Proof of Theorem 3. Let $\mathbb{E}_{\mathcal{E}}:=\left\{E \in \mathbb{E}_{\mathcal{D}}: \mathcal{E}^{*}(E)<\right.$ $+\infty\}$. Since \mathcal{E} is downward continuous, we know from Lemma 2 that every linear expectation $E \in \mathbb{E}_{\mathcal{E}}$ is downward continuous. Consequently, if follows from the Daniell-Stone Theorem that for all $E \in \mathbb{E}_{\mathcal{E}}, E=\left.\hat{E}\right|_{\mathcal{D}}$ with

$$
\hat{E}: \mathcal{M} \rightarrow \overline{\mathbb{R}}: g \mapsto \int g \mathrm{~d} P_{E}
$$

It follows immediately from this and Lemma 1 that $\hat{\mathcal{E}}$ is well defined and extends \mathcal{E}.

On several occasions, we will need that for all $f \in \mathcal{M}(\mathcal{D})$ and $E \in \mathbb{E}_{\mathcal{E}}, \mathcal{E}^{*}(E) \in \mathbb{R}$ (due to Lemma 1) and

$$
\begin{equation*}
\hat{E}(f) \leq \hat{\mathcal{E}}(f)+\mathcal{E}^{*}(E) \tag{12}
\end{equation*}
$$

Next, we show that $\hat{\mathcal{E}}$ is a convex expectation. The extension $\hat{\mathcal{E}}$ is a nonlinear expectation: (i) $\mathcal{M}(\mathcal{D})$ includes all constant real functions because $\mathcal{D} \subseteq \mathcal{M}(\mathcal{D})$ and \mathcal{D} includes all constant real functions; (ii) $\hat{\mathcal{E}}$ is isotone because the Lebesgue integral is isotone on $\mathcal{M}(\mathcal{D})$ [20, Chapter 8 , Theorem 5 (iv)]; and (iii) $\hat{\mathcal{E}}$ is constant preserving because it extends \mathcal{E} and \mathcal{E} is constant preserving. To verify that $\hat{\mathcal{E}}$ is convex, we fix some $f, g \in \mathcal{M}(\mathcal{D})$ and $\lambda \in[0,1]$ such that $f+g$ is meaningful and in $\mathcal{M}(\mathcal{D})$ and $\lambda \hat{\mathcal{E}}(f)+(1-\lambda) \hat{\mathcal{E}}(g)$ is meaningful. If $\lambda=0$ or $\lambda=1$, clearly $\hat{\mathcal{E}}(\lambda f+(1-\lambda) f)=$ $\lambda \hat{\mathcal{E}}(f)+(1-\lambda) \hat{\mathcal{E}}(g)$; hence, without loss of generality we may assume that $0<\lambda<1$. Due to symmetry, and because $\lambda \hat{\mathcal{E}}(f)+(1-\lambda) \hat{\mathcal{E}}(g)$ is meaningful, we need to distinguish three cases: (i) $\hat{\mathcal{E}}(f)=+\infty$ and $\hat{\mathcal{E}}(g)>-\infty$; (ii) $\hat{\mathcal{E}}(f)$ and $\hat{\mathcal{E}}(g)$ both real; and (iii) $\hat{\mathcal{E}}(f)=-\infty$ and $\hat{\mathcal{E}}(g)<+\infty$. In the first case, the required inequality holds trivially. In the second case, it follows from Eqn. (12) that for all $E \in \mathbb{E}_{\mathcal{E}}$, $\hat{E}(f)<+\infty$ and $\hat{E}(g)<+\infty$, so $\lambda \hat{E}(f)+(1-\lambda) \hat{E}(g)$ is meaningful and, due to the linearity of \hat{E} [20, Chapter 8 , Theorem 5 (i)], equal to $\hat{E}(\lambda f+(1-\lambda) g)$. Similarly, in the third case, it follows from Eqn. (12) that for all $E \in \mathbb{E}_{\mathcal{E}}$, $\hat{E}(f)=-\infty$ and $\hat{E}(g)<+\infty$, so $\lambda \hat{E}(f)+(1-\lambda) \hat{E}(g)$ is meaningful and, due to the linearity of \hat{E}, equal to $\hat{E}(\lambda f+$ $(1-\lambda) g)$. Consequently, in the last two cases,

