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Abstract
We focus on a decision tree model under uncertainty
using so-called hybrid probability-possibility functions.
They allow to handle behaviours lying between pos-
sibilistic decision making and probabilistic decision
making while keeping the good properties of both
approaches namely Dynamic Consistency, Consequen-
tialism andTree Reduction.We shed light on the various
utility functionals in this setting. More precisely, in this
paper, we investigate the question of parameterizing
the compromise between possibilistic and probabilisic
models in different contexts. To this end, we outline
elicitation methods.
Keywords: decision under uncertainty, possibility the-
ory, decomposable measures.

1. Introduction
In sequential decision making, a strategy is a conditional
plan that assigns an action to each state where a decision
has to be made. Each strategy leads to a compound lottery
following Von Neumann and Morgenstern’s terminology
[8]. A tree represents the different scenarios. The optimal
strategy is the one that minimizes a criterion whose value
depends on utilities of final states and on the resulting
compound lottery.
Three assumptions are instrumental to enable an optimal

strategy to be computed using dynamic programming [6]:
• Dynamic Consistency: when following an optimal
strategy and reaching a decision node, the best decision
at this node is the one that had been considered so
when computing this strategy, i.e. prior to applying it.

• Consequentialism: the best decision at each step of the
problem only depends on potential consequences at
this point.

• Tree Reduction: a compound lottery is equivalent to a
simple one, assigning probabilities to final states.

The expected utility of probabilistic simple lotteries
was proposed by Von Neuman and Morgernstern [8] as a

decision criterion under risk. Dubois and Prade [1] proposed
to use optimistic and pessimistic possibilistic criteria to
evaluate the global utility of a possibilistic lottery, thus
generalizing Wald maximax and maximin criteria. More
recently a new hybrid decision criteria, subsuming expected
utility and possibilistic criteria, was presented in [4], based
on a parameterized family of capacities completely defined
by a distribution of weights on the state space [2].
The aim of this paper is to deepen the understanding of

this hybrid decision model with a view to elicit it with given
data. This model comes down to a convex combination of a
possibility distribution and a probability distribution. First
we show how to retrieve, in a generally unique way, both
distributions from a lottery with weights in [0, 1] whose
sum is at least 1. Next wewant to elicit the model from a data
set composed with a possibility, a probability and a decision
evaluation given by an expert. In order to do this we start
with a technical but useful result simplifying the expression
of the hybrid criteria used for the evaluation. This equivalent
expression is just based on possibility, probability and a
real-valued parameter present in the hybrid model.
The paper is organised as follows. The following section

presents the background and notations. Section 3 is devoted
to the definition of the hybrid prob-poss capacity and its
decomposition. Section 4 shows that any weight distribution
whose sum is at least 1 can be interpreted as a hybrid prob-
poss set function, thus providing an elicitation method for
the underlying probability and possibility measures and
their mixture coefficient. The aim of Section 5, which is
technical, is to propose simpler equivalent expressions of
criteria for the hybridmodel. Section 6 outlines an elicitation
method of the mixture coefficient from the knowledge of
the assessed worth of prob-poss lotteries.

2. Background on Sequential Decision
Problems

Sequential decision problems under uncertainty are usually
modelled by decision trees [6] that rely on the following
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graphical model. Formally, a decision tree is a tree con-
taining three kinds of nodes: (see Figure 1 for an example):

• A set of decision nodes (depicted by rectangles). Edges
from such nodes represent decisions among which to
choose.

• A set of chance nodes (depicted by circles) reached
by edges stemming from decision nodes. Edges from
such nodes are attached probabilities (or possibilities)
and may lead to further decision nodes or to terminal
nodes.

• The setS of terminal nodes or leaves represent states of
nature; such states evaluated by a utility function:∀𝑠𝑖 ∈
S, 𝑢(𝑠𝑖) is the degree of satisfaction of eventually
reaching state 𝑠𝑖 . For the sake of simplicity we assume,
without loss of generality, that only terminal nodes
are attached utilities. The utility degrees belong to a
totally ordered scale. The scale [0, 1] is assumed in
this paper.

In a decision tree, the children of any decision node form
the set of chance nodes that can be reached by choosing
a decision at this node. The children of any chance node
form the set of possible outcomes of the previously selected
decision - either a terminal node is observed (a state), or
another decision node is reached (and then a new action
should be chosen).
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Figure 1: A possibilistic decision tree.

Solving a decision tree amounts to building a strategy,
i.e. a function 𝛿 that associates to each decision node 𝑑𝑖 an
action (i.e., a child chance node): this is the action to be
executed when decision node 𝑑𝑖 is reached. Each possible
scenario (sequence of decisions) is modelled by a path from
the root to a terminal node of the tree.
The information at each chance node is fully captured by

a distribution (probability or possibility) over the outcomes
of the chance nodes, namely a possibility distribution 𝜋

and/or a probability distribution 𝑝. When bearing on the
leaf nodes, such distributions define simple lotteries on the
utility degrees of states. More formally:

• A simple probabilistic lottery 𝐿 𝑝 [8] is a prob-
ability distribution 𝑝 on a set of utility degrees,

𝛬 = {_1, ..., _𝑛}, where _𝑖 = 𝑢(𝑠𝑖). The probabilistic
lotteries will be written as 𝐿 𝑝 = (𝑝1/_1, ..., 𝑝𝑛/_𝑛),
with 𝑝𝑖 ∈ [0, 1],∑𝑛

𝑖=1 𝑝𝑖 = 1.

• A simple possibilistic lottery 𝐿 𝜋 [1] is a normalized
possibility distribution 𝜋 on a set of utility degrees,
𝛬, both being expressed in the same ordered scale.
The possibilistic lotteries will be written as 𝐿 𝑝 =

(𝜋1/_1, ..., 𝜋𝑛/_𝑛) with 𝜋𝑖 ∈ [0, 1],max𝑛
𝑖=1 𝜋𝑖 = 1.

In a simple lottery 𝐿 𝜋 (resp. 𝐿 𝑝), the value 𝜋𝑖 (resp. 𝑝𝑖)
is the possibility (resp. probability) degree of reaching
a state with utility _𝑖 . For the sake of brevity, the _𝑖’s
such that 𝜋𝑖 = 0 (resp. 𝑝𝑖 = 0) are often omitted in the
notation of a lottery (e.g., < 1/0.8 > denotes the lottery
that provides utility 0.8 for sure, all the other utility degrees
being impossible).
A given strategy leads to a composite lottery, i.e., a

nested lottery in the form of an uncertainty (probability
or possibility) tree in agreement with the decision strategy
selected in the decision tree. In order to respect the three
properties of dynamic consistency, consequentialism, and
tree reduction, the compound lottery should be equivalent
to a simple one. For instance in a probability tree, the
probability of a state is the sum of the probabilities of all
scenarios leading to this state, the probability of a scenario
being the product of all probabilities attached to the edges
of the path. In the case of a possibility tree, the same
property applies, changing sum into maximum and product
into a more general triangular norm (e.g., minimum). This
reduction property enables to compute the utility of a
strategy using dynamic programming on the decision tree
structure.
In the next section we recall a class of set functions intro-

duced in [2] that generalizes both probability and possibility
functions and lead to generalized forms of simple and com-
pound lotteries, while preserving the tree reduction property
allowing the equivalence between compound lotteries and
simple ones, and the use of dynamic programming to com-
pute the generalized utility of strategy. As shown in [2],
these set functions are the only ones allowing the reduction
of uncertainty trees to simple (generalized) lotteries.

3. Hybrid Possibility/Probability Measures
We consider so-called hybrid 𝜋-𝑝 measures that combine
probabilistic and possibilistic behaviors in the uncertainty
context. More precisely we will use convex combinations
of possibility and probability distributions:

𝜌𝛼 (𝑠) = 𝛼𝜋(𝑠) + (1 − 𝛼)𝑝(𝑠), 𝛼 ∈ [0, 1]

where 𝑝 and 𝜋 satisfy the constraint 𝑝(𝑠) = 0 if 𝜋(𝑠) < 1
for all 𝑠 (see [4] for more details). Clearly 𝜌𝛼 is a possibility
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distribution if 𝛼 = 1 and a probability distribution if 𝛼 = 0.
As a consequence, note that 1 ≤ ∑

𝑠∈𝑆 𝜌𝛼 (𝑠) ≤ 𝑛.

