preferences that aren’t necessarily binary.
We’ll allow You to state for a gamble set 𝑆 ∈ 𝒫(𝒢) that

at least one of its elements is desirable to You, but without
Your needing to specify which; we’ll then say that 𝑆 is
desirable to You, and call 𝑆 a desirable gamble set.
A set of desirable gamble sets 𝐾 is called coherent when

OK1. ∅ ∉ 𝐾;
OK2. if 𝑆1 ∈ 𝐾 and 𝑆1 ⊆ 𝑆2 then 𝑆2 ∈ 𝐾, for all 𝑆1, 𝑆2 ∈

𝒫(𝒢);
OK3. if 𝑆 ∈ 𝐾 then 𝑆 \𝒢≤0 ∈ 𝐾, for all 𝑆 ∈ 𝒫(𝒢);
OK4. { 𝑓+} ∈ 𝐾 for all 𝑓+ ∈ 𝒢>0;
OK5. if, with 𝑛 ∈ ℕ,3 𝑆1, . . . , 𝑆𝑛 ∈ 𝐾 then also{ 𝑛∑︁

𝑘=1
𝜆𝑘𝑓1 ,..., 𝑓𝑛 𝑓𝑘 : 𝑓𝑘 ∈ 𝑆𝑘 , 𝑘 = 1, . . . , 𝑛

}
∈ 𝐾,

with 𝜆𝑘
𝑓1 ,..., 𝑓𝑛

≥ 0 and ∑𝑛
𝑘=1 𝜆

𝑘
𝑓1 ,..., 𝑓𝑛

> 0.
These coherence requirements can be reinterpreted as, es-
sentially, Axioms K1–Kfin5 , after a proper identification
of the relevant concepts here with those in the abstract
treatment of desirable SDTs.

2.4. Conjunctive Models

We can order embed the structure 〈D, ⊆〉 into the struc-
ture 〈K, ⊆〉, and therefore also into the structure 〈Kfin, ⊆〉,
in a straightforward and natural manner. Let’s show how.
If we consider any set of things 𝑆 that’s an element of

the coherent SDS 𝐾, then we know from the coherence
condition K2 that all its supersets are also in 𝐾. But, of
course, not all of its subsets will be, as is made clear by
the coherence condition K1. This observation brings us to
the following idea. Consider any SDS𝑊—not necessarily
coherent—and any element 𝑆 ∈ 𝑊. If there’s some finite
subset �̂� of 𝑆 such that �̂� ∈ 𝑊, then we’ll call 𝑆 finitary
(in𝑊). If, moreover, all the elements 𝑆 of the SDS𝑊 are
finitary, then we’ll call𝑊 finitary as well; so any desirable
set in a finitary𝑊 has a desirable finite subset. The (finitely)
coherent finitary SDSes will be studied in much more detail
in Section 8. They are special because they are completely
determined by their finite elements.
For the present discussion, however, we restrict our at-

tention to an important special case of such finitary SDSes,
where each desirable set has a desirable singleton subset:

3ℕ is the set of natural numbers (zero excluded).
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Definition 3 (Conjunctivity) We call an SDS𝑊 ⊆ 𝒫(𝑇)
conjunctive if (∀𝑆 ∈ 𝑊) (∃𝑡 ∈ 𝑆){𝑡} ∈ 𝑊.

In the remainder of this section, we’ll spend some effort
on identifying the conjunctive coherent SDSes. We begin
by introducing ways to turn an SDT into an SDS, and vice
versa. Consider any 𝑆𝑜 ⊆ 𝑇 and any𝑊𝑜 ⊆ 𝒫(𝑇), and let

𝐷𝑊𝑜 B {𝑡 ∈ 𝑇 : {𝑡} ∈ 𝑊𝑜} ⊆ 𝑇 (1)
𝐾𝑆𝑜 B {𝑆 ⊆ 𝑇 : 𝑆 ∩ 𝑆𝑜 ≠ ∅} ⊆ 𝒫(𝑇). (2)

Let us first investigate some conditions under which 𝐷𝑊𝑜
is a coherent SDT, and 𝐾𝑆𝑜 is a (finitely) coherent SDS.

Proposition 4 Consider any SDS 𝐾. If 𝐾 is (finitely)
coherent, then 𝐾𝐷𝐾 ⊆ 𝐾. Moreover,
(i) if 𝐾 is coherent, then 𝐷𝐾 is coherent;
(ii) if 𝐾 is finitely coherent and the closure operator ClD

is finitary, then 𝐷𝐾 is coherent.

Proposition 5 Consider any set of things 𝐷 ∈ 𝒫(𝑇),
then 𝐷𝐾𝐷 = 𝐷 . Moreover, consider the statements:
(i) 𝐷 is a coherent SDT;
(ii) 𝐾𝐷 is a coherent SDS;
(iii) 𝐾𝐷 is a finitely coherent SDS.

Then (i)⇔(ii) and (ii)⇒(iii), so (i)⇒(iii). Moreover, if the
closure operator ClD is finitary, then also (i)⇔(iii).

