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Abstract
Arguments in quantum mechanics often involve sys-
tems of indistinguishable particles, such as electrons or
photons. On the standard approach, the symmetrisation
postulate is needed tomodel indistinguishable particles,
and results in a theory of fermions and bosons. We in-
vestigate how indistinguishability can be implemented
by incorporating structural assessments of symmetry
in the sets of desirable measurements approach to un-
certainty modelling in quantum mechanics, which is
based on the theory of imprecise probabilities, and in
particular on sets of desirable gambles. We show that
an exchangeability assessment allows us to partially
retrieve the concepts of fermions and bosons, but that
in order to recover the complete fermion and boson
framework, we need to rely on stronger symmetry as-
sessments. We also lay bare the relationship between
these stronger assessments and the count vector rep-
resentation for sets of desirable measurements, which
we argue corresponds to the commonly used second
quantisation in quantum mechanics.
Keywords: exchangeability, quantum mechanics, in-
distinguishability, desirable measurements, strong sym-
metry, second quantisation

1. Introduction
Bose-Einstein condensates, superconductivity, Pauli’s exclu-
sion principle and Bose–Einstein vs. Fermi–Dirac statistics
are key concepts in physics, with important technological
applications [11, 19, 20]. They all result from a single in-
distinguishability principle, which states that it’s physically
impossible to distinguish certain particles from one another.
This happens when they’re identical, that is, when they have
the same physical properties, such as charge, mass, spin,
and so forth. Such particles include neutrons, electrons,
protons, photons, . . . in fact all fundamental particles.
Here, we examine how indistinguishability can be incor-

porated into the framework of desirable measurements—
which goes back to Ref. [6] and which we recently explored
and tried to justify in Ref. [18]—and to what conclusions it
leads. In that earlier work on desirable measurements, we de-
veloped a decision-theoretic argument involving imprecise
probabilities to model the uncertainty about a quantum sys-

tem’s state. This led to a similar mathematical framework as
that first introduced byBenavoli et al. [6], but with a different
interpretation. Our argument there proceeds along the fol-
lowing lines. The system, which is in an unknown state |𝛹 〉
in the state space �̄� , can be interacted with by performing
measurements, represented by Hermitian operators. With
any such measurement operator �̂�, we associate a utility
function 𝑢 �̂� : �̄� → ℝ, which represents the reward associ-
ated with executing that measurement: if the system is in
state |𝜓〉, then 𝑢 �̂�( |𝜙〉) is the utility associated with perform-
ing the measurement �̂�, in the sense that performing meas-
urement �̂� on the system in the unknown state |𝛹 〉 results
in an uncertain reward 𝑢 �̂�( |𝛹 〉). Using a decision-theoretic
approach that relies on the non-probabilistic quantum mech-
anical postulates, we then argue that this utility function
must have the form 𝑢 �̂�( |𝜙〉) = 〈𝜙 | �̂�|𝜙〉 for all |𝜙〉 ∈ �̄� .
A rational subject—called You—expresses beliefs about
the unknown state |𝛹 〉 by expressing a preference between
measurements �̂� and �̂�, through a preference between
their associated uncertain rewards 𝑢 �̂�( |𝛹 〉) and 𝑢�̂� ( |𝛹 〉.
Such a (partial) preference ordering on measurements is
therefore a model for Your uncertainty about |𝛹 〉. Equi-
valently, You can use a so-called set of desirable meas-
urements, which are those measurements You prefer to
the status quo, or in other words, the null measurement.
Modelling uncertainty in this way is a fairly direct applic-
ation of the sets of desirable gambles approach that is by
now common in imprecise probabilities research; see also
Refs. [3, 12, 13, 24, 25, 28, 29, 30].

How does indistinguishability fit into this desirable
measurements framework? Can we retrieve the standard
framework of fermions and bosons by imposing struc-
tural symmetry assessments, similarly to what is done in
the non-quantum-mechanical desirable gambles approach
[14, 16, 23, 28]? After a concise introduction to the desir-
able measurements framework in Section 2, we begin to
answer these questions in Section 3, where we incorpor-
ate exchangeability assessments into this framework. This
concept of exchangeability has its roots in the work of de
Finetti [17], and his well-known representation theorem,
where an exchangeability assessment is taken to mean that
the order of a sequence of random variables is irrelevant
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for inferences. In Ref. [9], de Finetti’s representation the-
orem is generalised to quantum mechanics in the context
of quantum-state tomography, a technique for estimating
the system’s state by performing measurements on multiple
indistinguishable copies. On our approach, in contrast, an
assessment of exchangeability dictates that the order in
which the particles of a quantum system are considered
should not matter for inferences and decision-making. We
incorporate this assessment into the framework for desirable
measurements using the approach first suggested by De
Cooman and Quaeghebeur [15, 28]. In Section 4, we show
that this allows us to retrieve some, but not all, aspects of the
fermion and boson framework. Since exchangeability turns
out to be too weak for this, we move in Section 5 to stronger
symmetry assessments to achieve this goal. This stronger
symmetry is somewhat reminiscent of, yet not identical
to, the strong invariance under generalised permutations
proposed by Benavoli et al. [7], who investigated a different
approach to dealing with indistinguishable particles, also
inspired by De Cooman and Quaeghebeur’s [15, 28] work
on exchangeability. We briefly discuss second quantisation
in Section 6. Proofs are gathered in the supplementary
materials.

2. Desirability in Quantum Mechanics

Let’s first revisit some of the more relevant and important
concepts in the sets of desirable measurements frame-
work first introduced in Ref. [6], and which we provided
a decision-theoretic justification for in Ref. [18]. A more
extensive account of this framework for dealing with uncer-
tainty in quantum mechanics is currently in the works.

2.1. Quantum Mechanics

The framework is based on combining ideas from decision
theory with the non-probabilistic principles of quantum
mechanics. For an account of the foundations of quantum
mechanics, see Refs. [10, 27]. We base our argument on the
following principles. The state |𝜓〉 of a quantum system is a
normalised element of a complex Hilbert space 𝒳 . In order
to deal with certain aspects of quantum-mechanical sys-
tems, such as location, infinite-dimensional Hilbert spaces
are essential. But to keep the discussion here as simple
as possible, we’ll restrict ourselves to the case of finite-
dimensional Hilbert spaces, which can for instance be used
to model such aspects as the spin or (with some extra
assumptions, such as ignoring the higher energy levels)
the energy of a bounded electron. Such finite-dimensional
spaces are particularly useful in quantum computing and
quantum cryptography [27]. We’ll use the Dirac notation:
a ket |𝜓〉 is a vector in 𝒳 , and the bra 〈𝜓 | its adjoint.
The state space is the set �̄� of all normalised kets. A

measurement on the system is represented by a Hermitian
operator �̂� B

∑𝑛
𝑘=1 _𝑘 |𝑎𝑘〉〈𝑎𝑘 | on𝒳 , with _1, . . . , _𝑛 ∈ ℝ

the eigenvalues and |𝑎1〉, . . . , |𝑎𝑛〉 ∈ �̄� corresponding pair-
wise orthogonal eigenkets. The possible results of such a
measurement are the eigenvalues _1, . . . , _𝑛. The spectrum
spec( �̂�) B {_1, . . . , _𝑛} of 𝐴 is the set of its eigenvalues.
We denote the real linear space of all such Hermitian oper-
ators byℋ(𝒳), or simplyℋ if no confusion is possible.