Intuitively, the decision-maker defines probabilities over
the fully possible states of nature (𝜋(𝑠) = 1), while more or
less impossible ones are taken into account (𝜋(𝑠) < 1). It is
worth noticing that

• 𝜌𝛼 (𝑠) > 𝛼 is equivalent to 𝑝(𝑠) > 0 and these condi-
tions imply 𝜋(𝑠) = 1.

• 𝜌𝛼 (𝑠) = 𝛼 is equivalent to 𝜋(𝑠) = 1 and 𝑝(𝑠) = 0.

• 𝜌𝛼 (𝑠) < 𝛼 is equivalent to 𝜋(𝑠) < 1 and 𝑝(𝑠) = 0.

It is then clear that we have

• 𝜌𝛼 (𝑠) = 𝛼𝜋(𝑠) if 𝜌𝛼 (𝑠) ≤ 𝛼 and 1 otherwise,

• 𝜌𝛼 (𝑠) = 𝛼+(1−𝛼)𝑝(𝑠) if 𝜌𝛼 (𝑠) > 𝛼 and 0 otherwise.

For instance, consider a coin. Usually the result of flipping
it is either head (ℎ) or tail (𝑡). But a very rare, yet not fully
impossible, occurrence is that the coin falls on its edge (𝑒).
So the state of affairs is 𝑆 = {ℎ, 𝑡, 𝑒}. It is natural to consider
ℎ, 𝑡 as totally possible events, and 𝑒 almost impossible. So
𝜋(𝑡) = 𝜋(ℎ) = 1 > 𝜋(𝑒) = 𝜖 . Moreover, if the coin is fair
then 𝑝(𝑡) = 𝑝(ℎ) = 0.5, and 𝑝(𝑒) = 0, if we consider the
probability of “edge” negligible.
Hybrid distributions generate a class of decomposable

capacities, which are monotonic set functions such that
there is a triangular conorm of the form

𝑆𝛼 (𝑥, 𝑦) =
{
min(1, 𝑥 + 𝑦 − 𝛼) if 𝑥 > 𝛼, 𝑦 > 𝛼

max(𝑥, 𝑦) otherwise,

such that, as explained in [2], if 𝐴 ∩ 𝐵 = ∅:

𝜌𝛼 (𝐴 ∪ 𝐵) = 𝑆𝛼 (𝜌𝛼 (𝐴), 𝜌𝛼 (𝐵)) (1)

They are actually Shafer plausibility functions [7] of the
form 𝜌𝛼 (𝐴) = 𝛼𝛱 (𝐴) + (1 − 𝛼)𝑃(𝐴), where 𝛱 (𝐴) =

max𝑠∈𝐴 𝜋(𝑠) is a possibility measure. It is an interesting
family of plausibility measures with very low complexity
since completely defined by a distribution of weights over 𝑆.
Note that 𝑆𝛼 (𝑥, 𝑦) = max(𝑥, 𝑦,min(1, 𝑥 + 𝑦 − 𝛼)). Indeed,
if 𝑥 > 𝛼, 𝑦 > 𝛼 then 𝑥 + 𝑦 − 𝛼 > max(𝑥, 𝑦). If 𝑥 ≤ 𝛼, then
𝑥 + 𝑦 − 𝛼 ≤ 𝑦.
We can define the conjugate of 𝜌𝛼 as 𝜌𝛼 defined by

𝜌𝛼 (𝐴) = 1−𝜌𝛼 (𝐴) = 1−𝑆𝛼

𝑠∈𝐴
(𝜌𝛼 (𝑠)) = 𝑇 𝛼

𝑠∈𝐴
(1−𝜌𝛼 (𝑠))

where 𝑇 𝛼 (𝑎, 𝑏) = 1 − 𝑆𝛼 (1 − 𝑎, 1 − 𝑏). The reader can
check, letting 𝑁 (𝐴) = 1−𝛱 (𝐴) (a necessity measure), that
𝜌𝛼 (𝐴) = 𝛼𝑁 (𝐴) + (1− 𝛼)𝑃(𝐴), which is a belief function.

Example 1 On 𝑆 = {𝑠1, 𝑠2, 𝑠3}, let 𝜋(𝑠1) = 0.4, 𝜋(𝑠2) =
𝜋(𝑠3) = 1, 𝑝(𝑠2) = 0.6, 𝑝(𝑠3) = 0.4 and 𝛼 = 0.5. We

can build the 𝜌0.5 distribution on 𝑆 from the 𝜋 and 𝑝

distributions: 𝜌0.5 ({𝑠1}) = 0.2, 𝜌0.5 ({𝑠2}) = 0.8 and
𝜌0.5 ({𝑠3}) = 0.7. We then have that 𝜌0.5 ({𝑠1, 𝑠2}) =

max(0.2, 0.8) = 0.8, 𝜌0.5 ({𝑠1, 𝑠3}) = max(0.2, 0.7) = 0.7,
𝜌0.5 ({𝑠2, 𝑠3}) = 0.8 + 0.7 − 0.5 = 1. This distribution de-
fines a convex set of probability distributions. It contains
the convex combinations with weight 𝛼 of the probability
measures, 𝑃′, compatible with possibility distribution 𝜋,
i.e., 𝑃′ ≤ 𝛱 , and the probability measure 𝑃 with distribu-
tion 𝑝. We can express this probability set by inequalities:
𝑃({𝑠1, 𝑠2, 𝑠3}) = 1, 0 ≤ 𝑃({𝑠1}) ≤ 0.2, 0.3 ≤ 𝑃({𝑠2}) ≤
0.8, 0.2 ≤ 𝑃({𝑠2}) ≤ 0.7, 0.3 ≤ 𝑃({𝑠1, 𝑠2}) ≤ 0.8,
0.2 ≤ 𝑃({𝑠1, 𝑠3}) ≤ 0.7 and 0.3 ≤ 𝑃({𝑠2, 𝑠3}) ≤ 1.

One interesting feature of this class of fuzzy measures is
that it can be expressed as uncertainty trees generalizing
probability trees involving lotteries, that can be reduced
to distributions over the set of states of affairs, as shown
in [2]. However, in order to reduce probability-possibility
lotteries, an operation ∗ is needed to generalize probabilistic
independence, in such a way that if 𝐴 and 𝐵 are disjoint
sets independent of another set 𝐶, so must be 𝐴 ∪ 𝐵, i.e.,
we have that

𝜌𝛼 ((𝐴 ∪ 𝐵) ∩ 𝐶) = 𝑆𝛼 (𝜌𝛼 (𝐴), 𝜌𝛼 (𝐵)) ∗ 𝜌𝛼 (𝐶)
= 𝑆𝛼 (𝜌𝛼 (𝐴) ∗ 𝜌𝛼 (𝐶), 𝜌𝛼 (𝐵) ∗ 𝜌𝛼 (𝐶)).

This distributivity property is valid only when the operation
∗ is a triangular norm of the form

𝑥 ∗𝛼 𝑦 =

{
𝛼 + (𝑥−𝛼) (𝑦−𝛼)

1−𝛼 if 𝑥 > 𝛼, 𝑦 > 𝛼

min(𝑥, 𝑦) otherwise.

provided that 𝑆𝛼 (𝜌𝛼 (𝐴), 𝜌𝛼 (𝐵)) < 1 [5, 2]. The latter
condition implies that the upper bound 1 is never trespassed
in expressions of the formmin(1, 𝑥+𝑦−𝛼), so that the useful
part of the conorm is of the form 𝑆𝛼 (𝑥, 𝑦) = max(𝑥, 𝑦, 𝑥 +
𝑦 − 𝛼).
Denote by 𝐶+

𝛼 the set {𝑠 : 𝜌𝛼 (𝑠) > 𝛼} = {𝑠 : 𝑝(𝑠) > 0}.
If 𝐶+

𝛼 ≠ ∅, the normalization condition 𝜌𝛼 (𝑆) = 1 enforces
the condition:∑︁

𝑠∈𝐶+
𝛼

𝜌𝛼 (𝑠) − 𝛼(𝑐𝑎𝑟𝑑 (𝐶+
𝛼) − 1) = 1. (2)

Note that it can be more simply written as∑︁
𝑠∈𝑆
max(0, 𝜌𝛼 (𝑠) − 𝛼) = 1 − 𝛼.