$$
\begin{aligned}
\hat{\mathcal{E}}(\lambda f & +(1-\lambda) g) \\
& =\sup \left\{\hat{E}(\lambda f+(1-\lambda) g)-\mathcal{E}^{*}(E): E \in \mathbb{E}_{\mathcal{E}}\right\} \\
& =\sup \left\{\hat{E}(\lambda f)+(1-\lambda) \hat{E}(g)-\mathcal{E}^{*}(E): E \in \mathbb{E}_{\mathcal{E}}\right\} \\
\leq & \lambda \sup \left\{\hat{E}(f)-\mathcal{E}^{*}(E): E \in \mathbb{E}_{\mathcal{E}}\right\} \\
& \quad+(1-\lambda) \sup \left\{\hat{E}(g)-\mathcal{E}^{*}(E): E \in \mathbb{E}_{\mathcal{E}}\right\} \\
& =\lambda \hat{\mathcal{E}}(f)+(1-\lambda) \hat{\mathcal{E}}(g),
\end{aligned}
$$

as required.
Denk et al. [10, Theorem 3.10] show that the restriction of $\hat{\mathcal{E}}$ to $\mathcal{M}(\mathcal{D}) \cap \mathcal{L}(\mathcal{Y}) \supseteq \mathcal{D}_{\delta, \mathrm{b}}$ is downward continuous on $\mathcal{D}_{\delta, \mathrm{b}}$, so clearly $\hat{\mathcal{E}}$ is downward continuous on $\mathcal{D}_{\delta, \mathrm{b}}$ too.

Proving the upward continuity on $\mathcal{M}_{\mathrm{b}}(\mathcal{D})$ is straightforward. Fix any $\left(\mathcal{M}_{\mathrm{b}}\right)^{\mathbb{N}} \ni\left(f_{n}\right)_{n \in \mathbb{N}} \nearrow f \in \mathcal{M}_{\mathrm{b}}(\mathcal{D})$. For
all $E \in \mathbb{E}_{\mathcal{E}}, \hat{E}$ is upward continuous on \mathcal{M}_{b}-due to the Monotone Convergence Theorem, see for example [35, Theorem 12.1]-and therefore $\lim _{n \rightarrow+\infty} \hat{E}\left(f_{n}\right)=$ $\sup _{n \in \mathbb{N}} \hat{E}\left(f_{n}\right)=\hat{E}(f)$. From this and the isotonicity of $\hat{\mathcal{E}}$, it follows that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \hat{\mathcal{E}}\left(f_{n}\right) & =\sup \left\{\hat{\mathcal{E}}\left(f_{n}\right): n \in \mathbb{N}\right\} \\
& =\sup \left\{\sup \left\{\hat{E}\left(f_{n}\right)-\mathcal{E}^{*}(E): E \in \mathbb{E}_{\mathcal{E}}\right\}: n \in \mathbb{N}\right\} \\
& =\sup \left\{\sup \left\{\hat{E}\left(f_{n}\right)-\mathcal{E}^{*}(E): n \in \mathbb{N}\right\}: E \in \mathbb{E}_{\mathcal{E}}\right\} \\
& =\sup \left\{\hat{E}(f)-\mathcal{E}^{*}(E): E \in \mathbb{E}_{\mathcal{E}}\right\} \\
& =\hat{\mathcal{E}}(f),
\end{aligned}
$$

as required.
To prove the second part of the statement, we assume that \mathcal{E} is an upper expectation. Recall from Lemma 1 that $\mathcal{E}^{*}(E)=0$ for all $E \in \mathbb{E}_{\mathcal{E}}$ and that $\mathbb{E}_{\mathcal{E}}$ is the set of dominated linear expectations (on \mathcal{D}). Hence, to see that $\hat{\mathcal{E}}$ is positively homogeneous, it suffices to realise that for all $E \in \mathbb{E}_{\mathcal{E}}$ (i) $\mathcal{E}^{*}(E)=0$ due to Lemma 1; and (ii) \hat{E} is homogeneous [20, Chapter 8, Theorem 5 (i)]. That $\hat{\mathcal{E}}$ is subadditve follows from a similar argument as the one we used to prove that $\hat{\mathcal{E}}$ is convex.