2.2. Utility Functions

We want a suitable representation for Your beliefs about the
unknown quantum mechanical state |𝛹 〉 of a system. You
can interact with the system through measurements �̂� ∈ ℋ,
which we can see as possible acts or options. As is common
in decision theory [2, 4, 5, 13, 17, 26, 30, 31], Your uncer-
tainty will be described by Your preferences between these
different acts, and we attach to each such act/measurement �̂�
a utility function 𝑢 �̂� : �̄� → ℝ, where 𝑢 �̂�( |𝜙〉) is the reward
associated with performing the measurement �̂� when the
system is in state |𝜙〉, expressed in units of some linear
utility.
Interestingly, we have argued [18] that a number

of decision-theoretic principles that rely on the non-
probabilistic postulates of quantummechanics, leave You no
choice about which utility functions 𝑢 �̂� to use: they unequi-
vocally determine them to take the form 𝑢 �̂�( |𝜙〉) = 〈𝜙 | �̂�|𝜙〉
for all |𝜙〉 ∈ �̄� . The linear space𝒰 of all utility functions
is therefore linearly isomorphic to the real linear spaceℋ:
we can identify measurements and their utility functions.

2.3. Desirability

Your uncertainty about the system’s unknown state |𝛹 〉 is
now modelled through a partial strict preference ordering
between uncertain rewards 𝑢 �̂�( |𝛹 〉), which is equivalent to
a partial strict preference ordering on the linear spaceℋ.
A mathematically equivalent model for such a preference
relation is a set of desirable utility functions: those un-
certain rewards that You strictly prefer to the zero utility
function 0, or equivalently, a set of desirable measurements:
those measurements that You strictly prefer to the status
quo 0̂.1 Commonly, rationality criteria are then imposed
on such a set of desirable utility functions [3, 13, 30]. As
measurements can be identified with their utility functions,
we can readily translate these to the desirable measurements
framework. We call a set of desirable measurements 𝒟
coherent if for all �̂�, �̂� ∈ 𝒟 and all _ ∈ ℝ>0:

D1. 0̂ ∉ 𝒟; [strictness]

1The operator 0̂ is the unique Hermitian operator all of whose eigen-
values are zero, and whose utility function 𝑢0̂ is identically zero.
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D2. ℋ>0̂ ⊆ 𝒟; [accepting sure gain2]
D3. �̂�, �̂� ∈ 𝒟 ⇒ �̂� + �̂� ∈ 𝒟; [additivity]
D4. �̂� ∈ 𝒟 ⇒ _�̂� ∈ 𝒟. [positive scaling]

Here,ℋ>0̂ B { �̂� ∈ ℋ : �̂� > 0̂} is the set of positive definite
measurements, whose eigenvalues are (strictly) positive.
We’ll denote byℋ<0̂ B { �̂� ∈ ℋ : �̂� < 0̂} = −ℋ>0̂ the set
of negative definite measurements.
In Ref. [6], a similar framework involving sets of desirable

measurements was used, with a different interpretation and
justification, and with a slightly stronger version of the
rationality criterion D2.
One of the interesting aspects of working with partial

preference models in the form of coherent sets of desirable
measurements, is that they allow for conservative inference;
for details, see for instance Ref. [30, Section 3.7].

2.4. Coherent (Lower and Upper) Previsions

With a set of desirable measurements, we can associate a
lower prevision 𝛬 and an upper prevision 𝛬 as follows:3

𝛬𝒟 ( �̂�) B sup{𝛼 ∈ ℝ : �̂� − 𝛼𝐼 ∈ 𝒟} for all �̂� ∈ ℋ, (1)
𝛬𝒟 ( �̂�) B inf{𝛼 ∈ ℝ : 𝛼𝐼 − �̂� ∈ 𝒟} for all �̂� ∈ ℋ. (2)

The lower prevision 𝛬𝒟 ( �̂�) is Your supremum buying price
for the measurement �̂� or equivalently, Your supremum
buying price for the uncertain reward 𝑢 �̂�( |𝛹 〉). The upper
prevision 𝛬𝒟 ( �̂�) is Your infimum selling price for the un-
certain reward 𝑢 �̂�( |𝛹 〉). Observe that 𝛬𝒟 ( �̂�) = −𝛬𝒟 (−�̂�).
It’s well-known that the coherent lower prevision 𝛬𝒟 fully
characterises the coherent set 𝒟 up to border behaviour;
see for instance Ref. [30, Section 3.8]. In this sense, lower
previsions and sets of desirable measurements are (almost)
equivalent mathematical models for Your beliefs.
A real functional 𝛬 on ℋ is called a coherent lower

prevision if there’s some coherent set of desirable measure-
ments𝒟 such that 𝛬 = 𝛬𝒟. It’s then a standard result that
the coherence of a lower prevision is characterised by the
following properties:4 for any �̂�, �̂� ∈ ℋ and _ ∈ ℝ≥0,

LP1. 𝛬 ( �̂� + �̂�) ≥ 𝛬 ( �̂�) + 𝛬 (�̂�); [super-additivity]
LP2. 𝛬 (_�̂�) = _𝛬 ( �̂�); [non-negative homogeneity]
LP3. 𝛬 ( �̂�) ≥ min spec( �̂�).5 [accepting sure gains]

2Often in similar contexts, a somewhat stronger requirement, such as
accepting partial gains, is imposed. We need the weaker requirement here
for our discussion on strong symmetry further on.

3𝐼 is the identity operator, defined by 𝐼 |𝜓〉 B |𝜓〉 for all |𝜓〉 ∈ 𝒳 .
4See for example Refs. [3, C1–C3 and Proposition 2.2] and [13, 30].

There, this result is written in terms of gambles, which correspond to our
utility functions, or equivalently, to their corresponding measurements.

5This is equivalent to C3 in Ref. [3], as min𝑢
�̂�
= min spec( �̂�) [18].

If we denote the conjugate upper prevision by 𝛬, where
𝛬 (•) B −𝛬 (− •), then the following properties are also
satisfied for all �̂�, �̂� ∈ ℋ and all ` ∈ ℝ:

LP4. min spec( �̂�) ≤ 𝛬 ( �̂�) ≤ 𝛬 ( �̂�) ≤ max spec( �̂�));
LP5. 𝛬 ( �̂�) + 𝛬 (�̂�) ≤ 𝛬 ( �̂� + �̂�) ≤ 𝛬 ( �̂�) + 𝛬 (�̂�);
LP6. 𝛬 ( �̂� + `𝐼) = 𝛬 ( �̂�) + `.

When a coherent lower prevision is self-conjugate, so
𝛬 = 𝛬, then we call it a linear prevision, or a coherent
prevision, and simply denote it as 𝛬. We can associate with
every coherent lower prevision 𝛬 the following closed6
convex set of dominating linear previsions

ℳ𝛬 B {𝛬 : (∀�̂� ∈ ℋ)𝛬 ( �̂�) ≥ 𝛬 ( �̂�)},

also called the associated credal set. A straightforward
application of the Hahn–Banach Theorem then tells us
that a real bounded functional 𝛬 is a coherent lower pre-
vision if and only if it’s the lower envelope of the asso-
ciated credal set ℳ𝛬 , or in other words, if and only if
𝛬 ( �̂�) = min{𝛬 ( �̂�) : 𝛬 ∈ ℳ𝛬 } for all �̂� ∈ ℋ; see Refs. [3,
Propositions 2.3 and 2.4] and [13]. Since lower previsions
are equivalent to desirable gambles up to border behaviour,
and since credal sets are equivalent to lower previsions, all
three types of models can be used to describe Your beliefs.