For instance, the distribution 𝜌0.5 in Ex. 1 satisfies 0.7 −
0.5 + 0.8 − 0.5 = 1 − 0.5, involving only 𝑠2, 𝑠3. If 𝛼 = 0
(𝜌0 is a probability measure), the normalization condition
(2) reads

∑
𝑠∈𝑆 𝜌0 (𝑠) = 1. If 𝛼 = 1, (𝜌1 is a possibility

measure), the normalization condition 𝜌𝛼 (𝑆) = 1 reads
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max𝑠∈𝑆 𝜌1 (𝑠) = 1. Note that any set-function of the form
𝑔 = 𝛼𝛱 + (1 − 𝛼)𝑃 for any possibility measure 𝛱 and
probability measure 𝑃 is a Shafer plausibility function as
well, without requiring the condition 𝑝(𝑠) > 0 implies
𝜋(𝑠) = 1. The latter condition is due to the tree reduction
property which enforces 𝑔 = 𝜌𝛼, a decomposable set-
function with respect to a conorm 𝑆𝛼, with an independence
operator ∗𝛼. Only such convex mixtures of probability and
possibility functions allow for the reduction of compound
lotteries into simple ones, as explained in [2, 4].

4. Elicitation of a Prob-Poss Model from
Given Weights

In this section we propose to use the hybrid model to
interpret a distribution ofweights 𝜌 = (𝜌1, . . . 𝜌𝑛) ∈ [0, 1]𝑛
on 𝑆 with 𝑛 ≥ ∑

𝑖∈[𝑛] 𝜌𝑖 ≥ 1. Let us consider the case
where a distribution 𝜌 is given but it satisfies neither the
normalisation condition of probability distributions nor the
one for possibility distributions.
When representing a distribution of uncertainty, two usual

normalization options could be investigated: normalize 𝜌
to build a probability distribution (dividing the weights by
their sum), normalize 𝜌 to make a possibility distribution
(dividing the weights by their maximum). This paper sug-
gests that, alternatively, we can keep the weight distribution
𝜌 and interpret it as hybrid prob-poss distribution. Namely,
we show that for any such distribution of weights, there
generally exists a unique parameter value 𝛼, a unique possi-
bility distribution 𝜋 and a unique probability distribution 𝑝
such that 𝜌𝑖 = 𝛼𝜋𝑖 + (1 − 𝛼)𝑝𝑖 .
The latter approach looks more natural. For instance,

the probabilistic and possibilistic renormalizations of two
different uniform 𝜌 and 𝜌′ yield equal probability distribu-
tions 𝑝 = 𝑝′ and possibility distributions 𝜋 = 𝜋′. But their
decompositions will be different.

Example 2 Consider two distributions on 𝑆 = {𝑎, 𝑏}
• 1: 𝜌𝑎 = 𝜌𝑏 = 0.6

• 2: 𝜌′𝑎 = 𝜌′
𝑏
= 0.5

We can see that renormalizing these distributions in agree-
ment with possibility or probability, the resulting two distri-
butions 1 and 2 are the same (𝑝1𝑎 = 𝑝2𝑎 = 0.5 = 𝑝′1

𝑏
= 𝑝′2

𝑏

and 𝜋′1
𝑎 = 𝜋′2

𝑎 = 1 = 𝜋′1
𝑏

= 𝜋′2
𝑏

), hence no distinction be-
tween 1 and 2 can be made using this kind of transformation.
Using the hybrid interpretation we easily see that:

• Case 1: with𝛼 = 0.2, 𝜋𝑎 = 𝜋𝑏 = 1, and 𝑝𝑎 = 𝑝𝑏 = 0.5
we can check that 𝜌𝑎 = 𝜌𝑏 = 0.2+ 0.8 · 0.5, (a mixture
between uniform probabilities and possibilities).

• Case 2: 𝛼 = 0, 𝜋𝑎 = 𝜋𝑏 = 1, and 𝑝𝑎 = 𝑝𝑏 = 0.5 =
𝜌𝑎 = 𝜌𝑏 , (a pure probability distribution).

Formally, the question is: given a distribution of weights
(𝜌1, . . . 𝜌𝑛) ∈ [0, 1]𝑛 on 𝑆 such that∑𝑛

𝑖=1 𝜌𝑖 ≥ 1, does there
exist a threshold 𝛼 ∈ [0, 1], a possibility distribution 𝜋 and a
probability distribution 𝑝 on 𝑆, such that 𝜌 = 𝛼𝜋+(1−𝛼)𝑝?
If yes, is the 3-tuple (𝛼, 𝜋, 𝑝) uniquely defined?
Let us consider 𝑛 weights with 𝑚 distinct ones such

that 𝜌 (𝑚) < · · · < 𝜌 (1) with 𝑚 ≤ 𝑛 and 𝑅(𝑖) = { 𝑗 |𝜌 𝑗 =

𝜌 (𝑖) }. Note that if we suppose 𝛼 ∈ [𝜌 (𝑖+1) , 𝜌 (𝑖) ) Then
{𝑠𝑖 : 𝜌𝑖 > 𝛼} = ∪𝑖

𝑗=1𝑅( 𝑗) , with cardinality
∑𝑖

𝑗=1 |𝑅( 𝑗) |.
The normalization condition (2) reads

𝑖∑︁
𝑗=1

|𝑅( 𝑗) |𝜌 ( 𝑗) = 1 + 𝛼(
𝑖∑︁
𝑗=1

|𝑅( 𝑗) | − 1).

We can see that

• if |{𝑖 |𝜌𝑖 > 0}| = 1, i.e., 𝜌𝑘 = 1, 𝜌𝑖 = 0 if 𝑖 ≠ 𝑘 , then 𝛼
is not unique: ∀𝛼 ∈ [0, 1], 𝜌 = 𝛼𝜋 + (1 − 𝛼)𝑝 where
𝜋𝑘 = 1, 𝜋𝑖 = 0 if 𝑖 ≠ 𝑘 , 𝑝𝑘 = 1, 𝑝𝑖 = 0 if 𝑖 ≠ 𝑘 . So 𝜌𝛼

is the convex mixture of a possibility measure and a
Dirac measure focused on 𝑠𝑘 .

• if |{𝑖 |𝜌𝑖 > 0}| > 1, we must find 𝛼 such that the
normalization condition (2) holds. It is clear that based
on this condition and, if 𝜌 = 𝛼𝜋 + (1 − 𝛼)𝑝, we have

𝛼 =

∑𝑖
𝑗=1 |𝑅( 𝑗) |𝜌 ( 𝑗) − 1∑𝑖

𝑗=1 |𝑅( 𝑗) | − 1
∈ [𝜌 (𝑖+1) , 𝜌 (𝑖) ). (3)

Note that if |𝑅(1) | = 1 and 𝜌 (1) < 1, we cannot
choose 𝛼 ∈ [𝜌 (2) , 𝜌 (1) ] since we cannot make the
division in (3) and the normalisation equation reads
𝜌 (1) − 𝛼 = 1 − 𝛼, which is impossible.

So given the weight distribution only, with 𝜌 (1) < 1, the
associated parameter 𝛼 computed as in (3) must belong
to some interval [𝜌 (𝑖+1) , 𝜌 (𝑖) ). We can prove that such a
parameter value exists and is generally unique, as shown now.
Note that if

∑𝑛
𝑖=1 𝜌𝑖 = 1, we have a probability distribution

and 𝛼 = 0 is enforced, while 𝜋 is arbitrary. So we focus on
the case when

∑𝑛
𝑖=1 𝜌𝑖 > 1.