Proof of Corollary 4. From Theorem 3.10 in [10]-or the functional version of Choquet's Capacitibility Theorem, see [3, Proposition 2.1]-it follows that for all $f \in \mathcal{M}_{\mathrm{b}}(\mathcal{D}) \cap$ $\mathcal{M}^{\mathrm{b}}(\mathcal{D})=\mathcal{M}(\mathcal{D}) \cap \mathcal{L}(\boldsymbol{y})$,

$$
\begin{equation*}
\hat{\mathcal{E}}(f)=\sup \left\{\lim _{n \rightarrow+\infty} \hat{\mathcal{E}}\left(f_{n}\right): \mathcal{D}^{\mathbb{N}} \ni\left(f_{n}\right)_{n \in \mathbb{N}} \searrow \leq f\right\} \tag{13}
\end{equation*}
$$

It remains for us to prove the equality in the statement for all $f \in \mathcal{M}_{\mathrm{b}}(\mathcal{D}) \backslash \mathcal{M}^{\mathrm{b}}(\mathcal{D})$, so let us fix any such f. Then $(f \wedge k)_{k \in \mathbb{N}}$ is an increasing sequence in $\mathcal{M}_{\mathrm{b}}(\mathcal{D}) \cap \mathcal{M}^{\mathrm{b}}(\mathcal{D})$ that converges pointwise to f, and therefore

$$
\hat{\mathcal{E}}(f)=\lim _{k \rightarrow+\infty} \hat{\mathcal{E}}(f \wedge k)=\sup \{\hat{\mathcal{E}}(f \wedge k): k \in \mathbb{N}\}
$$

Because $f \wedge k \in \mathcal{M}_{\mathrm{b}}(\mathcal{D}) \cap \mathcal{M}^{\mathrm{b}}(\mathcal{D})$ for all $k \in \mathbb{N}$, it follows from this equality and Eqn. (13) that

$$
\begin{aligned}
\hat{\mathcal{E}}(f) & =\sup \left\{\lim _{n \rightarrow+\infty} \hat{\mathcal{E}}\left(f_{n}\right): k \in \mathbb{N}, \mathcal{D}^{\mathbb{N}} \ni\left(f_{n}\right)_{n \in \mathbb{N}} \searrow \leq f \wedge k\right\} \\
& =\sup \left\{\lim _{n \rightarrow+\infty} \hat{\mathcal{E}}\left(f_{n}\right): \mathcal{D}^{\mathbb{N}} \ni\left(f_{n}\right)_{n \in \mathbb{N}} \searrow \leq f\right\},
\end{aligned}
$$

as required.
Proof of Equation (2). Due to Lemma 8.1 (and Lemma 8.3) in [35], $\sigma(\mathscr{D})$ is generated by the collection of level sets

$$
C:=\{\{\omega \in \Omega: f(\omega) \geq \alpha\}: f \in \mathscr{D}, \alpha \in \mathbb{R}\} .
$$

Hence, it follows from Eqn. (1) that every cylinder $F \in \mathscr{F}$ belongs to C, and therefore also to $\sigma(\mathscr{D})$. Consequently, $\sigma(\mathscr{F}) \subseteq \sigma(\mathscr{D})$.

To prove that $\sigma(\mathscr{D}) \subseteq \sigma(\mathscr{F})$, it suffices to verify that any level set in C is a cylinder. To this end, we fix any $f \in \mathscr{D}$ and $\alpha \in \mathbb{R}$. By definition of \mathscr{D}, there are some $U \in \mathscr{U}$ and $g \in \mathcal{L}\left(\mathscr{X}^{U}\right)$ such that $f=g \circ \pi_{U}$. Let $A:=$ $\left\{x \in \mathscr{X}^{U}: g(x) \geq \alpha\right\}$. Then clearly

$$
\{\omega \in \Omega: f(\omega) \geq \alpha\}=\left\{\omega \in \Omega: \pi_{U}(\omega) \in A\right\}
$$

so this level set is indeed a cylinder.
Proof of Lemma 9. That R_{E} is finitely additive with $R_{E}(\Omega)=1$ follows immediately because E is a linear expectation. Hence, we focus on the second part of the statement.