2.5. Density Operators

In the standard framework for dealing with probability
in quantum mechanics, the (epistemic) uncertainty about
a system’s state |𝛹 〉 is usually modelled by a (posit-
ive) probability mass function 𝑝1, . . . , 𝑝𝑟 over possible
states |𝜓1〉, . . . , |𝜓𝑟 〉. Such an ‘uncertain state’ is called a
mixed state, and corresponds to a so-called density oper-
ator �̂� B

∑𝑟
𝑘=1 𝑝𝑘 |𝜓𝑘〉〈𝜓𝑘 |. The set of all such density

operators is denoted byℛ. The following is then a basic
result; see Ref. [27, Theorem 2.5].

Proposition 1 A linear operator �̂� on 𝒳 is a density
operator if and only if it’s a Hermitian operator such
that Tr( �̂�) = 17 and �̂� ≥ 0̂.8

According to the standard probabilistic postulate in quantum
mechanics, Born’s rule, the expected outcome of a measure-
ment �̂� is then E�̂� ( �̂�) = Tr( �̂� �̂�). While the sets of desirable
measurements approach doesn’t start from the assumption
that there are probabilities in quantum mechanics, nor relies
on anything remotely related to Born’s rule, it does allow

6. . . in the weak★ topology (of point-wise convergence) [13].
7The trace Tr( �̂�) of the Hermitian operator �̂� is the sum of its

eigenvalues. Given an orthonormal basis { |𝜓1 〉, . . . , |𝜓𝑛 〉 } of 𝒳 , the
trace can also be written as Tr( �̂�) = ∑𝑛

𝑘=1 〈𝜓𝑘 | �̂�|𝜓𝑘 〉.
8By �̂� ≥ 0̂, we mean that �̂� is positive semi-definite, or in other words

that its eigenvalues are non-negative.
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us to recover density operators and the trace formula as
a special case, as formalised in the following result; see
Refs. [6, p. 19] and [18].

Theorem 2 A real functional 𝛬 onℋ is a linear prevision
if and only if there’s some (then unique) density oper-
ator �̂�𝛬 ∈ ℛ such that 𝛬 ( �̂�) = Tr( �̂�𝛬 �̂�) for all �̂� ∈ ℋ.

Therefore, as Your beliefs about |𝛹 〉 can be described by a
credal setℳ𝛬 , we can equivalently describe them using a
convex closed9 set of density operators:

ℛ𝛬 B{ �̂�𝛬 : 𝛬 ∈ ℳ𝛬 }
={ �̂� ∈ ℛ : (∀�̂� ∈ ℋ) Tr( �̂� �̂�) ≥ 𝛬 ( �̂�)}, (3)

and 𝛬 ( �̂�) = min{Tr( �̂� �̂�) : �̂� ∈ ℛ𝛬 } for all �̂� ∈ ℋ.

3. Exchangeability
How does indistinguishability fit into this framework? For
identical particles, such as electrons, that are close in space,
there’s no way to tell them apart, in the sense that there’s no
physical experiment able to distinguish between them. In
standard quantum mechanics, a separate postulate is used
to describe the effect of such particles, which leads to the
well-known framework of bosons and fermions.
On our approach, we’ll now first try and model indistin-

guishability through an exchangeability assessment. Con-
ceptually, a collection of variables is exchangeable when
the order in which they’re observed has no bearing on the
inferences based on these observations [17].
How can we apply this idea to dealing with indistin-

guishable particles? Instead of considering the order in a
sequence of observations, we’ll focus on the order of the
particles in the mathematical description of Your belief
model for the state |𝛹 〉, and require that the order of the
particles in this description should be irrelevant for infer-
ences based on that model. Mathematically speaking, we’ll
use existing ideas [15, 16, 28] for dealing with exchangeab-
ility in conjunction with coherent sets of desirable gambles
and lower previsions, and see how they can be brought to
bear on the desirable measurements framework.
Concretely, consider a system with 𝑚 indistinguish-

able particles, each of which is in an unknown state
in a copy of the same 𝑛-dimensional state space �̄�

𝑛,
with some basis |𝜙1〉, . . . , |𝜙𝑛〉. The corresponding Hil-
bert space for this system, 𝒳 B ⊗𝑚

𝑘=1𝒳
𝑛,10 is 𝑛𝑚 di-

mensional. A generic element of this space is given
by |𝜓〉 =

∑𝑛
ℓ1 ,...,ℓ𝑚=1 𝛼ℓ1 ,...,ℓ𝑚 ⊗𝑚

𝑘=1 |𝜙ℓ𝑘 〉, 𝛼ℓ1 ,...,ℓ𝑚 ∈ ℂ,

9. . . in the topology that is isomorphic to the weak★ topology on the
space of linear functionals.

10The tensor product ⊗ is typically used to describe composite systems,
the reader can find details about this tensor product, its properties and its
use in quantum mechanics in Ref. [27, Sections 2.1.7 and 2.2.8].

and the unknown system state |𝛹 〉 is some normalised ket
in �̄� .
We denote the set of all permutations 𝜋 of the index

set {1, . . . , 𝑚} by ℙ, and define the linear permutation
operator �̂�𝜋 on𝒳 corresponding to the permutation 𝜋 of
the indices, and thus the particles, through

�̂�𝜋 B
𝑛∑︁

ℓ1 ,...,ℓ𝑚=1
⊗𝑚
𝑘=1

(
|𝜙ℓ𝜋 (𝑘) 〉〈𝜙ℓ𝑘 |

)
.

Observe that, by the properties of the tensor product ⊗,

�̂� †
𝜋 =

𝑛∑︁
ℓ1 ,...,ℓ𝑚=1

⊗𝑚
𝑘=1

(
|𝜙ℓ𝑘 〉〈𝜙ℓ𝜋 (𝑘) |

)
=

𝑛∑︁
ℓ1 ,...,ℓ𝑚=1

⊗𝑚
𝑘=1

(
|𝜙ℓ

𝜋−1 (𝑘)
〉〈𝜙ℓ𝑘 |

)
= �̂�𝜋−1 ,

so �̂� †
𝜋 �̂�𝜋 = 𝐼, and �̂�𝜋 is unitary. Your assessment that the

particles are exchangeable11 means that You’re indifferent
between receiving the uncertain reward 𝑢 �̂�( |𝛹 〉) for any
measurement �̂� in the unknown state |𝛹 〉 and the uncertain
reward 𝑢 �̂�(�̂�𝜋 |𝛹 〉) for that measurement in the permuted
unknown state �̂�𝜋 |𝛹 〉, as the order of the particles should
then be irrelevant to You. Now, for any |𝜓〉 ∈ �̄� ,