So, if we start out with a coherent SDS 𝐾, then the cor-
responding coherent and conjunctive SDS 𝐾𝐷𝐾 is a con-
servative approximation of 𝐾: going from a model 𝐾 to
its conjunctive part 𝐾𝐷𝐾 = {𝑆 ∈ 𝐾 : (∃𝑡 ∈ 𝑆){𝑡} ∈ 𝐾}
typically results in a loss of information.
On the other hand, going from a coherent SDT 𝐷 to the

corresponding coherent and conjunctive SDS 𝐾𝐷 doesn’t
result in a loss of information: it’s easy to see that it results
in an order embedding 𝐾• of the (intersection) structure
〈D, ⊆〉 into the (intersection) structure 〈K, ⊆〉.
We’re now in a position to find out what the conjunctive

and (finitely) coherent SDSes look like.

Proposition 6 (Conjunctivity)
(i) A coherent SDS 𝐾 is conjunctive iff there’s some

coherent SDT 𝐷 ∈ D such that 𝐾 = 𝐾𝐷 .
(ii) When the closure operator ClD is finitary, then a

finitely coherent SDS 𝐾 is conjunctive iff there’s some
coherent SDT 𝐷 ∈ D such that 𝐾 = 𝐾𝐷 .

In both these cases then necessarily 𝐷 = 𝐷𝐾 .

3. Towards a Representation With Filters
It’s a well-established consequence of Stone’s Represent-
ation Theorem [4, Chapters 5, 10 and 11] that filters of
subsets of a space constitute abstract ways of dealing with

deductively closed sets of propositions about elements of
that space. Very simply put, they allow us to do propositional
logic with statements about elements of the space.
Recall that a filter of subsets of a space𝒳—also called

a filter on 〈𝒫(𝒳), ⊆〉—is a non-empty subset ℱ of the
power set𝒫(𝒳) of𝒳 such that for all 𝐴, 𝐵 ∈ 𝒫(𝒳):
F1. if 𝐴 ∈ ℱ and 𝐴 ⊆ 𝐵 then also 𝐵 ∈ ℱ;
F2. if 𝐴 ∈ ℱ and 𝐵 ∈ ℱ then also 𝐴 ∩ 𝐵 ∈ ℱ.
We call a filter proper ifℱ≠ 𝒫(𝒳).
One particular space we’ll be considering in this paper, is

the set D of all coherent SDTs. To guide the interpretation,
we’ll assume that there’s an actual (but unknown) SDT 𝐷T.
It’s assumed to be coherent, and therefore a specific element
of the setD. The elements of 𝐷T are the things that actually
are desirable, and all other things in 𝑇 aren’t. Moreover,
each coherent SDT 𝐷 ∈ D is a possible identification of
this actual set 𝐷T.
Any non-contradictory propositional statement about

this 𝐷T corresponds to some non-empty subset 𝐴 ⊆ D of
coherent SDTs for which the statement holds true, and this
subset 𝐴 represents the remaining possible identifications
of𝐷T after the statement has beenmade.We’ll call such sub-
sets events. The empty subset of D represents contradictory
propositional statements.
Any proper filter ℱ of such events 𝐴 ⊆ D then corres-

ponds to a deductively closed collection of propositional
statements—a so-called theory—about 𝐷T, where intersec-
tion of events represents the conjunction of propositional
statements, and inclusion of events represents implication
of propositional statements. The only improper filter𝒫(D),
which contains the empty event, then represents logical
contradiction at this level.
We can interpret the desirability statements studied in

Section 2 as statements about such an actual 𝐷T. Stating
that a ‘set of things 𝑆 is desirable’ corresponds to the event

D𝑆 B {𝐷 ∈ D : 𝑆 ∩ 𝐷 ≠ ∅} ⊆ D,

as this amounts to requiring that at least one element of 𝑆
must be actually desirable, and must therefore belong to 𝐷T:
the desirability statement is indeed equivalent to ‘𝐷T ∈
D𝑆’. As a special case, stating that a thing 𝑡 is desirable
corresponds to the event D{𝑡 } B {𝐷 ∈ D : 𝑡 ∈ 𝐷 }, as it
amounts to requiring that 𝑡 must belong to 𝐷T.
More generally, working with SDSes 𝑊, as we did in

Section 2, therefore corresponds to dealing with a conjunc-
tion of the desirability statements ‘the set of things 𝑆 is
desirable’ for all 𝑆 ∈ 𝑊, so with events of the type

ℰ(𝑊) B
⋂
𝑆∈𝑊

D𝑆 =
⋂
𝑆∈𝑊

{𝐷 ∈ D : 𝑆∩𝐷 ≠ ∅},𝑊 ⊆ 𝒫(𝑇).

As a special case, the vacuous assessment𝑊 = ∅ leads to
no restrictions on 𝐷T:ℰ(∅) = D.4

4The empty intersection of subsets of D is D itself.
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Working with the filters of subsets of D—filters of
events—that are generated by such collections, then rep-
resents doing propositional logic with basic statements of
the type ‘the set of things 𝑆 is desirable’, for 𝑆 ∈ 𝒫(𝑇).
We might therefore suspect that the language of such filters
could be able to represent, explain, and perhaps also refine
the relationships between the inference mechanisms that lie
behind the intersection structures and closure operators in
Section 2. Investigating this type of representation in terms
of filters of events is the main aim of this paper.
There is, however, a particular aspect of the inference

mechanisms at hand that tends to complicate—or is it
simplify?— matters somewhat. Not all events in𝒫(D) are
relevant to our problem; only the ones that are intersections
(and, as we’ll see further on, unions) of the basic events of
the typeD𝑆 , 𝑆 ⊆ 𝑇 seem to require attention.We’ll therefore
restrict our focus to these, and as a result, the representing
collection of events will no longer constitute a Boolean
lattice, but only a specific distributive sublattice. As we’ll
see in Sections 6 and 7, the effect will be two-fold: we’ll
broadly speaking be led to a more general prime filter rather
than an ultrafilter representation, and this representation
will be an isomorphism rather than an endomorphism.