First, we assume that E is downward continuous. Then it follows immediately from the Daniell-Stone Theorem that $R_{E}=P_{E} \mid \mathscr{F}$, and therefore R_{E} is countably additive.

Second, we assume that R_{E} is countably additive. Then it is well known, see for example Proposition 9 in [20, Chapter 7] or Lemma 4.3 in [33, Chapter II], that for any decreasing $\left(F_{n}\right)_{n \in \mathbb{N}} \in \mathscr{F}^{\mathbb{N}}$ —meaning that $F_{n} \supseteq F_{n+1}$ for all $n \in \mathbb{N}$-with $\bigcap_{n \in \mathbb{N}} F_{n}=\emptyset$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} R_{E}\left(F_{n}\right)=0 \tag{14}
\end{equation*}
$$

To show that E is downward continuous, we fix any $f \in \mathscr{D}$ and any decreasing sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \in \mathscr{D}^{\mathbb{N}}$ that converges pointwise to f. Then

$$
\begin{equation*}
E\left(f_{n}\right)-E(f)=E\left(f_{n}-f\right) \geq 0 \quad \text { for all } n \in \mathbb{N} \tag{15}
\end{equation*}
$$

Obviously, $\left(f_{n}-f\right)_{n \in \mathbb{N}}$ is a decreasing sequence in \mathscr{D} that converges pointwise to 0 .

Fix any $\epsilon \in \mathbb{R}_{>0}$, and let $\beta:=\left\|f_{1}-f\right\|=\sup f_{1}-f$. Then for all $n \in \mathbb{N}$, we let $F_{n}:=\left\{\omega \in \Omega: f_{n}(\omega)-f(\omega)>\epsilon\right\}$; it is a bit laborious to verify that $F_{n} \in \mathscr{F}$, so we leave this as an exercise to the reader. This way, $\left(F_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence in \mathscr{F} with $\bigcap_{n \in \mathbb{N}} F_{n}=\emptyset$, and for all $n \in \mathbb{N}, f_{n}-f \leq \epsilon+\beta \mathrm{a}_{F_{n}}$ and therefore

$$
E\left(f_{n}-f\right) \leq \epsilon+E\left(\square_{F_{n}}\right)=\epsilon+R_{E}\left(F_{n}\right) .
$$

It follows from this and Eqn. (14) that

$$
\lim _{n \rightarrow+\infty} E\left(f_{n}-f\right) \leq \lim _{n \rightarrow+\infty} \epsilon+\beta R_{E}\left(F_{n}\right)=\epsilon
$$

Since this inequality holds for any strictly positive real number ϵ, we infer from it and the one in Eqn. (15) that

$$
\lim _{n \rightarrow+\infty} E\left(f_{n}\right)=E(f)
$$

as required.
Proof of Theorem 7. To prove that \bar{E} is downward continuous, we recall from Proposition 6 that \bar{E} is an upper
expectation. By Lemmas 1 and 2, it suffices to verify that every dominated linear expectation E in

$$
\mathbb{E}_{\bar{E}}:=\left\{E \in \mathbb{E}_{\mathscr{D}}:(\forall f \in \mathscr{D}) E(f) \leq \bar{E}(f)\right\}
$$

is downward continuous. So fix any $E \in \mathbb{E}_{\bar{E}}$, and let

$$
R_{E}: \mathscr{F} \rightarrow[0,1]: F \mapsto E\left(\square_{F}\right)
$$

We know from Lemma 9 that R_{E} is finitely additive with $R_{E}(\Omega)=1$, and that E is downward continuous if and only if R_{E} is countably additive. Hence, it suffices to show that R_{E} is countably additive, and we will do so by checking that the conditions in Lemma 8 are satisfied.