𝑢 �̂�

(
�̂�𝜋 |𝜓〉

)
= 〈𝜓 |�̂� †

𝜋 �̂��̂�𝜋 |𝜓〉 = 𝑢
�̂�

†
𝜋 �̂��̂�𝜋

( |𝜓〉),

and it’ll be useful for what follows to define the linear
operators 𝜋𝑡 and 𝜋𝑡 on the real linear spaceℋ by letting
𝜋𝑡 �̂� B �̂�

†
𝜋 �̂��̂�𝜋 and 𝜋𝑡 �̂� B �̂�𝜋 �̂��̂�

†
𝜋 for all �̂� ∈ ℋ. So

You’re indifferent between the uncertain rewards 𝑢 �̂�( |𝛹 〉)
and 𝑢𝜋𝑡 �̂�( |𝛹 〉), or equivalently, You’re indifferent between
the uncertain reward 𝑢 �̂�−𝜋𝑡 �̂�( |𝛹 〉) = 𝑢 �̂�( |𝛹 〉) − 𝑢𝜋𝑡 �̂�( |𝛹 〉)
and the status quo 0. Our identification of measurements
with their utility functions leads us to say that Your ex-
changeability assessment makes You indifferent between
the measurements �̂� and their permutations 𝜋𝑡 �̂�, or equi-
valently, between the measurements �̂� − 𝜋𝑡 �̂� and the status
quo 0̂, for all �̂� ∈ ℋ and all 𝜋 ∈ ℙ. This leads to a set of
so-called indifferent measurements

ℐ B
{
�̂� − 𝜋𝑡 �̂� : �̂� ∈ ℋ and 𝜋 ∈ ℙ

}
.

As in Ref. [15], we now call a set of desirable measure-
ments𝒟 exchangeable if12

𝒟 +ℐ ⊆ 𝒟. (4)

11We use the term ‘exchangeable’ for a finite collection of particles, as
is common in the statistical and imprecise probabilities literature dealing
with the exchangeability of sequences of observations, but less so in the
literature on quantum state tomography; see for instance Ref. [9], where
finitely exchangeable system copies are called ‘symmetric’, and where the
term ‘exchangeable’ is reserved for infinite sequences of system copies.

12We use the Minskovski sum for sets. Furthermore, since 0̂ ∈ ℐ, this
condition is equivalent to𝒟 +ℐ = 𝒟.
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Intuitively, this expresses that if a measurement is desirable,
then adding a measurement that is indifferent—equivalent
to the status quo—will preserve its desirability. See also
Ref. [28] for a detailed justification of this requirement.

Running Example 1 Consider a quantum system with two
identical particles, each with two states, the ground state |0〉
and the excited state |1〉. The composite Hilbert space for
the system is then 𝒳 = {∑1𝑘,ℓ=0 𝛼𝑘ℓ |𝑘〉 ⊗ |ℓ〉 : 𝛼𝑘ℓ ∈ ℂ}.
We’ll also use the notation |𝑘ℓ〉 B |𝑘〉 ⊗ |ℓ〉.

As there are only two particles, there are only two possible
permutation operators, namely the identity �̂�0 B 𝐼 and the
swap operator

�̂�1 B |00〉〈00| + |10〉〈01| + |01〉〈10| + |11〉〈11|,

which maps
∑1

𝑘,ℓ=0 𝛼𝑘ℓ |𝑘ℓ〉 to
∑1

𝑘,ℓ=0 𝛼𝑘ℓ |ℓ𝑘〉. The set of
indifferent operators is then

ℐ =
{
0̂
}
∪
{
�̂� − �̂�

†
1 �̂��̂�1 : �̂� ∈ ℋ

}
.

There is an alternative way to characterise exchangeability,
which can give more insight into the concept. Inspired by
the treatment in Ref. [15], we define the linear transforma-
tion prex of the real linear spaceℋ by

prex : ℋ → ℋ : �̂� ↦→ 1
𝑚!

∑︁
𝜋∈ℙ

𝜋𝑡 �̂�.

Interestingly, for all 𝜋 ∈ ℙ and all �̂� ∈ ℋ,

prex ◦ 𝜋𝑡
(
�̂�
)
= prex

(
�̂�
)
= 𝜋𝑡 ◦ prex

(
�̂�
)
,

so clearly also prex ◦ prex = prex. This tells us that prex
is a projection operator that maps any measurement to a
corresponding measurement that is permutation invariant,
so it projectsℋ onto the permutation invariant subspace

ℋℙ B
{
�̂� ∈ ℋ : (∀𝜋 ∈ ℙ)𝜋𝑡 �̂� = �̂�

}
= prex (ℋ).

It’s also not hard to see that prex
(
ℋ>0̂

)
⊆ ℋ>0̂, and that the

kernel of this projection operator prex,

ℐprex B
{
�̂� ∈ ℋ : prex

(
�̂�
)
= 0̂

}
,

characterises exchangeability in the same way thatℐ does.

Proposition 3 A coherent set of desirable measurements𝒟
is exchangeable if and only if 𝒟 +ℐprex ⊆ 𝒟. In particu-
lar, ℐprex is the linear span of ℐ.

We now know how to express Your beliefs about ex-
changeable particles in terms of coherent sets of desirable
measurements. To relate this to the more standard approach
in quantum mechanics, we’ll express exchangeability in
terms of coherent lower previsions and credal sets, and see
what it entails in the special case of density operators.

The following proposition tells us how to characterise
exchangeability for coherent lower previsions. The fourth
characterisation shows that the behaviour of an exchange-
able coherent lower prevision is completely determined
by its behaviour on the typically much lower-dimensional
subspace of all permutation invariant measurementsℋℙ.

Proposition 4 Consider any coherent lower prevision 𝛬

on ℋ, then the following statements are equivalent:

(i) 𝛬 is exchangeable, meaning that there’s some ex-
changeable coherent set of desirable measurements 𝒟
such that 𝛬 = 𝛬𝒟;

(ii) 𝛬 ( �̂�− 𝜋𝑡 �̂�) = 𝛬 ( �̂�− 𝜋𝑡 �̂�) = 0 for all �̂� ∈ ℋ, 𝜋 ∈ ℙ;

(iii) 𝛬 ( �̂�) = 𝛬 ( �̂�) = 0 for all �̂� ∈ ℐprex ;

(iv) 𝛬 ( �̂�) = 𝛬 (prex ( �̂�)) for all �̂� ∈ ℋ.

Next, we investigate how exchangeability affects density
operators. For any 𝜋 ∈ ℙ, any �̂� ∈ ℛ and any �̂� ∈ ℋ:

Tr
(
�̂� (𝜋𝑡 �̂�)

)
= Tr

(
�̂� �̂� †

𝜋 �̂��̂�𝜋

)
= Tr

(
�̂�𝜋 �̂� �̂�

†
𝜋 �̂�

)
= Tr

(
(𝜋𝑡 �̂�) �̂�

)
, (5)

where the second equality follows from the cyclic property
of the trace. This shows that a permutation 𝜋 acts on a density
operator via the operator 𝜋𝑡 = (𝜋−1)𝑡—of course also a
permutation operator—rather than through 𝜋𝑡 . Permutation
invariance of a density �̂� is then strictly speaking expressed
through ‘𝜋𝑡 �̂� = �̂� for all 𝜋 ∈ ℙ’, although the difference
with ‘𝜋𝑡 �̂� = �̂� for all 𝜋 ∈ ℙ’ is immaterial.