Proposition 1 For all 𝑛-tuples 𝜌 ∈ [0, 1]𝑛, such that∑𝑛
𝑖=1 𝜌𝑖 > 1:

• if 𝜌 (1) ≠ 1, there exists a unique value 𝛼 and a unique

index 𝑖, 1 ≤ 𝑖 ≤ 𝑚 such that: 𝛼 =

∑𝑖
𝑗=1 |𝑅( 𝑗) |𝜌( 𝑗)−1∑𝑖

𝑗=1 |𝑅( 𝑗) |−1
∈

[𝜌 (𝑖+1) , 𝜌 (𝑖) );

• if 𝜌 (1) = 1 and |𝑅(1) | = 1, then any 𝛼 > 𝜌 (2) can be
chosen.

• If 𝜌 (1) = 1 and 𝑅(1) contains several elements then
𝛼 = 1.

203



Dubois Guillaume Rico

Proof We need to distinguish two cases:

• 𝜌 (1) < 1. The normalization condition (2) also writes∑𝑛
𝑖=1max(0, 𝜌𝑖 − 𝛼) = 1 − 𝛼. It can thus be expressed
as the intersection points of the two functions ℎ(𝛼) =
1−𝛼 and 𝑓 (𝛼) = ∑𝑛

𝑖=1max(0, 𝜌𝑖−𝛼) on interval [0, 1].
Notice that ℎ and 𝑓 are both continuous. ℎ is linear
decreasing on [0, 1] with slope −1, ℎ(1) = 0, ℎ(0) =
1; 𝑓 is piecewise linear decreasing on [0, 𝜌 (1) ] and
𝑓 (𝛼) = 0 on ]𝜌 (1) , 1] and 𝑓 (𝛼) =

∑𝑛
𝑖=1 𝜌𝑖 > 1 =

ℎ(0) on [0, 𝜌 (𝑚) ]. So, ∃𝛼∗ ∈ (𝜌 (𝑚) , 𝜌 (1) ] such that
𝑓 (𝛼∗) = ℎ(𝛼∗) and this value is unique due to the
shape and positions of these functions. So there is a
unique index 𝑖 such that 𝛼∗ ∈ [𝜌 (𝑖+1) , 𝜌 (𝑖) ) of the form
indicated in (3).

• Case 𝜌 (1) = 1 and 𝑅(1) = {𝑖∗}: In this case, we can
assume 𝛼 = 1 since the normalization condition reads
ℎ(1) = 𝑓 (1) = 0. The capacity is then a possibility
measure 𝜌 = 𝜋. Choosing 𝛼 < 𝜌 (2) is impossible
because 𝑓 (𝛼) ≥ 𝜌2−𝛼+1−𝛼 > 1−𝛼. If there is a single
𝑖∗ such that 𝜌𝑖∗ = 1, choosing any 𝛼 with 𝜌 (2) ≤ 𝛼 < 1
is possible since 𝑓 (𝛼) = 1 − 𝛼, and the decomposable
capacity has distribution 𝜌 = 𝛼𝜋 + (1 − 𝛼)𝛿𝑖∗ , where
𝛿𝑖 is a Dirac function on 𝑖∗.

• If there aremore than one 𝜌𝑖 = 1, only𝛼 = 1 is possible
since 𝑓 (𝛼) ≥ 2(1 − 𝛼) if 𝛼 < 1, and 𝑓 (1) = ℎ(1).

We can summarize the results in this section as follows:

Theorem 2 Let 𝑛 weights 𝜌 𝑗 ∈ [0, 1], 𝑗 = 1, . . . , 𝑛 such
that

∑𝑛
𝑗=1 𝜌 𝑗 ≥ 1, with max𝑛

𝑗=1 𝜌 𝑗 < 1. There exists a
unique value 𝛼, an integer 𝑖0 such that 𝜌 (𝑖0+1) ≤ 𝛼 < 𝜌 (𝑖0) ,
a unique possibility distribution 𝜋 and a unique probability
distribution 𝑝 such that 𝜌 = 𝛼𝜋 + (1 − 𝛼)𝑝 with

• ∀𝑖 ≤ 𝑖0 + 1 ∀ 𝑗 ∈ 𝑅(𝑖) , 𝜋 𝑗 =
𝜌 𝑗

𝛼
and 𝑝 𝑗 = 0.

• ∀𝑖 ≥ 𝑖0 ∀ 𝑗 ∈ 𝑅(𝑖) , 𝑝 𝑗 =
𝜌 𝑗−𝛼
1−𝛼 and 𝜋 𝑗 = 1.

Proof We just need to prove that
∑𝑛

𝑖=1 𝑝𝑖 = 1.∑𝑛
𝑖=1 𝑝𝑖 =

∑
𝑖:𝜌𝑖>𝛼 (

𝜌𝑖
1−𝛼 − 𝛼

1−𝛼 ) =
1+𝛼( |𝐶+

𝛼 |−1)
1−𝛼 − 𝛼 |𝐶+

𝛼 |
1−𝛼 = 1.

Note that if max𝑛
𝑗=1 𝜌 𝑗 = 𝜌 (1) = 1, and 𝑅(1) = {𝑖∗} any 𝛼 ∈

[𝜌 (2) , 1] can be chosen and we have that 𝜌 = 𝛼𝜋 + (1−𝛼)𝑝
with 𝑝𝑖∗ = 1 and 𝜋 𝑗 = 𝜌 𝑗/𝛼, 𝑗 ≠ 𝑖∗.

Example 3 Consider the distribution of weights (0.5, 0.5,
0.8, 0.9). So we have 𝜌 (1) = 0.9, 𝜌 (2) = 0.8, 𝜌 (3) = 0.5
and |𝑅(1) | = |𝑅(2) | = 1 and |𝑅(3) | = 2. We are in the case

where the value of 𝛼 is one such that 𝛼 =

∑𝑖
𝑗=1 |𝑅( 𝑗) |𝜌( 𝑗)−1∑𝑖

𝑗=1 |𝑅( 𝑗) |
∈

[𝜌 (𝑖+1) , 𝜌 (𝑖) ).

• Suppose 𝑖 = 1, 𝛼 ∈ [0.8, 0.9): the normalization con-
dition reads 0.9 − 𝛼 = 1 − 𝛼; there is no solution.

• 𝑖 = 2, 𝛼 ∈ [0.5, 0.8): the normalization condition
reads 0.9 − 𝛼 + 0.8 − 𝛼 = 1 − 𝛼; hence 𝛼 = 0.7 ∈
[0.5, 0.8), which is true.

So 𝛼 = 0.7 is the solution. So, 𝜋1 = 𝜋2 = 0.5/0.7; 𝜋3 =

𝜋4 = 1 and 0.8 = 0.7+0.3𝑝3 so 𝑝3 = 1/3, 0.9 = 0.7+0.3𝑝4,
so 𝑝4 = 2/3.

5. Hybrid Prob-Poss Utility Functionals
In this section we show how utility functionals defined for
decomposable capacities in the 𝜌𝛼 family can be expressed
in terms of the possibility distribution and the probability
distribution that underlie 𝜌𝛼.

5.1. The Utility of Generalized Lotteries

Let us recall the new decision criteria, beyond expected util-
ity and possibilistic integrals based on a hybrid probability-
possibility function. Let us consider generalized lotter-
ies 𝐿𝜌𝛼

=< 𝜌𝛼
1 /_1, ..., 𝜌

𝛼
𝑛 /_𝑛 >. Two utility functionals

𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) and 𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ), respectively optimistic and
pessimistic, are defined in [2] and explicited in [4]:

𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝑆𝛼
𝑖=1,...,𝑛𝜌

𝛼
𝑖 ∗𝛼 _𝑖 (4)

=

{
𝛼 +

∑
𝑖 |_𝑖>𝛼,𝜌𝛼

𝑖
>𝛼 (_𝑖−𝛼) (𝜌𝛼

𝑖
−𝛼)

1−𝛼 if ∃𝑖 : _𝑖 > 𝛼 and 𝜌𝛼
𝑖
> 𝛼

𝑈𝑂𝑝𝑡 (𝐿𝜌𝛼 ) otherwise

𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) = 1 − 𝑆𝛼
𝑖=1,...,𝑛 𝜌𝛼

𝑖 ∗𝛼 (1 − _𝑖) (5)

=


1 − 𝛼 −

∑
𝑖 |1−_𝑖<𝛼,𝜌𝛼

𝑖
>𝛼 (1−_𝑖−𝛼) (𝜌𝛼

𝑖
−𝛼)

1−𝛼
if ∃𝑖 : _𝑖 < 1 − 𝛼 and 𝜌𝛼

𝑖
> 𝛼

𝑈𝑃𝑒𝑠 (𝐿𝜌𝛼 ) otherwise.

where𝑈𝑃𝑒𝑠 and𝑈𝑂𝑝𝑡 are respectively optimistic and pes-
simistic possibilistic utility functionals proposed by Dubois
and Prade [1] of the form:

𝑈𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = max
_𝑖 ∈𝛬

min(𝜌𝛼
𝑖 , _𝑖).