4. The Basic Representation Lattices
Since we expect the eventsℰ(𝑊) to become important in
what follows, let’s study them a bit closer.
The following propositions are easy to prove, but will be

instrumental in our discussion further on, so we’ve gathered
them here for easy reference. It’s on these two simple
properties that all our results about filter representation
essentially rest.
The propositional statement that 𝑊 is an SDS is never

contradictory as soon as𝑊 is some part of a coherent SDS.

Proposition 7 (Consistency) For any coherent SDS 𝐾 ∈
K, ℰ(𝑊) ≠ ∅ for all 𝑊 ⊆ 𝐾. Similarly, for any finitely
coherent SDS 𝐾 ∈ Kfin,ℰ(𝑊) ≠ ∅ for all𝑊 b 𝐾.

The following result is formulated for finitely coherent
SDSes, but the infinitary version holds mutatis mutandis
for their coherent counterparts as well.

Proposition 8 Consider any finitely coherent SDS 𝐾 ∈
Kfin, then for all𝑊1,𝑊2 b 𝒫(𝑇):
(i) if ℰ(𝑊1) ⊆ ℰ(𝑊2) and 𝑊1 b 𝐾 then also𝑊2 b 𝐾;
(ii) if ℰ(𝑊1) =ℰ(𝑊2) then𝑊1 b 𝐾 ⇔ 𝑊2 b 𝐾.

We’re now ready to introduce the particular sets of events
we’ll build our further discussion on. Let’s consider the
sets E B {ℰ(𝑊) : 𝑊 ⊆ 𝒫(𝑇)} and Efin B {ℰ(𝑊) : 𝑊 b
𝒫(𝑇)}, and order them by set inclusion ⊆.

Proposition 9 The partially ordered set 〈E, ⊆〉 is a com-
pletely distributive complete lattice, with union as join and
intersection as meet, ∅ as bottom and D as top. Simil-
arly, 〈Efin, ⊆〉 is a bounded distributive lattice, with union
as join and intersection as meet, ∅ as bottom and D as top.

5. A Brief Primer on (Inference With) Filters
The discussion in Section 3 led us to try and represent
inference about desirability statements using filters on ap-
propriate lattices of events. After spending some effort on
identifying these lattices in Section 4, we’re now ready to
start looking at how to do inference with filters, and how to
use that inference mechanism to represent reasoning about
desirability statements. Here, we’ll summarise those as-
pects of filters and filter inference on (bounded distributive)
lattices that are relevant to our representation effort.
We begin by recalling the definition of a filter on a

bounded lattice 〈𝐿, ≤〉 with meet ⌢ and join ⌣. It’s an
immediate generalisation of the definition of a filter of
subsets we gave near the beginning of Section 3.

Definition 10 (Filters) A non-empty subset ℱof the set 𝐿
is called a filter on 〈𝐿, ≤〉 if it satisfies the properties:
LF1. if 𝑎 ∈ ℱand 𝑎 ≤ 𝑏 then also 𝑏 ∈ ℱ, for all 𝑎, 𝑏 ∈ 𝐿;
LF2. if 𝑎 ∈ ℱ and 𝑏 ∈ ℱ then also 𝑎 ⌢ 𝑏 ∈ ℱ, for

all 𝑎, 𝑏 ∈ 𝐿.
We call a filter ℱ proper if ℱ≠ 𝐿. We denote the set of all
proper filters of 〈𝐿, ≤〉 by 𝔽 (𝐿), and the set of all filters
by 𝔽 (𝐿) = 𝔽 (𝐿) ∪ {𝐿}.

The inference mechanism associated with filters is, as
are all such mechanisms, based on the idea of closure
and intersection structures, which we already brought to
the fore in Section 2. Here too, it’s easy to see that the
set 𝔽 (𝐿) of all proper filters on 𝐿 is indeed an intersection
structure, meaning that it’s closed under arbitrary non-
empty intersections: for any non-empty familyℱ𝑖 , 𝑖 ∈ 𝐼 of
elements of 𝔽 (𝐿), we see that still⋂𝑖∈𝐼 ℱ𝑖 ∈ 𝔽 (𝐿).
We associate with this intersection structure the following

closure operator Cl𝔽 (𝐿) : 𝒫(𝐿) → 𝔽 (𝐿) : 𝐻 ↦→ Cl𝔽 (𝐿) (𝐻)
with

Cl𝔽 (𝐿) (𝐻) B
⋂

{ℱ ∈ 𝔽 (𝐿) : 𝐻 ⊆ ℱ}.

