Proof of Theorem 3. Let $\mathbb{E}_{\mathcal{E}} := \{E \in \mathbb{E}_{\mathcal{D}} : \mathcal{E}^*(E) < +\infty\}$. Since \mathcal{E} is downward continuous, we know from Lemma 2 that every linear expectation $E \in \mathbb{E}_{\mathcal{E}}$ is downward continuous. Consequently, if follows from the Daniell–Stone Theorem that for all $E \in \mathbb{E}_{\mathcal{E}}, E = \hat{E}|_{\mathcal{D}}$ with

$$\hat{E}: \mathcal{M} \to \overline{\mathbb{R}}: g \mapsto \int g \mathrm{d} P_E.$$

It follows immediately from this and Lemma 1 that $\hat{\mathcal{E}}$ is well defined and extends \mathcal{E} .

On several occasions, we will need that for all $f \in \mathcal{M}(\mathcal{D})$ and $E \in \mathbb{E}_{\mathcal{E}}, \mathcal{E}^*(E) \in \mathbb{R}$ (due to Lemma 1) and

$$\hat{E}(f) \le \hat{\mathcal{E}}(f) + \mathcal{E}^*(E). \tag{12}$$

Next, we show that $\hat{\mathcal{E}}$ is a convex expectation. The extension $\hat{\mathcal{E}}$ is a nonlinear expectation: (i) $\mathcal{M}(\mathcal{D})$ includes all constant real functions because $\mathcal{D} \subseteq \mathcal{M}(\mathcal{D})$ and \mathcal{D} includes all constant real functions; (ii) $\hat{\mathcal{E}}$ is isotone because the Lebesgue integral is isotone on $\mathcal{M}(\mathcal{D})$ [20, Chapter 8, Theorem 5 (iv)]; and (iii) $\hat{\mathcal{E}}$ is constant preserving because it extends \mathcal{E} and \mathcal{E} is constant preserving. To verify that $\hat{\mathcal{E}}$ is convex, we fix some $f, g \in \mathcal{M}(\mathcal{D})$ and $\lambda \in [0, 1]$ such that f + g is meaningful and in $\mathcal{M}(\mathcal{D})$ and $\lambda \hat{\mathcal{E}}(f) + (1 - \lambda)\hat{\mathcal{E}}(g)$ is meaningful. If $\lambda = 0$ or $\lambda = 1$, clearly $\hat{\mathcal{E}}(\lambda f + (1 - \lambda)f) =$ $\lambda \hat{\mathcal{E}}(f) + (1 - \lambda) \hat{\mathcal{E}}(g)$; hence, without loss of generality we may assume that $0 < \lambda < 1$. Due to symmetry, and because $\lambda \hat{\mathcal{E}}(f) + (1 - \lambda)\hat{\mathcal{E}}(g)$ is meaningful, we need to distinguish three cases: (i) $\hat{\mathcal{E}}(f) = +\infty$ and $\hat{\mathcal{E}}(g) > -\infty$; (ii) $\hat{\mathcal{E}}(f)$ and $\hat{\mathcal{E}}(g)$ both real; and (iii) $\hat{\mathcal{E}}(f) = -\infty$ and $\hat{\mathcal{E}}(g) < +\infty$. In the first case, the required inequality holds trivially. In the second case, it follows from Eqn. (12) that for all $E \in \mathbb{E}_{\mathcal{E}}$, $\hat{E}(f) < +\infty$ and $\hat{E}(g) < +\infty$, so $\lambda \hat{E}(f) + (1 - \lambda)\hat{E}(g)$ is meaningful and, due to the linearity of \hat{E} [20, Chapter 8, Theorem 5 (i)], equal to $\hat{E}(\lambda f + (1 - \lambda)g)$. Similarly, in the third case, it follows from Eqn. (12) that for all $E \in \mathbb{E}_{\mathcal{E}}$, $\hat{E}(f) = -\infty$ and $\hat{E}(g) < +\infty$, so $\lambda \hat{E}(f) + (1 - \lambda)\hat{E}(g)$ is meaningful and, due to the linearity of \hat{E} , equal to $\hat{E}(\lambda f +$ $(1 - \lambda)g$). Consequently, in the last two cases,