𝑈𝑃𝑒𝑠 (𝐿𝜌𝛼 ) = min
_𝑖 ∈𝛬

max(1 − 𝜌𝛼
𝑖 , _𝑖).

Note that 𝐸𝑆𝑂𝑝𝑡 and 𝐸𝑆𝑃𝑒𝑠 generalize these optimistic
and pessimistic possibility criteria, replacingmax by 𝑆𝛼 and
min by ∗𝛼. Moreover when 𝛼 = 1, then 𝐸𝑆𝑂𝑝𝑡 = 𝑈𝑂𝑝𝑡 ,
and 𝐸𝑆𝑃𝑒𝑠 = 𝑈𝑃𝑒𝑠. When 𝛼 = 0, 𝐸𝑆𝑂𝑝𝑡 = 𝐸𝑆𝑃𝑒𝑠 is
the standard expected utility of the lottery since 𝜌0 is a
probability distribution.
The new hybrid possibilistic-probabilistic generalized

criteria, 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) and 𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) are very appealing
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because they can be conveniently applied to decision trees.
Indeed, they respect the three major properties needed to
that effect: (Dynamic Consistency, Consequentialism and
Tree Reduction). See details in [4]. Let us recall two useful
properties proved in that paper:
Considering a lottery 𝐿𝜌 =< 𝜌1/_1, ..., 𝜌𝑛/_𝑛 > we

define another lottery (1 − 𝐿)𝜌, with utility scale upside
down, by (1 − 𝐿)𝜌 =< 𝜌1/(1 − _1), ..., 𝜌𝑛/(1 − _𝑛) >. We
have the following De Morgan-like duality relation

𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) = 1 − 𝐸𝑆𝑂𝑝𝑡 (1 − 𝐿𝜌𝛼 ). (6)

Moreover the parameter 𝛼 delimits zones where the pes-
simistic or the optimistic criteria apply:

Proposition 3 [4] 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) ≤ 𝛼 iff 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) =

𝑈𝑂𝑝𝑡 (𝐿𝜌𝛼 ) and �𝑖 s.t. _𝑖 > 𝛼 with 𝑝𝑖 > 0 .
Likewise, 𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) ≥ 1 − 𝛼 iff 𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) =

𝑈𝑃𝑒𝑠 (𝐿𝜌𝛼 ) and ∃𝑖 s.t. _𝑖 > 𝛼 with 𝑝𝑖 > 0.

Figure 2: 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) and 𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 )

In other words, as explained in [4], the criterion
𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) is optimistic and possibilistic (= 𝑈𝑂𝑝𝑡 (𝐿𝜌𝛼 ))
so long as entries (utilities or plausibilities) are below the
threshold 𝛼 (distribution included in blue area on Figure
2). Otherwise, we get a re-scaled expected value over states
with plausibilities and utilities greater than 𝛼 (see green
area in Figure 2, left).
Likewise, with 𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ), we get a re-scaled expected

value over states with utility less than 1 − 𝛼 and with
high enough plausibility i.e. greater than 𝛼. We get the
pessimistic possibilistic criterion 𝑈𝑃𝑒𝑠 (𝐿𝜌𝛼 ) otherwise
(with either high utilities or low plausibilities); see the
green area in Figure 2 right side.

5.2. Improving the Expression of the Generalized
Utility Functionals

This section is devoted to new technical results in order to
obtain expressions for 𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) and 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) that
explicitly use the possibility and probability distributions
underlying a distribution 𝜌. We have shown in the previous
section that (𝛼, 𝜋, 𝑝) are generally unique such that 𝜌 =

𝛼𝜋 + (1 − 𝛼)𝑝 and we provided explicit expressions for

(𝛼, 𝜋, 𝑝). Let 𝐶+
𝛼 = {𝑖 : 𝜌𝛼

𝑖
> 𝛼} = {𝑖 : 𝑝𝑖 > 0} and

𝛬+
𝛼 = {𝑖 : _𝑖 > 𝛼}. Note that 𝑃(𝐶+

𝛼 ∩ 𝛬+
𝛼) = 𝑃(𝛬+

𝛼).

Proposition 4

𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) =
{
max𝑖 min(𝛼𝜋𝑖 , _𝑖) if 𝐶+

𝛼 ∩ 𝛬+
𝛼 = ∅,

𝛼 +∑
𝑖∈𝛬+

𝛼
𝑝𝑖 (_𝑖 − 𝛼) otherwise.

(7)

Proof We can start from the expression
𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝑆𝛼

𝑖=1,...,𝑛𝜌
𝛼
𝑖

∗𝛼 _𝑖 . Recall that

𝜌𝛼
𝑖
=

{
𝛼 + (1 − 𝛼)𝑝𝑖 if 𝑖 ∈ 𝐶+

𝛼,

𝛼𝜋𝑖 otherwise.
.

Then it is clear that

• If 𝑖 ∉ 𝐶+
𝛼 ∩ 𝛬+

𝛼, then 𝜌𝛼
𝑖
∗𝛼 _𝑖 = min(𝛼𝜋𝑖 , _𝑖);

• If 𝑖 ∈ 𝐶+
𝛼∩𝛬+

𝛼, then 𝜌𝛼
𝑖
∗𝛼_𝑖 = 𝛼+ (𝛼+(1−𝛼) 𝑝𝑖−𝛼) (_𝑖−𝛼)

1−𝛼
= 𝛼 + 𝑝𝑖 (_𝑖 − 𝛼).

It follows that if 𝐶+
𝛼 ∩ 𝛬+

𝛼 = ∅, then 𝑆𝛼 = max and
𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = max𝑖 min(𝛼𝜋𝑖 , _𝑖). If 𝐶+

𝛼 ∩ 𝛬+
𝛼 ≠ ∅, then:

𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = ∑
𝑖∈𝐶+

𝛼∩𝛬+
𝛼
𝛼+𝑝𝑖 (_𝑖−𝛼)−𝛼( |𝐶+

𝛼∩𝛬+
𝛼 |−1)

= 𝛼 +∑
𝑖∈𝛬+

𝛼
𝑝𝑖 (_𝑖 − 𝛼).

When there are _𝑖 > 𝛼 with 𝑝𝑖 > 0 (probable situations
with sufficient utility), the optimistic hybrid utility function
takes the form

𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝛼(1 − 𝑃(𝛬+
𝛼)) + 𝑃(𝛬+

𝛼)𝐸 [_ |𝛬+
𝛼]

where 𝐸 [_ |𝛬+
𝛼] =

∑𝑛
𝑖=1 _𝑖𝑃({𝑖}|𝛬+

𝛼) =
∑

𝑖∈𝛬+
𝛼
_𝑖 𝑝𝑖

𝑃 (𝛬+
𝛼) . In other

words, in this expression, the factor𝛼 reflects in an optimistic
way the utility of the least satisfying situations. Indeed:

𝛼 +∑
𝑖∈𝛬+

𝛼
𝑝𝑖 (_𝑖 − 𝛼) = 𝛼 +∑

𝑖∈𝛬+
𝛼
_𝑖 𝑝𝑖 − 𝛼𝑝𝑖

= 𝛼 − ∑
𝑖∈𝛬+

𝛼
𝛼𝑝𝑖 +

∑
𝑖∈𝛬+

𝛼
_𝑖 𝑝𝑖 = 𝛼(1 − 𝑃(𝛬+

𝛼)) +∑
𝑖∈𝛬+

𝛼
_𝑖 𝑝𝑖

So 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) is a weighted average between the opti-
mistic evaluation of the least attractive situations, and the
conditional utility of the most attractive ones, weighted by
their respective probabilities.
Using semi duality relation (6), we obtain the follow-

ing result for the pessimistic hybrid utility functional
𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ), letting 𝛬𝛼 = {𝑖 : 1 − _𝑖 > 𝛼}.