In this language, the filters are the deductively closed
subsets of the bounded lattice 𝐿, and closure can be used to
extend any set of lattice elements to the smallest deductively
closed set that includes it. If we call a set 𝐻 filterisable
if it’s included in some proper filter, or equivalently, if
Cl𝔽 (𝐿) (𝐻) ≠ 𝐿, then Cl𝔽 (𝐿) (𝐻) is the smallest proper
filter that includes 𝐻, for any filterisable set 𝐻. Of course,
𝐻 = Cl𝔽 (𝐿) (𝐻) ⇔ 𝐻 ∈ 𝔽 (𝐿), for all 𝐻 ⊆ 𝐿, and therefore
also 𝔽 (𝐿) = Cl𝔽 (𝐿) (𝒫(𝐿)). The following result is then a
standard conclusion in order theory [4, Chapter 7].
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Proposition 11 The partially ordered set 〈𝔽 (𝐿), ⊆〉 is
a complete lattice with top 𝐿 and bottom Cl𝔽 (𝐿) (∅) =⋂

𝔽 (𝐿). For any non-empty family ℱ𝑖 , 𝑖 ∈ 𝐼 of ele-
ments of 𝔽 (𝐿), we have for its infimum and its supremum
that, respectively, inf𝑖∈𝐼 ℱ𝑖 =

⋂
𝑖∈𝐼 ℱ𝑖 and sup𝑖∈𝐼 ℱ𝑖 =

Cl𝔽 (𝐿) (
⋃
𝑖∈𝐼 ℱ𝑖).

Two special types of filters deserve more attention in the
light of what’s to come.
A prime filter 𝒢 on 〈𝐿, ≤〉 is a proper filter that also

satisfies the following condition:
LPF. if 𝑎 ⌣ 𝑏 ∈ 𝒢 then 𝑎 ∈ 𝒢 or 𝑏 ∈ 𝒢, for all 𝑎, 𝑏 ∈ 𝐿.
We denote the set of all prime filters on 〈𝐿, ≤〉 by 𝔽p (𝐿).
When the bounded lattice 〈𝐿, ≤〉 is distributive, then any
proper filter can be represented by prime filters, as it’s the
intersection of all the prime filters that include it; see Ref. [4,
Sections 10.7–21] for more details.

Theorem 12 (Prime Filter Representation) Let 〈𝐿, ≤〉
be a bounded distributive lattice. Then any non-empty ℱ ⊆
𝐿 is a proper filter iff ℱ =

⋂{𝒢 ∈ 𝔽p (𝐿) : ℱ ⊆ 𝒢}.

In the special case that 〈𝐿, ≤〉 is a complete lattice, we
can replace the finite meets in LF2 by arbitrary, possibly
infinite ones, as in
LFp2. if 𝐴 ⊆ ℱ then also inf 𝐴 ∈ ℱ, for all ∅ ≠ 𝐴 ⊆ 𝐿.
We then find that infℱ ∈ ℱ, and thatℱ consists of all ele-
ments of 𝐿 that dominate infℱ. Such a so-called principal
filter is clearly proper iff infℱ≠ 0𝐿 . The set of all principal
filters, ordered by set inclusion, is trivially order-isomorphic
to the complete lattice 〈𝐿, ≤〉 itself.

Taking Stock Now that we knowwhat the inferencemech-
anism underlying filters is, we can make clearer what we
mean by filter representation of other inference mechanisms.
Axioms K1–K5 govern the inference mechanism behind the
desirability of sets of things, and we’ve seen in Section 2.2,
and in particular in Proposition 2, that its mathematical
essence can be condensed into the complete lattice 〈K, ⊆〉
and the closure operator ClK . Similarly, the finitary version
of this inference mechanism is laid down in Axioms K1–
Kfin5 , and is captured by the complete lattice 〈Kfin, ⊆〉 and
the closure operator ClKfin .
The question raised in Section 3 is then, in its purest form:

can we find bounded lattices 〈𝐿, ≤〉 such that the complete
lattice 〈𝔽 (𝐿), ⊆〉 and the closure operator Cl𝔽 (𝐿) can be
identified through an order isomorphism with the complete
lattice 〈K, ⊆〉 and the closure operatorClK ; or in the finitary
case, identified through an order isomorphism with the
complete lattice 〈Kfin, ⊆〉 and the closure operator ClKfin?
We’ll show in Sections 6 and 7 that, indeed, we can find
such lattices: the completely distributive complete lattice
of events 〈E, ⊆〉 and the bounded distributive lattice of
events 〈Efin, ⊆〉, respectively.

Why bother?What’s so special about such representations
in terms of filters of events? The answer is twofold.
First of all, there’s the issue of interpretationwe’ve already

drawn attention to in Section 3. The events in E and Efin
represent propositional statements about the desirability
of things, and filters of such events represent collections
of such propositional statements that are closed under
logical deduction—conjunction and modus ponens. The
order isomorphisms that we’ll identify below then simply
tell us that making inferences about desirable things and
desirable sets of things based on the Axioms D1–D3 and K1–
K5/Kfin5 is mathematically equivalent to doing propositional
logic with propositional statements about the desirability
of things.
The second reason has a more mathematical flavour.

Since the sets of events E and Efin are bounded distributive
lattices when ordered by set inclusion, we can use the
Prime Filter Representation Theorem on such bounded
distributive lattices, which states that any filter can be
written as the intersection of all the prime filters it’s included
in. The order isomorphisms we’re about to identify in
the following sections will then allow us to transport this
theorem to the context of (finitely) coherent SDSes, and
write these as intersections of special types of them, namely
the conjunctive ones. This will lead us to the so-called
conjunctive representation results for coherent SDSes in
Theorem 19 and for finitely coherent SDSes in Theorem 23.