First, fix any $U \in \mathscr{U}$, and let

$$
R_{E}^{U}: \wp\left(X^{U}\right) \rightarrow[0,1]: A \mapsto R_{E}\left(\pi_{U}^{-1}(A)\right)=E\left(\square_{\pi_{U}^{-1}(A)}\right)
$$

Clearly, R_{E}^{U} is a non-negative set function with $R_{E}^{U}\left(X^{U}\right)=$ $R_{E}(\Omega)=1$ that is finitely additive. By a standard result in measure theory-see for example Proposition 9 in [20, Chapter 7] or Lemma 4.3 in [33, Chapter II]- R_{E}^{U} is countably additive, and therefore a probability measure, if and only if for any decreasing sequence $\left(A_{k}\right)_{k \in \mathbb{N}}$ in X^{U} with $\bigcap_{k \in \mathbb{N}} A_{k}=\emptyset, \lim _{k \rightarrow+\infty} R_{E}^{U}\left(A_{k}\right)=0$. For any such sequence $\left(A_{k}\right)_{k \in \mathbb{N}}$, the corresponding sequence of indicators $\left(\mathbb{\pi}_{U}^{-1}\left(A_{k}\right)\right)_{k \in \mathbb{N}} \in \mathscr{D}^{\mathbb{N}}$ clearly decreases to 0 , and therefore

$$
\begin{aligned}
& 0 \leq \lim _{k \rightarrow+\infty} R_{E}^{U}\left(A_{k}\right) \leq \lim _{k \rightarrow+\infty} \bar{E}\left(\mathbb{a}_{\pi_{U}^{-1}\left(A_{k}\right)}\right) \\
&=\lim _{k \rightarrow+\infty} \bar{E}_{U}\left(\mathbb{a}_{A_{k}}\right)=0,
\end{aligned}
$$

where for the final equality we used that \bar{E}_{U} is downward continuous and constant preserving.

Next, fix some $n \in \mathbb{N}$ and $t \in[0, n]$. Then for all $s \in \mathbb{R}_{\geq 0} \backslash\{t\}$,

$$
R_{E}^{\{t, s\}}\left(D_{\{t, s\}}^{\neq}\right) \leq \bar{E}_{\{s, t\}}\left(d_{\{t, s\}}^{\neq}\right)
$$

Hence,

$$
\limsup _{s \rightarrow t} \frac{R_{E}^{\{t, s\}}\left(D_{\{t, s\}}^{\neq}\right)}{|s-t|} \leq \limsup _{s \rightarrow t} \frac{\bar{E}_{\{t, s\}}\left(d_{\{t, s\}}^{\neq}\right)}{|s-t|} \leq \lambda_{n}
$$

as required.
Proof of Proposition 13. We have already established that $\left(\overline{\mathrm{M}}_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ is a semigroup of upper transition operators, so it remains for us to verify (i) that $\overline{\mathrm{M}}_{t}$ is downward continuous for all $t \in \mathbb{R}_{>0}$, and (ii) that $\left(\overline{\mathrm{M}}_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ has uniformly bounded rate.

To verify that $\overline{\mathrm{M}}_{t}$ is downward continuous for all $t \in \mathbb{R}_{>0}$, we fix some $t \in \mathbb{R}_{>0}$ and $z \in \mathbb{Z}_{\geq 0}$, and consider any $\mathscr{L}^{\mathbb{N}} \ni\left(f_{n}\right)_{n \in \mathbb{N}} \searrow f \in \mathscr{L}$. On the one
hand, since $\overline{\mathrm{M}}_{t}$ is isotone, $\left(\left[\overline{\mathrm{M}}_{t} f_{n}\right](z)\right)_{n \in \mathbb{N}}$ decreases, with $\lim _{n \rightarrow+\infty}\left[\overline{\mathrm{M}}_{t} f_{n}\right](z) \geq\left[\overline{\mathrm{M}}_{t} f\right](z)$. On the other hand, for all $n \in \mathbb{N}$, it follows from the subadditivity of $\overline{\mathrm{M}}_{t}$ that

$$
\left[\overline{\mathbf{M}}_{t} f_{n}\right](z) \leq\left[\overline{\mathbf{M}}_{t}\left(f_{n}-f\right)\right](z)+\left[\overline{\mathbf{M}}_{t} f\right](z)
$$