Proposition 5 If 𝜌 = 𝛼𝜋 + (1 − 𝛼)𝑝, then

𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) =
{
min𝑖 max(1 − 𝛼𝜋𝑖 , _𝑖) if 𝐶+

𝛼 ∩ 𝛬𝛼 = ∅
1 − 𝛼 −∑

𝑖∈𝛬+
𝛼
𝑝𝑖 (1 − _𝑖 − 𝛼) otherwise.

(8)

Similarly to the optimistic case, when there exist prob-
able situations with sufficiently poor utility values, the
pessimistic hybrid utility functional takes the form

𝐸𝑆𝑃𝑒𝑠 (𝐿𝜌𝛼 ) = (1 − 𝛼) (1 − 𝑃(𝛬𝛼)) + 𝑃(𝛬𝛼)𝐸 [_ |𝛬𝛼] .
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We can see from Propositions 5 and 4 that when the
possibilistic criteria are used, they only depend on the
possibility distribution and the parameter 𝛼. And when
the conditional expected utility is used it only depends
on the probability distribution and on 𝛼. So 𝛼 controls
the switch from possibility-driven decision to probability-
driven decision.

6. Elicitation from Global Ratings of
Lotteries

In this section, we focus on a method to obtain the value
of the parameter 𝛼 of a hybrid prob-poss function in a
sequential decision problem, knowing the probability and
the possibility distribution, on the one hand, and the utility
of the corresponding decision.
At each chance node 𝑥 of the decision tree, a distribution

𝜌𝑥 of weights is assumed over the decision or leaf nodes
in 𝑆𝑢𝑐𝑐(𝑥). Since 𝜌𝑥 = 𝛼𝜋𝑥 + (1 − 𝛼)𝑝𝑥 , there is a subset
𝑆𝑢𝑐𝑐+ (𝑥) of probable successors ( 𝑝𝑥 (𝑑) > 0, 𝜋𝑥 (𝑑) = 1)
and a subset 𝑆𝑢𝑐𝑐(𝑥) \𝑆𝑢𝑐𝑐+ (𝑥) of more or less impossible
successors (𝑝𝑥 (𝑑) = 0, 𝜋𝑥 (𝑑) < 1). So we have two nested
decision trees for the same decision problem: one with
a probability distribution on each set 𝑆𝑢𝑐𝑐+ (𝑥), one with
possibility distribution on 𝑆𝑢𝑐𝑐(𝑥).
When a strategy is chosen, i.e, one decision for each

decision node, we are left with a generalized probability
tree, where probabilities are replaced by 𝜌𝛼 coefficients.
The properties of the hybrid prob-poss functions are such
that such composite generalized lotteries can be reduced
to a weight distribution on the leaves (final states) of the
decision trees providing that all 𝜌𝛼 distributions present
at each chance node share the same value of 𝛼 (see [3] for
details). This is reasonable if all the data about the decision
tree is provided by the same decision-maker. Comparing the
utilities of strategies come down to comparing generalized
utilities of 𝜌𝛼 distributions on final states. We suppose that
the decision-maker can provide probabilities and possibili-
ties on the decision tree, and can also assess the utilities of
the various strategies. However it seems difficult to ask for
the value 𝛼.
We thus start from a dataset, each item ofwhich ismade of

both distributions, namely the probability and the possibility
ones and the utility evaluation given by decision maker. In
this case we look for a unique value 𝛼 across data items, that
models the behaviour of the decision maker regarding the
trade-off between possibilistic and probabilistic decision
models.
The dataset is a set of tuple (𝜋 𝑗 , 𝑝 𝑗 , 𝛽 𝑗 ) 𝑗 ∈ 𝐽 =

{1, ..., 𝑚} where 𝜋 𝑗 is a possibility distribution, 𝑝 𝑗 is a
probability distribution 𝑗 is a strategy, and 𝛽 𝑗 is the global
evaluation given by an expert.

We want to identify 𝛼 such that 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) represents
the given dataset, i.e., 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼

𝑗 ) = 𝛽 𝑗 . Without loss of
generality, we assume that, for utilities of states, we have
_𝑖 < _𝑖+1,∀𝑖 ∈ [𝑛 − 1]. Before giving the results on the
feasibility of determining 𝛼, we give some facts on the link
between 𝐸𝑆𝑂𝑝𝑡 , 𝛼 and 𝛽 𝑗 .

Lemma 6 Consider a lottery 𝐿𝜌𝛼 with 𝜌𝛼 = (𝑝, 𝜋, 𝛼).
If ∃!𝑖∗ 𝑝𝑖∗ = 1 then

• for all 𝛼 < _𝑖∗ , 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = _𝑖∗ .

• for 𝛼 ≥ _𝑖∗ , 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) ∈ [_𝑖∗ ,𝑈𝑂𝑃𝑇 (𝐿 𝜋)] .

Proof First it is worth noticing that the condition ∃!𝑖∗
𝑝𝑖∗ = 1 is equivalent to |{𝑖 |𝑝𝑖 > 0}| = |{𝑖∗}| = 1.
If 𝛼 < _𝑖∗ then 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝛼 + 𝑝𝑖∗ (_𝑖∗ − 𝛼) = _𝑖∗ .
If 𝛼 ≥ _𝑖∗ then 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = max𝑖 min(𝛼𝜋𝑖 , _𝑖) ≥

min(𝛼 × 1, _𝑖∗ ) = _𝑖∗ , since 𝑝𝑖∗ > 0 implies
𝜋𝑖∗ = 1 by construction. So, 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) =

max(_𝑖∗ ,max𝑖>𝑖∗ min(𝛼𝜋𝑖 , _𝑖)) ∈ [_𝑖∗ ,max𝑖 min(𝜋𝑖 , _𝑖)].

As a consequence, if a piece of data (𝜋, 𝑝, 𝛽) where 𝑝 is
a Dirac function on 𝑠𝑖∗ is represented by 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ), we
must have that 𝛽 ∈ [_𝑖∗ , 𝐸𝑆𝑂𝑝𝑡 (𝐿 𝜋)] .

Lemma 7 Consider a lottery 𝐿𝜌𝛼 with 𝜌𝛼 = (𝑝, 𝜋, 𝛼).
If |{𝑖 |𝑝𝑖 > 0}| > 1 with _𝑖𝑀 = max𝑖 (_𝑖 |𝑝𝑖 > 0), and
𝛼1 ≥ _𝑖𝑀 > 𝛼2, then 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼1 ) ≠ 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼2 ).

Proof
If 𝛼 < _𝑖𝑀 then 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝛼+∑𝑖:_𝑖>𝛼 𝑝𝑖 (_𝑖−𝛼) <

𝛼 + _𝑖𝑀 − 𝛼 = _𝑖𝑀 .
If 𝛼 ≥ _𝑖𝑀 then 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = max𝑖 min(𝛼𝜋𝑖 , _𝑖) ≥

min(𝛼 × 1, _𝑖𝑀 ) = _𝑖𝑀 .

The above result shows that the best utility value among
probable outcomes serves as a threshold separating additive
and maxitive behaviors of the prop-poss optimistic utility
functional.
Note that in the probabilistic area, 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) ranges

between
∑𝑛

𝑖=1 𝑝𝑖_𝑖 (𝛼 = 0) and 1 (𝛼 = 1); in the possibilistic
area, 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) ranges betweenmax𝑛

𝑖=1min(𝜋𝑖 , _𝑖) (𝛼 =

1) and 0 (𝛼 = 0). The function 𝛼 ∈ [0, 1] ↦→ 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 )
is non-decreasing. Moreover, we can show that

𝑛max
𝑖=1
min(𝜋𝑖 , _𝑖) ≥ _𝑖𝑀 ≥

𝑛∑︁
𝑖=1

𝑝𝑖_𝑖 .