6. Filter Representation for Finitely Coherent
SDSes

We’re now first going to consider finitely coherent SDSes,
and try to relate them to the filters on the distributive
lattice 〈Efin, ⊆〉. This will lead to a so-called conjunctive
representation result of finitely coherent SDSes in terms
of conjunctive ones. We’ll then see in the next section
that coherent SDSes also have a conjunctive representation
result, that turns out to be formally simpler. We adapt the
generic notations and definitions from Section 5 to the
specific bounded distributive lattice 〈Efin, ⊆〉.
To establish an order isomorphism between the complete

lattices 〈Kfin, ⊆〉 and 〈𝔽 (Efin), ⊆〉, we consider the maps
𝜑finD : 𝒫(𝒫(𝑇)) → 𝒫(Efin) : 𝐾 ↦→ 𝜑finD (𝐾), with

𝜑finD (𝐾) B {ℰ(𝑊) : 𝑊 b 𝐾},

and 𝜅finD : 𝒫(Efin) → 𝒫(𝒫(𝑇)) : ℱ ↦→ 𝜅finD (ℱ), with

𝜅finD (ℱ) B {𝑆 ∈ 𝒫(𝑇) : D𝑆 ∈ ℱ}.

Theorem 13 𝜑finD is an order isomorphism
between 〈Kfin, ⊆〉 and 〈𝔽 (Efin), ⊆〉, with inverse order
isomorphism 𝜅finD . Moreover, if the proper filter ℱ = 𝜑finD (𝐾)
and the finitely coherent SDS 𝐾 = 𝜅finD (ℱ) are related by
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this order isomorphism, then ℱ is a prime filter on 〈Efin, ⊆〉
iff 𝐾 satisfies the completeness condition

(∀𝑆1, 𝑆2 ⊆ 𝑇)
(
𝑆1 ∪ 𝑆2 ∈ 𝐾 ⇒ (𝑆1 ∈ 𝐾 or 𝑆2 ∈ 𝐾)

)
. (3)

An important consequence of the existence of the order
isomorphism in Theorem 13 is that it allows us to rep-
resent any finitely coherent SDS in terms of coherent but
conjunctive models. This is interesting, because by Propos-
ition 6 such coherent conjunctive SDSes are conceptually
much simpler, as they represent SDTs—they only represent
conjunctive desirability statements.
To see how this representation in terms of conjunctive

models comes about, we begin by recalling that the events
ℰ(𝑊) for𝑊 b 𝒫(𝑇) are sets of coherent SDTs. They are
completely determined by the following argument: consider
any 𝐷 ∈ D, then

𝐷 ∈ ℰ(𝑊) ⇔ 𝐷 ∈
⋂
𝑆∈𝑊

D𝑆 ⇔ (∀𝑆 ∈ 𝑊)𝑆 ∩ 𝐷 ≠ ∅

⇔ (∀𝑆 ∈ 𝑊)𝑆 ∈ 𝐾𝐷 ⇔ 𝑊 b 𝐾𝐷 ,

where we recall that 𝐾𝐷 B {𝑆 ∈ 𝒫(𝑇) : 𝑆 ∩ 𝐷 ≠ ∅}.
Hence,ℰ(𝑊) = {𝐷 ∈ D : 𝑊 b 𝐾𝐷 } for all𝑊 b 𝒫(𝑇).
Let us now consider any proper filter ℱ ∈ 𝔽 (Efin) and

any finitely coherent SDS 𝐾 ∈ Kfin that correspond, in the
sense that 𝐾 = 𝜅finD (ℱ) andℱ = 𝜑finD (𝐾). On the one hand,
we infer from 𝐾 = 𝜅finD (ℱ) that for any 𝑆 ∈ 𝒫(𝑇):

𝑆 ∈ 𝐾 ⇔ D𝑆 ∈ ℱ⇔ (∃𝑉 ∈ ℱ)𝑉 ⊆ D𝑆
⇔ (∃𝑉 ∈ ℱ) (∀𝐷 ∈ 𝑉)𝑆 ∩ 𝐷 ≠ ∅
⇔ (∃𝑉 ∈ ℱ) (∀𝐷 ∈ 𝑉)𝑆 ∈ 𝐾𝐷 ,

which tells us that 𝐾 =
⋃
𝑉∈ℱ

⋂
𝐷∈𝑉 𝐾𝐷 . On the other hand,

we infer fromℱ = 𝜑finD (𝐾) and the argumentation above that
ℱ =

{
{𝐷 ∈ D : 𝑊 b 𝐾𝐷 } : 𝑊 b 𝐾

}
. We’re thus led to the

following representation result for finite consistency, finite
coherence, and the corresponding closure operator ClKfin
in terms of the conjunctive models 𝐾𝐷 .

Theorem 14 (Conjunctive Representation) Consider
any SDS 𝐾 ⊆ 𝒫(𝑇), then the following statements hold:
(i) 𝐾 is finitely consistent iff ℰ(𝑊) = {𝐷 ∈ D : 𝑊 b

𝐾𝐷 } ≠ ∅ for all𝑊 b 𝐾;
(ii) ClKfin (𝐾) =

⋃
𝑊b𝐾

⋂
𝐷∈D : 𝑊b𝐾𝐷 𝐾𝐷 ;

(iii) 𝐾 is finitely coherent iff 𝐾 is finitely consistent
and 𝐾 =

⋃
𝑊b𝐾

⋂
𝐷∈D : 𝑊b𝐾𝐷 𝐾𝐷 .