Corollary 5 Consider any coherent lower prevision 𝛬

on ℋ, and the corresponding closed convex set of density
operators ℛ𝛬 . Then 𝛬 is exchangeable if and only if ℛ𝛬 ⊆
ℋℙ, or in other words, if all density operators �̂� in ℛ𝛬 are
permutation invariant.

Running Example 2 In the case of two 2-dimensional
particles, consider the states |𝜙1〉 B 1/√2( |00〉 + |11〉) and
|𝜙2〉 B 1/√2( |10〉 − |01〉) ∈ �̄� . The density operator

�̂� =
1
2
|𝜙1〉〈𝜙1 | +

1
2
|𝜙2〉〈𝜙2 |,

or in other words,

�̂� =
1
4
( |00〉+|11〉)(〈00|+〈11|)+1

4
( |10〉−|01〉)(〈10|−〈01|),

is permutation invariant, since �̂� = �̂�1 �̂� �̂�
†
1 .
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4. The Symmetrisation Postulate
How do the consequences of imposing exchangeability in
our framework compare with the standard account of indis-
tinguishable particles in quantum mechanics? To answer
this question, we’ll look at the special, so-called precise,
case, where Your uncertainty about |𝛹 〉 is described by a
single permutation invariant density operator �̂�. As we’ll
see presently, this permutation invariance is a necessary
condition for the density operator on the standard account,
but a stronger symmetry condition is postulated there to
describe fermions and bosons. To explain how this stronger
postulate is formulated, we first need to recall a few extra
details about permutations.
A permutation is called a transposition if it simply ex-

changes two indices and leaves the other indices invariant.
Any permutation is then always a composition of transposi-
tions, and the sign of a permutation 𝜋, denoted by sgn(𝜋),
is then equal to 1 if the number of such compositions is
even, and equal to −1 if it’s odd. We call a ket |𝜓〉 ∈ 𝒳

symmetric if �̂�𝜋 |𝜓〉 = |𝜓〉 for all 𝜋 ∈ ℙ, and antisymmetric
if �̂�𝜋 |𝜓〉 = sgn(𝜋) |𝜓〉 for all 𝜋 ∈ ℙ. The symmetrisation
postulate now goes as follows [11].

Symmetrisation Postulate When a system is made up of
several identical particles, only certain kets in its state
space can describe its physical states. Physical states are,
depending on the nature of the identical particles, either
symmetric or antisymmetric with respect to permutation
of these particles. Those particles for which the physical
states are symmetric are called bosons, and those for which
they’re antisymmetric, fermions.

What, then, does this postulate imply for density op-
erators, rather than states? In the case of fermions,
the states are antisymmetric. Consider a density oper-
ator �̂� B

∑𝑟
𝑘=1 𝑝𝑘 |𝜓𝑘〉〈𝜓𝑘 |, where 𝑟 ∈ ℕ and 𝑝1, . . . , 𝑝𝑟

is a (positive) probability mass function over the states
|𝜓1〉, . . . , |𝜓𝑟 〉 ∈ �̄� . If the only possible states are an-
tisymmetric, then so are |𝜓1〉, . . . , |𝜓𝑟 〉, and therefore
�̂�𝜋 �̂� = �̂�𝜋

∑𝑟
𝑘=1 𝑝𝑘 |𝜓𝑘〉〈𝜓𝑘 | =

∑𝑟
𝑘=1 𝑝𝑘 �̂�𝜋 |𝜓𝑘〉〈𝜓𝑘 | =∑𝑟

𝑘=1 𝑝𝑘 sgn(𝜋) |𝜓𝑘〉〈𝜓𝑘 | = sgn(𝜋) �̂� for all 𝜋 ∈ ℙ. So for
fermions, we find that density operators �̂� must be antisym-
metric, meaning that

�̂�𝜋 �̂� = sgn(𝜋) �̂� for all 𝜋 ∈ ℙ.

A similar reasoning shows that for bosons, density operat-
ors �̂� must be symmetric, meaning that

�̂�𝜋 �̂� = �̂� for all 𝜋 ∈ ℙ.

These conditions are also sufficient.

Proposition 6 A density operator �̂� is (anti)symmetric if
and only if there are (anti)symmetric states |𝜓1〉, . . . , |𝜓𝑟 〉

and a positive probability mass function 𝑝1, . . . , 𝑝𝑟 over
them such that �̂� =

∑𝑟
𝑘=1 𝑝𝑘 |𝜓𝑘〉〈𝜓𝑘 |. Moreover, if there are

states |𝜓1〉, . . . , |𝜓𝑟 〉 and a positive probability mass func-
tion 𝑝1, . . . , 𝑝𝑟 over them such that �̂� B

∑𝑟
𝑘=1 𝑝𝑘 |𝜓𝑘〉〈𝜓𝑘 |

is (anti)symmetric, then the states |𝜓1〉, . . . , |𝜓𝑟 〉 are neces-
sarily (anti)symmetric.

For any antisymmetric �̂�, we find that

�̂�𝜋 �̂� �̂�
†
𝜋 = sgn(𝜋) �̂� �̂� †

𝜋 = sgn(𝜋) (�̂�𝜋 �̂�)
†
= sgn(𝜋)2 �̂� = �̂�

and similarly if �̂� is symmetric. We conclude that, in both
cases, 𝜋𝑡 �̂� = �̂�𝜋 �̂� �̂�

†
𝜋 = �̂� for all 𝜋 ∈ ℙ, so all symmetric

and antisymmetric density operators �̂� are permutation
invariant: the exchangeability condition on the (elements
of the) credal sets is implied by, but not necessarily equival-
ent to, the antisymmetry and symmetry conditions in the
Standard Model of particle physics.
We can, nevertheless, still recover some of the aspects of

the fermion and boson framework from an exchangeability
assessment. To see how, we introduce three Hermitian
operators on𝒳 : the symmetriser �̂�s, the antisymmetriser �̂�a
and the parasymmetriser �̂�o B 𝐼 − �̂�a − �̂�s, with

�̂�s B
1
𝑚!

∑︁
𝜋∈ℙ

�̂�𝜋 and �̂�a B
1
𝑚!

∑︁
𝜋∈ℙ
sgn(𝜋)�̂�𝜋 .

Proposition 7 �̂�𝑘 �̂�ℓ = 𝛿𝑘ℓ �̂�𝑘 for 𝑘, ℓ ∈ {s, a, o}. Also,

(i) the symmetriser �̂�s is a projection operator that pro-
jects any ket onto the boson space 𝒳s B {|𝜓〉 ∈
𝒳 : (∀𝜋 ∈ ℙ) |𝜓〉 = �̂�𝜋 |𝜓〉};

(ii) the antisymmetriser �̂�a is a projection operator that
projects any ket onto the fermion space𝒳a B {|𝜓〉 ∈
𝒳 : (∀𝜋 ∈ ℙ) |𝜓〉 = sgn(𝜋)�̂�𝜋 |𝜓〉};

(iii) the parasymmetriser �̂�o is a projection operator that
projects any ket onto the para space𝒳o B (𝒳s ⊕𝒳a)⊥.

Permutation invariance allows for an interesting decom-
position of operators, which will allow us to retrieve some
of the structure corresponding to fermions and bosons.