The second inequality is obvious. The first is due to the fact
that 𝜋𝑖𝑀 = 1.
More specifically, the following property holds for

𝐸𝑆𝑂𝑝𝑡 :
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Proposition 8
For 𝛼 = _𝑖𝑀 , 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = _𝑖𝑀 .

Proof Indeed, _𝑖𝑀 +∑
𝑖:_𝑖>_𝑖𝑀 𝑝𝑖 (_𝑖 − _𝑖𝑀 ) = _𝑖𝑀 + 0;

likewise max𝑖 min(_𝑖𝑀 𝜋𝑖 , _𝑖) =

max𝑖≥𝑖𝑀 min(_𝑖𝑀 𝜋𝑖 , _𝑖) = min(_𝑖𝑀 × 1, _𝑖𝑀 ) since
for 𝑖 > 𝑖𝑀 ,min(_𝑖𝑀 𝜋𝑖 , _𝑖) ≤ _𝑖𝑀 .

So, the value _𝑖𝑀 serves as a break-point between the two
forms of 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ). More precisely:

Proposition 9 For a given piece of data (𝜋, 𝑝, 𝛽) such
that |{𝑖 |𝑝𝑖 > 0}| > 1 suppose there is a value 𝛼 such that
𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) represents (𝜋, 𝑝, 𝛽) (i.e. 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝛽

with 𝜌𝛼 = 𝛼𝜋 + (1 − 𝛼)𝑝).{
if _𝑖𝑀 > 𝛽, then 𝛽 = 𝛼 +∑

𝑖:_𝑖>𝛼 𝑝𝑖 (_𝑖 − 𝛼) > 𝛼

if _𝑖𝑀 ≤ 𝛽, then 𝛽 = max𝑖 min(𝛼𝜋𝑖 , _𝑖) ≤ 𝛼.

Proof First, note that if 𝛬+
𝛼 = {𝑖 : _𝑖 > 𝛼} ≠ ∅,

𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝛼 + ∑
𝑖:_𝑖>𝛼 𝑝𝑖 (_𝑖 − 𝛼) < _𝑖𝑀 . Indeed,

𝛼 + ∑
𝑖:_𝑖>𝛼 𝑝𝑖 (_𝑖 − 𝛼) < 𝛼 + ∑

𝑖:_𝑖>𝛼 𝑝𝑖 (_𝑖𝑀 − 𝛼) =

𝛼(1 − 𝑃(𝛬+
𝛼)) + _𝑖𝑀 𝑃(𝛬+

𝛼) < _𝑖𝑀 .
Besides, if 𝛬+

𝛼 = {𝑖 : _𝑖 > 𝛼} = ∅, 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) =

max𝑖 min(𝛼𝜋𝑖 , _𝑖) ≥ min(𝛼, _𝑖𝑀 ) = _𝑖𝑀 . So,

• If _𝑖𝑀 > 𝛽 then 𝛽 = 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝛼 +∑
𝑖:_𝑖>𝛼 𝑝𝑖 (_𝑖 − 𝛼),∀𝛼 ∈ [0, _𝑖𝑀 [ and clearly 𝛽 > 𝛼.

• If _𝑖𝑀 ≤ 𝛽 and |{𝑖 |𝑝𝑖 > 0}| > 1, due to Lemma 7, we
know that 𝛽 = 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = max𝑖 min(𝛼𝜋𝑖 , _𝑖) ≤
𝛼, ∀𝛼 ∈ [_𝑖𝑀 , 1].

From Proposition 9 we can reduce the range of possible
values of 𝛼 and identify if a data item is in the possibilistic
area or in the probabilistic area. In the following we will
distinguish between the possibilistic and probabilistic cases.
In the possibilistic case, Proposition 10 shows that 𝛼 is
unique only if the evaluation 𝛽 is not the utility of a state.
Otherwise, the evaluation is coherent if the best states are
not the most possible ones.
First, we need a result simplifying the expression of

𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = max𝑖 min(𝛼𝜋𝑖 , _𝑖) in the possibilistic area.
Not all terms min(𝛼𝜋𝑖 , _𝑖) are useful in the computation
of 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ). If 𝑖 and 𝑗 are such that min(𝛼𝜋𝑖 , _𝑖) ≥
min(𝛼𝜋 𝑗 , _ 𝑗 ),∀𝛼 ∈ [0, 1], the latter term is dominated and
can be deleted from the expression.
Let 𝑁𝐷 be the set of indices of non dominated terms.

We have that 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = max𝑖∈𝑁𝐷 min(𝛼𝜋𝑖 , _𝑖).
Suppose only 𝑘 dominating terms remain in the

non-redundant formulation of 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ), with indices
ℓ1, ...ℓ𝑘 . It is clear that _ℓ1 = _𝑖𝑀 < _ℓ2 · · · < _ℓ𝑘 .
Moreover, due to non-redundancy, we must have that

𝜋ℓ1 = 𝜋𝑖𝑀 = 1 > 𝜋ℓ2 · · · > 𝜋ℓ𝑘 . Indeed if there were
an equality between two 𝜋ℓ 𝑗 ’s, one of the corresponding
terms would be redundant.
We can now solve the equation 𝛽 = 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) for 𝛼

in the possibilistic area.

Proposition 10 Suppose a piece of data (𝜋, 𝑝, 𝛽) with
|{𝑖 |𝑝𝑖 > 0}| > 1 is represented by 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) with 𝛽 ∈
[_𝑖𝑀 ,max𝑖 min(𝜋𝑖 , _𝑖)]. Then there is an index 𝑗 > 1 such
that _ℓ 𝑗−1 < 𝛽 ≤ _ℓ 𝑗 and the value 𝛼 is such that

• 𝛼 =
𝛽

𝜋_ℓ𝑗
if 𝛽 > _ℓ 𝑗−1 ;

• 𝛼 ∈ [ 𝛽

𝜋ℓ𝑗
,

𝛽

𝜋ℓ𝑗+1
] if 𝛽 = _ℓ 𝑗 .

Proof We have seen that = 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) =

max𝑖∈𝑁𝐷 min(𝛼𝜋𝑖 , _𝑖) = max𝑘
𝑗=1min(𝛼𝜋ℓ 𝑗 , _ℓ 𝑗 ). The

function 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) is continuous, piecewise linear
non-decreasing, and may have flat sections (when
𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = _𝑖) and increasing sections (when
𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) = 𝛼𝜋𝑖). Fixing 𝛽 ∈ [_𝑖𝑀 ,max𝑖 min(𝜋𝑖 , _𝑖)],
there is an index 𝑗 such that 𝛽 = min(𝛼𝜋ℓ 𝑗 , _ℓ 𝑗 ). We con-
sider two cases:

• 𝛽 = 𝛼𝜋ℓ 𝑗 < _ℓ 𝑗 . Then 𝛼 =
𝛽

𝜋ℓ𝑗
. This value ranges in

[
_ℓ𝑗−1
𝜋ℓ𝑗

,
_ℓ𝑗

𝜋ℓ𝑗
[ when 𝛽 ranges in [_ℓ 𝑗−1 , _ℓ 𝑗 [.

• 𝛽 = _ℓ 𝑗 ≤ 𝛼𝜋ℓ 𝑗 ; then𝛼 ≥
_ℓ𝑗

𝜋ℓ𝑗
. However,𝛼𝜋ℓ 𝑗+1 cannot

overpass _ℓ 𝑗 ; otherwise we get 𝛽 = min(𝛼𝜋ℓ 𝑗+1 , _ℓ 𝑗+1 ),
contrary to the assumption (remember that 𝜋ℓ 𝑗+1 <

𝜋ℓ 𝑗 ). So, if 𝛽 = _ℓ 𝑗 ,𝛼 can be any value in

[
_ℓ𝑗

𝜋ℓ𝑗
,min(1,

_ℓ𝑗

𝜋ℓ+1
)].