We thus find that an SDS is finitely consistent iff any of its
finite subsets is included in some conjunctive model, and
that any finitely coherent SDS can be written also as a limit
inferior of conjunctive models. Even if the representation
in terms of such limits inferior is formally somewhat com-
plicated, it has the advantage that the basic representing

models are the conjunctive ones, which are easy to identify
and ‘construct’.
There is, however, another representation result that’s

formally simpler, but where the representing models are
now less easy to ‘construct’: a representation that’s based
on the representing role that prime filters play in distributive
lattices; see the discussion in Ref. [4, Sections 10.7–21]
and Section 5 for more details. Let us now, in the rest of
this section, explain how it comes about.

Definition 15 (Completeness) We call an SDS𝑊 ⊆ 𝒫(𝑇)
complete if it satisfies the completeness condition (3), and
we denote by Kfin,c the set of all complete and finitely
coherent SDSes, and by Kc the set of all complete and
coherent SDSes.

Theorem 13 tells us that the complete finitely coherent
SDSes are in a one-to-one relationship with the prime
filters on the distributive lattice 〈Efin, ⊆〉, and the order
isomorphism 𝜅finD identified in that theorem allows us to
easily transform the prime filter representation result of
Theorem 12 into the following alternative representation
theorem for finitely coherent SDSes.

Theorem 16 (Prime Filter Representation) A finitely
consistent SDS 𝐾 ⊆ 𝒫(𝑇) is finitely coherent iff 𝐾 =⋂{𝐾 ′ ∈ Kfin,c : 𝐾 ⊆ 𝐾 ′}.

As suggested above, a disadvantage of this type of represent-
ation is that the complete SDSes are—much like their prime
filter counterparts—hard if not impossible to identify ‘con-
structively’. They include, however, all conjunctive models,
which will be very helpful in our discussion of finitary
models in Section 8 further on.

Proposition 17 Consider any coherent SDT 𝐷 ∈ D, then
the (finitely) coherent conjunctive SDS 𝐾𝐷 is complete.

7. Filter Representation for Coherent SDSes
We now turn to representation for coherent, rather than
merely finitely coherent, SDSes. As expected by now, we’ll
focus on the filters of the set E in order to achieve that.
Our representationwill involve the proper principal filters

of this setE.We denote the set of all principal filters byℙ(E),
and the set of all proper principal filters onE byℙ(E), where
ℙ(E) = ℙ(E) \ {E}. It’s easy to see that ℙ(E) is closed
under arbitrary intersections, and therefore 〈ℙ(E), ⊆〉 is a
complete lattice, with intersection as infimum, and with
bottom 0ℙ(E) = {D} and top 1ℙ(E) = E.
To establish an order isomorphism between the complete

lattices 〈K, ⊆〉 and 〈ℙ(E), ⊆〉, we now consider the maps
𝜑D : 𝒫(𝒫(𝑇)) → 𝒫(E) : 𝐾 ↦→ 𝜑D (𝐾), with

𝜑D (𝐾) B {ℰ(𝑊) : 𝑊 ⊆ 𝐾}.
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and 𝜅D : 𝒫(E) → 𝒫(𝒫(𝑇)) : ℱ ↦→ 𝜅D (ℱ), with

𝜅D (ℱ) B {𝑆 ∈ 𝒫(𝑇) : D𝑆 ∈ ℱ}.

Theorem 18 𝜑D is an order isomorphism between 〈K, ⊆〉
and 〈ℙ(E), ⊆〉, with inverse order isomorphism 𝜅D.

Similarly to what we did for finitely coherent SDSes in
Section 6, we now consider any proper principal filterℱ ∈
ℙ(E) and any coherent SDS 𝐾 ∈ K that correspond, in
the sense that 𝐾 = 𝜅D (ℱ) andℱ = 𝜑D (𝐾). The principal
filterℱ = 𝜑D (𝐾) is completely determined by its smallest
element

⋂
ℱ, which is the subset of D given by:⋂

ℱ =
⋂

𝜑D (𝐾) =
⋂

{ℰ(𝑊) : 𝑊 ⊆ 𝐾} =ℰ(𝐾).

This leads to the following chain of equivalences, for
any 𝐷 ∈ D:

𝐷 ∈
⋂

𝜑D (𝐾) ⇔ 𝐷 ∈
⋂
𝑆∈𝐾

D𝑆 ⇔ (∀𝑆 ∈ 𝐾)𝐷 ∈ D𝑆

⇔ (∀𝑆 ∈ 𝐾)𝑆 ∈ 𝐾𝐷 ⇔ 𝐾 ⊆ 𝐾𝐷 .

This tells us that, on the one hand, ℰ(𝐾) =
⋂
𝜑D (𝐾) =

{𝐷 ∈ D : 𝐾 ⊆ 𝐾𝐷 }. On the other hand, we infer from
𝐾 = 𝜅D (ℱ) that for any 𝑆 ∈ 𝒫(𝑇), sinceℰ({𝑆}) = D𝑆 and
taking into account the principal character ofℱ,

𝑆 ∈ 𝐾 ⇔
⋂

ℱ ⊆ D𝑆 ⇔ (∀𝐷 ∈ ℰ(𝐾))𝐷 ∩ 𝑆 ≠ ∅
⇔ (∀𝐷 ∈ ℰ(𝐾))𝑆 ∈ 𝐾𝐷 ,

so we can conclude that 𝐾 =
⋂
𝐷∈D : 𝐾⊆𝐾𝐷 𝐾𝐷 . We’re thus

led to the following representation result for coherent SDSes
in terms of the conjunctive models 𝐾𝐷 , providing an elegant
alternative proof strategy for a similar result in Ref. [7].