Proposition 8 Consider any permutation invariant density
operator �̂� ∈ ℛ. Then �̂� = �̂�s + �̂�a + �̂�o, with �̂�s B
�̂�s �̂� �̂�s, �̂�a B �̂�a �̂� �̂�a and �̂�o B �̂�o �̂� �̂�o.13 Moreover, �̂� is
symmetric if and only if �̂� = �̂�s �̂� �̂�s, and antisymmetric if
and only if �̂� = �̂�a �̂� �̂�a.

Clearly, �̂�s corresponds to bosons and �̂�a to fermions,
but what does �̂�o represent? The answer, as can be found
in Ref. [22], is para-particles: particles that are neither

13�̂�s is Hermitian, �̂�s ≥ 0 and Tr( �̂�s) ≤ 1. If �̂�s ≠ 0̂ we can
renormalise �̂�s into a density operator �̂�s B �̂�s/Tr( �̂�s) (on𝒳s). Similarly
for �̂�a and �̂�o.
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bosons nor fermions, but which obey a weaker permutation
symmetry. As shown in Ref. [22], it’s impossible to dis-
tinguish a collection of para-particles from a collection of
standard particles by means of a measurement, which is the
main reason why in the Standard Model of particle phys-
ics, para-particles are never considered [21], even though
their existence is not excluded. Nevertheless, the topic
of para-particles is still being explored, and experimental
confirmation of their existence has been attempted [1].

Running Example 3 In our running example,

�̂�s =
1
2
(
𝐼 + �̂�1

)
and �̂�a =

1
2
(
𝐼 − �̂�1

)
and �̂�o = 0̂.

For the permutation invariant density operator

�̂� =
1
4
( |00〉+|11〉)(〈00|+〈11|)+1

4
( |10〉−|01〉)(〈10|−〈01|),

we get

�̂�s = �̂�s �̂� �̂�s =
1
4
( |00〉 + |11〉)(〈00| + 〈11|)

�̂�a = �̂�a �̂� �̂�a =
1
4
( |10〉 − |01〉)(〈10| − 〈01|)

and �̂�o = �̂�o �̂� �̂�o = 0̂, and therefore �̂� = �̂�s + �̂�a. Clearly,
since for two 2-dimensional particles𝒳s⊕𝒳a = 𝒳 , we need
to go to larger state spaces to find examples of non-trivial
parasymmetric density operators.

Let’s for the sake of the argument assume that there are
such para-particles—although whether or not they exist
will not affect our conclusions. What, then, does Propos-
ition 8 imply? On the standard view, which we’re trying
to recover here, indistinguishable particles are either bo-
sons or fermions (or para-particles). The set of possible
states is therefore �̄�a ∪ �̄�s ∪ �̄�o, and Your uncertainty
about the state is then represented by some mixed state
�̂� =

∑𝑟
𝑘=1 𝑝𝑘 |𝜓𝑘〉〈𝜓𝑘 |, with probabilities 𝑝1, . . . , 𝑝𝑟 ∈ ℝ

over the respective states |𝜓1〉, . . . , |𝜓𝑟 〉 ∈ �̄�a ∪ �̄�s ∪ �̄�o.
Since then clearly �̂� = �̂�a+�̂�s+�̂�o, we see that every density
operator in our alternative, credal set under exchangeabil-
ity approach obeys this condition, and could therefore be
interpreted as in accordance with the standard view.
But, there’s a defect in our exchangeability approach. A

permutation invariant density operator �̂� = �̂�s + �̂�a + �̂�o
may correspond to a probability distribution 𝑝1, . . . , 𝑝𝑟 over
states |𝜙1〉, . . . , |𝜙𝑟 〉 ∈ �̄� , where at least some |𝜙𝑘〉 don’t
belong to �̄�a∪�̄�s∪�̄�o andmust therefore be superpositions
of symmetric, antisymmetric and/or para-particle states. In
other words, that �̂� = �̂�s + �̂�a + �̂�o doesn’t imply that the
only possible states are the states of para-particles, fermions
or bosons and that superpositions of these are impossible,
but it does imply that we can always interpret �̂� as coming
from a probability distribution over such states.

Often, of course, You’ll know what kind of particles
You’re dealing with, and it will be useful to be able to
express this kind of knowledge also in the sets of desirable
measurements framework, by imposing a stronger type of
symmetry assessment, which expresses that the particles
under consideration are fermions, or that they are bosons.
Before we attempt to find such a stronger symmetry

assessment, let’s briefly mention the approach followed
by Benavoli et al. [7], as they also managed to achieve
this goal in their different framework, using generalised
permutations. Their approach is rather different from ours,
if only because they, in contrast to what we do here, don’t
follow the practice, standard in quantum mechanics, of
using the tensor product space ⊗𝑚

𝑘=1𝒳
𝑛 of the particle state

spaces 𝒳𝑛 in order to represent the system state. Instead,
they essentially use only a subset of this space, namely
the Cartesian product ×𝑚

𝑘=1𝒳
𝑛. On this alternative, smaller

set of states of the type 𝑥 B ( |𝜙1〉, . . . , |𝜙𝑚〉) ∈ ×𝑚
𝑘=1𝒳

𝑛,
they consider all quadratic gambles, which are defined as
functions of the form

𝑔 �̂�( |𝜙1〉, . . . , |𝜙𝑚〉) B
(
⊗𝑚
𝑘=1〈𝜙𝑘 |

)
�̂�
(
⊗𝑚
𝑘=1 |𝜙𝑘〉

)
,

also symbolically written as 𝑔 �̂�(𝑥) = 𝑥† �̂�𝑥, corresponding
to the Hermitian operators �̂� on ⊗𝑚

𝑘=1𝒳
𝑛. The authors’

concept of algorithmic rationality leads to coherence axioms
and a framework of desirability that closely resembles ours
in spirit, but is rather different in the mathematical details.
Their gambles 𝑔 �̂� correspond to our utility functions, but
essentially restricted to the smaller Cartesian product; it’s
easy to see that there’s a one-to-one correspondence between
them, as they are both isomorphic to the space of Hermitian
operators. In order to model indistinguishable particles,
however, they use a different definition of a permuted
gamble than we do. They argue that, since all gambles
are quadratic, they can define a permutation symmetry by
treating a gamble 𝑔 �̂�(𝑥) as 𝑔 �̂�(𝑥, 𝑥), a function with “two
different variables”, and letting permutations act on each
of these “two variables” separately. A general permuted
gamble then takes the form

𝜋𝑙𝑔 �̂�(𝑥, 𝑥)𝜋𝑟 B
1
2
(
𝑔 �̂�(𝜋𝑙𝑥, 𝜋𝑟𝑥) + 𝑔 �̂�(𝜋𝑟𝑥, 𝜋𝑙𝑥)

)
,

which is clearly different from our permuted utility function

𝑢 �̂�

(
�̂�𝜋 |𝜓〉

)
= 𝑢

�̂�
†
𝜋 �̂��̂�𝜋

( |𝜓〉).

Such permuted gambles are then used to retrieve a frame-
work for bosons, and, by introducing the sign of the per-
mutation into the definition of a permuted gamble, the
fermion framework can be retrieved. This means that they
assume from the outset that You know what kind of particle
You are dealing with, which leaves no room for uncertainty
about the nature of the particle, something we have just
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shown is still there on our approach in the previous sections.
Benavoli et al. thus end up with a framework for modelling
uncertainty about the state of bosonic systems and about
the state of fermionic systems separately. We’ll see that
it shows some similarity to the framework we’re about to
explore now, if we ignore the not unimportant difference
between the state spaces used.