Note that
_ℓ𝑗

𝜋ℓ𝑗
<

_ℓ𝑗+1
𝜋ℓ𝑗+1

,∀ 𝑗 = 1, . . . , 𝑘 − 1. And
_ℓ𝑗

𝜋ℓ𝑗
≤ 1,

𝑗 = 1, . . . , 𝑘 − 1. For if
_ℓ𝑗

𝜋ℓ𝑗
> 1 then _ℓ 𝑗 > 𝜋ℓ 𝑗 ≥ 𝜋ℓ 𝑗𝛼. So

the value of 𝐸𝑆𝑂𝑝𝑡 cannot reach _ℓ 𝑗 , (hence not _ℓ′𝑗 , 𝑗
′ > 𝑗 ,

which is contradictory with the non-redundancy assumption,
for 𝑗 ≤ 𝑘 − 1. For 𝑗 = 𝑘 it means that 𝐸𝑆𝑂𝑝𝑡 = 𝜋ℓ 𝑗 when
𝛼 = 1.

Now we consider a data item that we know lies in the
probabilistic area. Proposition 11 shows that the evaluation
𝛽 is coherent with 𝐸𝑆𝑂𝑝𝑡 if it lies between the expected
utility and the best utlity value _𝑀

𝑖
with positive probability.

And in this case 𝛼 is unique.

Proposition 11 For a given piece of data (𝜋, 𝑝, 𝛽) with
|{𝑖 |𝑝𝑖 > 0}| > 1, represented by 𝐸𝑆𝑂𝑝𝑡 (𝐿𝜌𝛼 ) with 𝛽 ∈
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𝑖 : 1 2 3 4 5 𝛽

_𝑖 0.01 0.3 0.5 0.8 1
𝑗 = 1 𝜋1 0.2 0.6 1 1 0 0.8

𝑝1 0 0 0 1 0
𝑗 = 2 𝜋2 1 1 0.5 0.5 0 0.3

𝑝2 0.4 0.6 0 0 0
𝑗 = 3 𝜋3 0 1 0.5 1 1 0.82

𝑝3 0 0.1 0 0.6 0.3
𝑗 = 4 𝜋4 1 1 1 1 1 0.51

𝑝4 0.2 0.3 0.3 0.2 0

Table 1: Data

[∑𝑖 𝜋𝑖_𝑖 , _𝑖𝑀 ], if _𝑖𝑀 > 𝛽 ≥ ∑𝑛
𝑖=1 _𝑖 𝑝𝑖 then there exists a

unique 𝛼 such that 𝐸𝑆𝑂𝑃𝑡 (𝐿𝜌𝛼 ) = 𝛽. It is of the form:

𝛼 =
𝛽 − 𝑃(𝛬+

𝛼)𝐸 [_ |𝛬+
𝛼]

(1 − 𝑃(𝛬+
𝛼))

=
𝛽 −∑𝑛

𝑗=𝑖+1 𝑝 𝑗_ 𝑗

(1 −∑𝑛
𝑗=𝑖+1 𝑝 𝑗 )

∈ [_𝑖 , _𝑖+1 [.

(9)

Proof The proof is in the same style as the one of Proposition
1. The equation to be solved can be put in the form:

𝛽 − 𝛼 =

𝑛∑︁
𝑖=1

𝑝𝑖 max(0, _𝑖 − 𝛼).

It can thus be expressed as the intersection points of the two
functions ℎ(𝛼) = 𝛽−𝛼 and 𝑓 (𝛼) = ∑𝑛

𝑖=1 𝑝𝑖 max(0, _𝑖 −𝛼)
on interval [0, 1]. Notice that ℎ and 𝑓 are both continuous.
ℎ is linear decreasing on [0, 1] with slope −1, ℎ(0) =

𝛽, ℎ(𝛽) = 0; 𝑓 is piecewise linear decreasing on [0, _𝑖𝑀 ]
and 𝑓 (𝛼) = 0 on ]_𝑖𝑀 , 1] and 𝑓 (0) =

∑𝑛
𝑖=1 𝑝𝑖 . From

condition _𝑖𝑀 > 𝛽 ≥ ∑𝑛
𝑖=1 _𝑖 𝑝𝑖 , 𝑓 (0) ≤ 𝛽 = ℎ(0) and

𝑓 (𝛽) ≥ 0 = ℎ(𝛽). So ∃𝛼∗ ∈ [0, _𝑖𝑀 ] such that 𝑓 (𝛼∗) =
ℎ(𝛼∗) and this value is unique due to the shape and positions
of these functions. So there is a unique index 𝑖 such that
𝛼∗ ∈ [_𝑖 , _𝑖+1) of the form indicated in (9).

To conclude this analysis, we can answer the question
whether the decision maker judgment can be represented
by 𝐸𝑆𝑂𝑃𝑡 (𝐿𝜌𝛼 ) whatever the example but 𝛼 is unique
only if we have at least one example in the expected utility
part of 𝐸𝑆𝑂𝑃𝑡 (𝐿𝜌𝛼 ) or at least one example using the
possibility part of 𝐸𝑆𝑂𝑃𝑡 (𝐿𝜌𝛼 ) with 𝛽 𝑗 ∈]_𝑖∗_𝑖∗+1 [. Below
is an example of elicitation.

Example 4 Let us consider the problem with 4 data items
on 5 states {1, ..., 5} represented in table 1. The intervals of
possible 𝛼’s applying proposition 9 are presented in table 2.

• Piece of data 𝑗 = 1: There is only one 𝑖 such that
|𝑖 |𝑝𝑖 = 1| = 1 so according to the Lemma 6 all 𝛼 in
[0, 1] are possible.

• Piece of data 𝑗 = 2: _𝑖𝑀 = 0.3 = 𝛽. So, 𝛼 = 0.3
is a solution. In the possibilistic area, 𝐸𝑜𝑝𝑡 =

max(min(𝛼, 0.3),min(0.5𝛼, 0.5),min(0.5𝛼, 0.8)).
The second term is redundant. We can use proposition
9.
We have 𝛽 = _2 so 𝛼 ≥ _2

𝜋2
= 0.3
1 = 0.3 and

𝛼 ≤ 0.3
0.5 = 0.6. So the possible values of 𝛼 are in

[0.3, 0.6].

𝛼 𝛼

𝑗 = 1 0 1
𝑗 = 2 0.3 0.6
𝑗 = 3 0 0.82
𝑗 = 4 0 0.51
𝛼 0.3 0.51

Table 2: Candidate values of 𝛼 after Prop. 9

• Piece of data 𝑗 = 3: _𝑖𝑀 = 1 > 𝛽 = 0.82. So, we are
in the probabilistic case. We know from Proposition
9 that 𝛼 < 0.82. To be more precise, we need to test
several intervals.

– We start with interval 𝛼 ∈ [0.5, 0.8[, we have
from equ. (9): 𝛼 = 0.82−0.6×0.8−0.3×1

1−0.6−0.3 = 0.4 ∉

[0.5, 0.8[
– so we check the interval 𝛼 ∈ [0.3, 0.5], the

equation remains the same since 𝑝3 = 0. We
obtain 𝛼 = 0.4 ∈ [0.3, 0.5].

• Piece of data 𝑗 = 4: _𝑖𝑀 = 0.8 > 𝛽 = 0.51. This is a
probabilistic case. We know from proposition 9 that
𝛼 < 0.51. The reader can check that again 𝛼 = 0.4
since 𝛼 = 0.51−0.3×0.5−0.2×0.8

1−0.3−0.2 = 0.4.
So, the decision-maker is consistent across all four
examples: 𝛼 = 0.4 is a valid choice for the 4 items.

7. Conclusion
We have pursued the study of a joint extension of possi-
bilistic and probabilistic utility functionals, that preserves
good dynamic properties in decision trees. The capacity at
work is a special case of belief functions that is a convex
mixture between a probability and a possibility function.
We have shown that any weight distribution on states whose
sum is at least one can be interpreted as determining in a
unique way such a capacity. With such a model, we can
distinguish between normal states with positive probability,
and abnormal ones that have zero probability, but are more
or less impossible. We have given explicit expressions of
generalized utility functionals based on this capacity. We
also provided first steps toward the identification of the
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mixture coefficient 𝛼, based on human estimation of the
worth of poss-prob lotteries. Future works may focus on
the elicitation of 𝛼 from a preference ordering of lotteries,
rather than human-originated numerical values.
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