Theorem 19 (Conjunctive Representation) Consider
any SDS 𝐾 ⊆ 𝒫(𝑇), then the following statements hold:
(i) 𝐾 is consistent iff ℰ(𝐾) = {𝐷 ∈ D : 𝐾 ⊆ 𝐾𝐷 } ≠ ∅;
(ii) ClK (𝐾) = ⋂

𝐷∈D : 𝐾⊆𝐾𝐷 𝐾𝐷 ;
(iii) 𝐾 is coherent iff 𝐾 is consistent and 𝐾 =⋂

𝐷∈D : 𝐾⊆𝐾𝐷 𝐾𝐷 .

8. Finitary SDSes
We conclude from the discussion above that the conjunctive
representation for coherent SDSes is remarkably simpler
than the one formerely finitely coherent SDSes. But, as we’ll
explain presently, we can recover the simpler conjunctive
representation also for finitely coherent SDSes, provided
that we focus on finite sets of things. This has recently
also been proved by De Bock [7], but we intend to derive
this remarkable result here using our filter representation
approach, which allows for an alternative and arguably

simpler proof, based on the Prime Filter Representation
Theorem we recalled in Theorem 12.
Let us denote by 𝒬(𝑇) the set of all finite sets of things:

𝒬(𝑇) B {𝑆 ∈ 𝒫(𝑇) : 𝑆 b 𝑇}.

As already mentioned earlier, we follow the convention that
the empty set’s finite, so ∅ ∈ 𝒬(𝑇). If𝑊 ⊆ 𝒫(𝑇) is an SDS,
then we call𝑊 ∩𝒬(𝑇) its finite part and

fin(𝑊) B {𝑆 ∈ 𝒫(𝑇) : (∃�̂� ∈ 𝑊 ∩𝒬(𝑇))�̂� ⊆ 𝑆}

its finitary part. We call the SDS𝑊 finitary if each of its
desirable sets has a finite desirable subset, meaning that

(∀𝑆 ∈ 𝑊) (∃�̂� ∈ 𝑊 ∩𝒬(𝑇))�̂� ⊆ 𝑆,

or equivalently,𝑊 ⊆ fin(𝑊).
Interestingly, for any (finitely) coherent SDS 𝐾, the

coherence conditionK2 guarantees that, since𝐾∩𝒬(𝑇) ⊆ 𝐾,
also fin(𝐾) ⊆ 𝐾. This tells us that a (finitely) coherent
SDS 𝐾 is finitary if and only if 𝐾 = fin(𝐾): a (finitely)
coherent finitary SDS 𝐾 is equal to its finitary part fin(𝐾),
and therefore completely determined by its finite part 𝐾 ∩
𝒬(𝑇).
Moreover, it’s easy to see that fin(fin(𝐾)) = fin(𝐾) for

any (finitely) coherent SDS 𝐾, implying that its finitary
part fin(𝐾) is always finitary.5
Does the (finite) coherence of an SDS imply the coherence

(finite or otherwise) of its finitary part? The following
proposition provides the beginning of an answer, which
we’ll be able to complete further on in Corollary 24.

Proposition 20 If an SDS 𝐾 is (finitely) coherent, then its
finitary part fin(𝐾) is finitely coherent.

Let us now find out more about how, for a (finitely)
coherent SDS, being finitary relates to being complete, and
in particular to being conjunctive.
All coherent and conjunctive SDSes are finitary.

Proposition 21 Consider any coherent SDT 𝐷 ∈ D,
then the (finitely) coherent conjunctive SDS 𝐾𝐷 is finit-
ary: fin(𝐾𝐷 ) = 𝐾𝐷 .

Coherent SDSes that are conjunctive are always com-
plete; see also Propositions 6 and 17. On the other hand,
complete coherent SDSes are not necessarily conjunctive,
but we’ll see below that they necessarily have a conjunctive
finitary part. Consequently, the (finitely) coherent conjunct-
ive SDSes are exactly the complete and coherent SDSes
that are finitary. The following proposition gives a more
detailed statement.

5This also allows us to see fin(•) as an interior operator on the set of
all (finitely) coherent SDSes.

161



de Cooman Van Camp De Bock

Proposition 22 For any complete and coherent SDS 𝐾 ∈
Kc, there’s some 𝐷 ∈ D such that 𝐾 ∩𝒬(𝑇) = 𝐾𝐷 ∩𝒬(𝑇),
and therefore also fin(𝐾) = fin(𝐾𝐷 ) = 𝐾𝐷 , namely 𝐷 =

𝐷𝐾 . Moreover, if the closure operator ClD is finitary, then
for any complete and finitely coherent SDS 𝐾 ∈ Kfin,c,
there’s some 𝐷 ∈ D such that 𝐾 ∩𝒬(𝑇) = 𝐾𝐷 ∩𝒬(𝑇), and
therefore also fin(𝐾) = fin(𝐾𝐷 ) = 𝐾𝐷 , namely 𝐷 = 𝐷𝐾 .