Hence, it suffices for us to show that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left[\overline{\mathrm{M}}_{t}\left(f_{n}-f\right)\right](z) \leq 0 \tag{16}
\end{equation*}
$$

For all $n \in \mathbb{N}$, let
$\tilde{f}_{n}: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}: x \mapsto \max \left\{f_{n}(y)-f(y): y \in \mathbb{Z}_{\geq 0}, y \leq x\right\}$.
It is easy to verify that for all $n \in \mathbb{N}, \tilde{f}_{n}$ is a bounded function that dominates $f_{n}-f$, so it follows from the isotonicity of $\overline{\mathrm{M}}_{t}$ that

$$
\left[\overline{\mathbf{M}}_{t}\left(f_{n}-f\right)\right](z) \leq\left[\overline{\mathbf{M}}_{t} \tilde{f}_{n}\right](z)
$$

Moreover, since \tilde{f}_{n} is increasing (in the sense that $\tilde{f}_{n}(z) \leq$ $\tilde{f}_{n}(y)$ whenever $z \leq y$), it follows from Theorem 15, Proposition 16 and Eqn. (18) in [15] that
$\left[\overline{\mathbf{M}}_{t}\left(f_{n}-f\right)\right](z) \leq \sum_{y=z}^{+\infty} \tilde{f}_{n}(y) \psi_{\bar{\lambda}_{t}}(\{y-z\})=\int \tilde{f}_{n}(z+\bullet) \mathrm{d} \psi_{\bar{\lambda}_{t}}$,
where $\psi_{\bar{\lambda} t}: \wp\left(\mathbb{Z}_{\geq 0}\right) \rightarrow[0,1]$ is the probability measure corresponding to the Poisson distribution with parameter $\bar{\lambda} t$. Finally, it is easy to verify that $\left(\tilde{f}_{n}\right)_{n \in \mathbb{N}}$ is monotone and decreases pointwise to 0 , so a straightforward application of the Monotone Convergence Theorem yields

$$
\lim _{n \rightarrow+\infty} \int \tilde{f}_{n}(z+\bullet) \mathrm{d} \psi_{\bar{\lambda} t}=0
$$

Eqn. (16) follows from this equality and the previous inequality, and this finalises our proof for the downward continuity.

Finally, we verify that the sublinear Markov semigroup $\left(\overline{\mathrm{M}}_{t}\right)_{t \in \mathbb{R} \geq 0}$ has uniformly bounded rate-so satisfies Eqn. (4). First, note that due to constant additivity,

$$
\begin{aligned}
& \underset{t \searrow 0}{\limsup } \frac{1}{t} \sup \left\{\left[\overline{\mathrm{M}}_{t}\left(1-\mathbb{\square}_{x}\right)\right](x): x \in \mathscr{X}\right\} \\
& =\limsup _{t \searrow 0}\left\{\frac{\left[\overline{\mathrm{M}}_{t}\left(-\mathbb{a}_{x}\right)\right](x)-\left(-\mathbb{\square}_{x}(x)\right)}{t}: x \in \mathscr{X}\right\} \text {. }
\end{aligned}
$$

It follows from this, the definition of the norms $\|\bullet\|$ and $\|\bullet\|_{\text {op }}^{0}$ and Eqn. (11) that

$$
\begin{aligned}
& \limsup _{t \searrow 0} \frac{1}{t} \sup \left\{\left[\overline{\mathrm{M}}_{t}\left(1-\mathbb{a}_{x}\right)\right](x): x \in \mathscr{X}\right\} \\
& \quad \leq \limsup _{t \searrow 0}\left\{\left\|\frac{\overline{\mathrm{M}}\left(-\mathbb{a}_{x}\right)-\mathrm{I}\left(-\mathbb{a}_{x}\right)}{t}\right\|: x \in \mathscr{X}\right\}
\end{aligned}
$$

$$
\leq \lim _{t \searrow 0}\left\|\frac{\overline{\mathrm{M}}_{t}-\mathrm{I}}{t}\right\|_{\mathrm{op}}^{0}=\|\overline{\mathrm{L}}\|_{\mathrm{op}}^{0}<+\infty
$$

where the strict inequality holds because $\overline{\mathrm{L}}$ is a bounded operator.