5. Stronger Symmetry
A symmetry assessment of exchangeability in our desirable
measurements framework already allows us to usefully
identify different kinds of particle system states: fermion
states, boson states and para-states, but still allows a particle
system to be in a superposition of such states. And, even
if we were to exclude such superpositions, it would still
allow You to be uncertain about whether the particles under
consideration are fermions, bosons, or para-particles.
We’ll now show that the desirable measurements frame-

work allows for stronger symmetry assessments that express,
from the outset, that a particle system consists of bosons,
or of fermions. We’ll discuss the boson and fermion cases
in one fell swoop, and use the flag ★ ∈ {s, a} to identify the
type of symmetry we’re imposing. Let

sgn★(𝜋) B
{
sgn(𝜋) ★ = a
1 ★ = s

for 𝜋 ∈ ℙ.

The symmetry operators 𝜋𝑡 we’ve been considering, act in
a two-sided fashion on a measurement �̂�: 𝜋𝑡 �̂� = �̂�

†
𝜋 �̂��̂�𝜋 .

The discussion of boson and fermion symmetry in the
previous section inspires us to look for symmetry operators
that let go of this two-sided approach, and suggests looking
at maps of the kind ℋ → ℋ : �̂� ↦→ sgn★(𝜋)�̂� †

𝜋 �̂� for
𝜋 ∈ ℙ. This is, of course, invalid as �̂� †

𝜋 �̂� is not necessarily
Hermitian, but we can easily fix this by taking the average
of �̂� †

𝜋 �̂� and its adjoint. This idea of averaging to recover
Hermitianity is also used by Benavoli et al. [7] for the
permutation operators on their alternative state spaces.
We’re thus led to the symmetry operators14

𝑆★𝜋 : ℋ → ℋ : �̂� ↦→ sgn★(𝜋)
2

(
�̂� †

𝜋 �̂� + �̂��̂�𝜋

)
, for 𝜋 ∈ ℙ.

Using analogous arguments as with the (weaker) ex-
changeability condition, we construct a set of indifferent
operators

ℐ
★ B

{
�̂� − 𝑆★𝜋 ( �̂�) : �̂� ∈ ℋ, 𝜋 ∈ ℙ

}
,

14Observe that his symmetry operator 𝑆★𝜋 corresponds to a single
permutation, in contradistinction with the generalised permutations in
Ref. [7], where a second permutation enters the definition.

and call a coherent set of desirablemeasurements𝒟 strongly
★-symmetric if𝒟 +ℐ

★ ⊆ 𝒟.15
In order to find a simpler representation, we introduce

the following linear transformation of the linear spaceℋ

pr★ : ℋ → ℋ : �̂� ↦→ �̂�★ �̂��̂�★,

with kernelℐpr★ B { �̂� ∈ ℋ : pr★( �̂�) = 0̂}.16
It follows from Proposition 7 that pr★ ◦ pr★ = pr★, so pr★

is a linear projection operator. We also list a few other of
its properties.

Proposition 9 The following statements hold for all �̂� ∈
ℋ and all 𝜋 ∈ ℙ:

(i) �̂�
†
𝜋 pr★( �̂�)�̂�𝜋 = pr★( �̂�);

(ii) pr★( �̂�) = sgn★(𝜋)�̂�
†
𝜋 pr★( �̂�) = sgn★(𝜋) pr★( �̂�)�̂�𝜋;

(iii) ℐpr★ is the linear span of ℐ★.

Similarly to the results in Section 3, we can now express
strong ★-symmetry in terms ofℐpr★ , and then find require-
ments for the corresponding lower prevision, as formalised
in the following results.

Proposition 10 A coherent set of desirable measurements
in strongly ★-symmetric if and only 𝒟 +ℐpr★ ⊆ 𝒟.

Running Example 4 In our running example, let’s look at
the case of fermions. Consider the joint state |11〉, where
the two particles reside in the same particle state |1〉, and
the measurement �̂� B |11〉〈11| that returns 1 if the system
resides in state |11〉 and 0 for any system state orthogonal
to |11〉. Since �̂�a �̂��̂�a = 0̂, we see that �̂� ∈ ℐpra , so You
are indifferent between receiving nothing and receiving
the uncertain reward 𝑢 �̂�( |𝛹 〉). This is tantamount to Your
believing that the system can’t reside in the state |11〉. This
also turns out to be the case for any system state that has
multiple particles residing in the same particle state. This
reflects the well-known Pauli principle, which prohibits
multiple fermions from being in the same particle state.

Proposition 11 Consider any coherent lower prevision 𝛬

on ℋ, then the following statements are equivalent:

(i) 𝛬 is strongly ★-symmetric, meaning that there’s some
strongly ★-symmetric and coherent set of desirable
measurements 𝒟 such that 𝛬 = 𝛬𝒟;

(ii) 𝛬 ( �̂� − 𝑆★𝜋 ( �̂�)) = 𝛬 ( �̂� − 𝑆★𝜋 ( �̂�)) = 0 for all �̂� ∈ ℋ

and 𝜋 ∈ ℙ;

15We use the term ‘strongly’ ★-symmetric as a reference to and
reminder of the strong invariance in Refs. [14, 29]; observe that exchange-
ability could also be called ‘strong permutation symmetry’. See also the
quite relevant discussion in Ref. [28, Section 6].

16In fact, this setℐpr★ is related to the set defined in Ref. [7, Corollary
1], but we retrieve it through a different symmetry operator.
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(iii) 𝛬 ( �̂�) = 𝛬 ( �̂�) = 0 for all �̂� ∈ ℐpr★;

(iv) 𝛬 ( �̂�) = 𝛬 (pr★( �̂�)) for all �̂� ∈ ℋ.

If we now turn to the sets of density operators that cor-
respond to strongly ★-symmetric coherent sets of desirable
measurements, we recover the expected boson and fermion
symmetry conditions, as in the standard framework for
quantum mechanics the density operators for indistinguish-
able particles are exactly the ones that satisfy the symmetry
conditions �̂� = sgn★(𝜋)�̂�𝜋 �̂� for all 𝜋 ∈ ℙ, with ★ = s for
bosons and ★ = a for fermions.

Corollary 12 Consider any coherent lower prevision 𝛬

on ℋ and its corresponding set of density operators ℛ𝛬 .
Then 𝛬 is strongly ★-symmetric if and only if �̂� =

sgn★(𝜋)�̂�𝜋 �̂� for all 𝜋 ∈ ℙ and �̂� ∈ ℛ𝛬 .

Clearly, the stronger symmetry assessments don’t suffer
from the same defect as an assessment of exchangeability:
due to Proposition 6, the stronger symmetry of the density
operators implies that the only possible states are fermions
in the antisymmetric case and bosons in the symmetric case,
and that no superpositions of these states are possible.