Since the finitary part of a complete and (finitely) coherent
SDS is conjunctive, the Prime Filter Representation The-
orem results in a representation with conjunctive models.

Theorem 23 (Conjunctive Representation) If the clos-
ure operator ClD is finitary, then a finitary and finitely
consistent SDS 𝐾 ⊆ 𝒫(𝑇) is finitely coherent iff 𝐾 =⋂{𝐾𝐷 : 𝐷 ∈ D and 𝐾 ⊆ 𝐾𝐷 }.

This leads to the remarkable conclusion that for finitary
SDSes there’s no difference between finite coherence and
coherence, as long as the closure operator ClD is finitary.

Corollary 24 If the closure operator ClD is finitary, then
any finitary SDS is finitely coherent iff it’s coherent.

Corollary 25 If the closure operator ClD is finitary, then
the finitary part fin(𝐾) of any (finitely) coherent SDS 𝐾 is
coherent.

Running Example Since the closure operator associated
with the desirability of gambles in earlier instalments of this
running example is finitary, all the results in this section
apply in particular also to the coherent sets of desirable
gamble sets, that is, to the 𝐾 ⊆ 𝒫(𝒢) satisfying the finite
coherence axioms OK1–OK5. In particular, Theorem 23
shows that there is a representation for a finitary 𝐾 = fin(𝐾)
as an intersection of the conjunctive 𝐾𝐷 that include it.
Since these finitary 𝐾 are completely determined by their

finite parts 𝐾 ∩𝒬(𝒢), we are led to wonder whether these
ideas and results can be connected with our earlier work
on sets of desirable gamble sets [7, 8, 9, 10], where You’re
only allowed to state for finite gamble sets 𝑆 ∈ 𝒬(𝒢) that at
least one of its elements is desirable to You. A set of finite
desirable gamble sets 𝐹 ⊆ 𝒬(𝒢) is called coherent there
when it satisfies the (finite) coherence requirements OK1–
OK5, with 𝒫(𝒢) replaced by 𝒬(𝒢). Such coherent sets
of finite desirable gamble sets 𝐹 have also been shown
to have a representation in terms of the conjunctive mod-
els 𝐹𝐷 , as 𝐹 =

⋂{𝐹𝐷 : 𝐹 ⊆ 𝐹𝐷 }. This suggests that every
coherent set of finite desirable gamble sets 𝐹 will also be
representable by a principal filter of events, whose smallest
element {𝐷 ∈ D : 𝐹 ⊆ 𝐹𝐷 } can then be interpreted as
the set of remaining possible identifications for 𝐷T after
making all the desirability statements corresponding to
all the finite desirable gamble sets in 𝐹. Whether such a

connection exists, and what form it then takes, is a subject
for further research.
Now, as discussed in detail in Refs. [9, 10], it’s possible

to impose additional (rationality) requirements on finitary
sets of desirable gamble sets 𝐹, besides coherence, and it
will be interesting to mention a few of them here, even if
a lack of space prevents us from going into any detail. If
we formulate appropriate Archimedeanity and mixingness
conditions for 𝐹, a coherent set of finite desirable gamble
sets 𝐹will satisfy them iff 𝐹 =

⋂{𝐹𝑝 : 𝑝 ∈ P and 𝐹 ⊆ 𝐹𝑝},
where P is the set of all probability mass functions 𝑝 on
the set𝒳, and 𝐹𝑝 B {𝑆 ∈ 𝒬(𝒢) : (∃ 𝑓 ∈ 𝑆)𝐸𝑝 ( 𝑓) > 0} is
the set of desirable gamble sets that corresponds to Your
having this precise probability model 𝑝.6 Rather than saying
something about an actual model 𝐷T ∈ D, the desirability
statements present in an Archimedean and mixing 𝐹 can
therefore be interpreted as propositional statements about
an actual model 𝑝T in a set of possible identifications P.
This suggests a representation in terms of (principal) filters
of probability mass functions 𝑝 on𝒳. We therefore recover,
as a special case, the filter representation results proved in
the seminal work by Catrin Campbell–Moore [2].

9. Conclusion
Laying bare the exact nature of the conservative inference
mechanism behind coherent SDSes has allowed us to prove
powerful representation results for such coherent SDSes
in terms of the simpler, conjunctive, models which are
essentially coherent SDTs.
These representation results, in their simplest form (The-

orems 19 and 23), are reminiscent of—are formal general-
isations of—decision making using Levi’s E-admissibility
Rule [15]. This connection with E-admissibility is also
briefly mentioned in the final instalment of our Running
Example.
Interestingly, in another interesting special case, where

the desirable things are asserted propositions in proposi-
tional logic, the additional layer of working with asserted
sets of propositions—desirable sets of things—does not
add anything new: all coherent sets of desirable sets of
things are conjunctive there. This is, of course, not really
surprising, as desirable sets of things are introduced to
deal with disjunctive statements, which are already present
in the language of things themselves as propositions in
propositional logic. The case of things as gambles, on the
other hand, shows that in other inference contexts where
disjunctive statements are not already part of the language
of things, going from desirable things to desirable sets of
things is indeed meaningful and useful.
A more detailed and comprehensive study of these and

other special cases is the topic of current research.
6This is, essentially, Levi’s E-admissibility Rule [15].
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