6. Second Quantisation

So far, we’ve been describing fermions and bosons using
first quantisation, which means we’ve been considering
symmetric and antisymmetric density operators. However,
as You believe the particles to obey a strong symmetry,
we can expect there to be some redundancy in this type
of description. In standard quantum mechanics, second
quantisation is then often used: instead of describing the
state of each particle, the occupation numbers of the different
possible states are considered. This is reminiscent of the use
of count vectors in an exchangeability context, as described
in Ref. [15]. In fact, Benavoli et al. [8] used this concept
of count vectors to describe second quantisation for bosons
in the quantum expectation operator approach. Let’s now
briefly show how we can implement the ideas of Ref. [15] to
give an account of second quantisation in the more general
sets of desirable measurements framework for both bosons
and fermions.
We start with a concise overview of how second quant-

isation is implemented in standard quantum mechanics. For
a more thorough and detailed account, see Section XIV.C
in Ref. [11]. We’ll adopt the notations from Section 3 for
a system of 𝑚 indistinguishable 𝑛-dimensional particles,
with 𝑛𝑚-dimensional state space �̄� .
The boson space 𝒳s = �̂�s (𝒳) is a lower dimensional

subspace of symmetric kets. An orthonormal basis for this

boson space is given by

|m〉s = |𝑚1 . . . 𝑚𝑛〉s B
√︄

𝑚!∏𝑛
ℓ=1 𝑚ℓ!

�̂�s ⊗𝑛
ℓ=1 ⊗

𝑚ℓ

𝑘ℓ=1 |𝜙ℓ〉,

for all count vectors m = (𝑚1, . . . 𝑚𝑛) in the set

𝒩
𝑚
s B

{
(𝑚1, . . . 𝑚𝑛) ∈ ℕ𝑛

0 :
𝑛∑︁

𝑘=1
𝑚𝑘 = 𝑚

}
.

Similarly, an orthonormal basis for the fermion space𝒳a =
�̂�a (𝒳) of antisymmetric kets is given by

|m〉a = |𝑚1 . . . 𝑚𝑛〉a B
√
𝑚! �̂�a ⊗𝑛

ℓ=1 ⊗
𝑚ℓ

𝑘ℓ=1 |𝜙ℓ〉,

for all count vectors m = (𝑚1, . . . 𝑚𝑛) in the set

𝒩
𝑚
a B

{
(𝑚1, . . . , 𝑚𝑛) ∈ {0, 1}𝑛 :

𝑛∑︁
𝑘=1

𝑚𝑘 = 𝑚

}
.

Interestingly, these count vectors consist only of zeroes and
ones, as the antisymmetry of fermionic states doesn’t allow
more than one particle to be in the same state; this is a
translation of the Pauli principle.
While this representation may seem complicated, the

following example shows that it’s quite intuitive.

Running Example 5 In our running example, the basis
states for 𝒳s are

|20〉s B |00〉, |11〉s B
1
√
2
( |01〉 + |10〉, |02〉s B |11〉.

Conversely, 𝒳a only has the single basis state

|11〉a B
1
√
2
( |01〉 − |10〉).

We can now use the ideas and argumentation in Ref. [15]
to prove that under strong ★-symmetry it’s enough to con-
sider sets of desirable measurements on the reduced state
space �̄�★, corresponding to the Hilbert space𝒳★ spanned
by the basis vectors |m〉★, m ∈ 𝒩

𝑚
★ . To this end, we

take a closer look at the set of symmetrised measure-
mentsℋ★ B pr★(ℋ) = {pr★( �̂�) : �̂� ∈ ℋ}. The following
result shows that for a strongly ★-symmetrical model, in or-
der to check that a measurement �̂� is desirable it’s sufficient
to look at its ★-symmetrised counterpart pr★( �̂�) = �̂�★ �̂��̂�★.

Proposition 13 Consider a strongly ★-symmetric and
coherent set of desirable measurements 𝒟. Then for
all �̂� ∈ ℋ, �̂� ∈ 𝒟 ⇔ pr★( �̂�) ∈ 𝒟.

Indeed, any measurement �̂� is the sum of pr★( �̂�) ∈ ℋ★

and �̂� − pr★( �̂�) ∈ ℐpr★ . Since, by Your strong★-symmetry
assessment, You deem the measurements in ℐpr★ to be
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equivalent to 0̂, only themeasurements �̂� such that pr★( �̂�) =
�̂�, or in other words, only the symmetrised measurements
inℋ★, matter in describing desirability.
However, since pr★( �̂�) = �̂�★ �̂��̂�★, we see that the effect

of pr★ is to restrict �̂� to 𝒳★. We can now introduce the
notation red★ for the linear mapping fromℋ toℋ(𝒳★)
uniquely17 defined by 〈𝜓 | red★( �̂�) |𝜓〉 = 〈𝜓 | �̂�|𝜓〉 for all
|𝜓〉 ∈ �̄�★ and all �̂� ∈ ℋ. On the other hand, we define the
(cylindrical) extension of a measurement �̂� ∈ ℋ(𝒳★) to
ℋ as ext★( �̂�) B �̂��̂�★.
Our final result makes it clear that there’s a simpler rep-

resentation for sets of desirable measurements on boson or
fermion systems, and assures us that an assessment of strong
★-symmetry leads to sets of desirable measurements that
are fully compatible with the standard quantum mechanical
models based on the symmetrisation postulate, but which
also allow us to deal with partial preferences.

Theorem 14 A set of desirable measurements 𝒟 for �̄�

is coherent and strongly ★-symmetric if and only if there’s
some coherent set of desirable measurements 𝒟𝑜 for �̄�★

such that 𝒟 = { �̂� ∈ ℋ : red★( �̂�) ∈ 𝒟𝑜}. In that case
necessarily, 𝒟𝑜 = 𝒟★ B {�̂� ∈ ℋ(𝒳★) : ext★(�̂�) ∈ 𝒟}.

7. Conclusion
The desirable measurements framework has the advantage
that it allows us at the same time to justify using Born’s rule
(in terms of density operators) and to extend it to situations
where Your beliefs only lead to partial preferences, and
therefore to working with sets of density operators. The
general question then naturally arises if and howwell-known
standard quantum mechanical concepts are expressible in
this more general language. The specific question we have
tried to answer here, is how to deal with indistinguishable
particles.
Using exchangeability in the sets of desirable meas-

urements framework for dealing with uncertainty about
a quantum system with multiple particles allows us to
recover some of the structural symmetry of bosons, fer-
mions and para-states, but we need to impose stronger
symmetry requirements to get to bosonic or fermionic sys-
tem descriptions. This observation explains and justifies
the question mark in our title, and the answer to the result-
ing question is, then, a clear ‘no’. The uncertainty models
that exhibit this stronger symmetry are then amenable to a
lower-dimensional representation, akin to what happens for
second quantisation on the standard quantum mechanical
formalism.
To also describe in the desirable measurements frame-

work the important consequences of indistinguishability

17A Hermitian operator �̂� is uniquely determined by its corresponding
utility function, or in other words, by 〈𝜓 | �̂� |𝜓〉 for all |𝜓〉 ∈ �̄� .

in quantum systems, such as why bosons tend to bunch
together or electrons tend to resist being close together,
we’ll need to take into account the dynamical aspects of
quantum mechanics, which we hope to do in future work.
We have thus far only dealt with quantum systems with

a fixed number of particles. However, it’s often useful to
consider the case where the number of particles is not
determined up front, and for that reason, we also intend to
examine in future work the implications of allowing, in the
sets of desirable measurements framework, for uncertainty
about the number of particles in a quantum system.
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