$$\begin{split} \hat{\mathcal{E}}(\lambda f + (1 - \lambda)g) \\ &= \sup\{\hat{E}(\lambda f + (1 - \lambda)g) - \mathcal{E}^*(E) \colon E \in \mathbb{E}_{\mathcal{E}}\} \\ &= \sup\{\hat{E}(\lambda f) + (1 - \lambda)\hat{E}(g) - \mathcal{E}^*(E) \colon E \in \mathbb{E}_{\mathcal{E}}\} \\ &\leq \lambda \sup\{\hat{E}(f) - \mathcal{E}^*(E) \colon E \in \mathbb{E}_{\mathcal{E}}\} \\ &+ (1 - \lambda) \sup\{\hat{E}(g) - \mathcal{E}^*(E) \colon E \in \mathbb{E}_{\mathcal{E}}\} \\ &= \lambda \hat{\mathcal{E}}(f) + (1 - \lambda)\hat{\mathcal{E}}(g), \end{split}$$

as required.

Denk et al. [10, Theorem 3.10] show that the restriction of $\hat{\mathcal{E}}$ to $\mathcal{M}(\mathcal{D}) \cap \mathcal{L}(\mathcal{Y}) \supseteq \mathcal{D}_{\delta,b}$ is downward continuous on $\mathcal{D}_{\delta,b}$, so clearly $\hat{\mathcal{E}}$ is downward continuous on $\mathcal{D}_{\delta,b}$ too.

Proving the upward continuity on $\mathcal{M}_{b}(\mathcal{D})$ is straightforward. Fix any $(\mathcal{M}_{b})^{\mathbb{N}} \ni (f_{n})_{n \in \mathbb{N}} \nearrow f \in \mathcal{M}_{b}(\mathcal{D})$. For

all $E \in \mathbb{E}_{\mathcal{E}}$, \hat{E} is upward continuous on \mathcal{M}_{b} —due to the Monotone Convergence Theorem, see for example [35, Theorem 12.1]—and therefore $\lim_{n\to+\infty} \hat{E}(f_n) = \sup_{n\in\mathbb{N}} \hat{E}(f_n) = \hat{E}(f)$. From this and the isotonicity of $\hat{\mathcal{E}}$, it follows that

$$\lim_{n \to +\infty} \hat{\mathcal{E}}(f_n) = \sup\{\hat{\mathcal{E}}(f_n) : n \in \mathbb{N}\}\$$

= sup{sup{ $\hat{\mathcal{E}}(f_n) - \mathcal{E}^*(E) : E \in \mathbb{E}_{\mathcal{E}}\} : n \in \mathbb{N}\}\$
= sup{sup{ $\hat{\mathcal{E}}(f_n) - \mathcal{E}^*(E) : n \in \mathbb{N}\} : E \in \mathbb{E}_{\mathcal{E}}\}\$
= sup{ $\hat{\mathcal{E}}(f) - \mathcal{E}^*(E) : E \in \mathbb{E}_{\mathcal{E}}\}\$
= $\hat{\mathcal{E}}(f),$

as required.

To prove the second part of the statement, we assume that \mathcal{E} is an upper expectation. Recall from Lemma 1 that $\mathcal{E}^*(E) = 0$ for all $E \in \mathbb{E}_{\mathcal{E}}$ and that $\mathbb{E}_{\mathcal{E}}$ is the set of dominated linear expectations (on \mathcal{D}). Hence, to see that $\hat{\mathcal{E}}$ is positively homogeneous, it suffices to realise that for all $E \in \mathbb{E}_{\mathcal{E}}$ (i) $\mathcal{E}^*(E) = 0$ due to Lemma 1; and (ii) $\hat{\mathcal{E}}$ is homogeneous [20, Chapter 8, Theorem 5 (i)]. That $\hat{\mathcal{E}}$ is subadditve follows from a similar argument as the one we used to prove that $\hat{\mathcal{E}}$ is convex.

Proof of Corollary 4. From Theorem 3.10 in [10]—or the functional version of Choquet's Capacitibility Theorem, see [3, Proposition 2.1]—it follows that for all $f \in \mathcal{M}_{b}(\mathcal{D}) \cap \mathcal{M}^{b}(\mathcal{D}) = \mathcal{M}(\mathcal{D}) \cap \mathcal{L}(\mathcal{Y})$,

$$\hat{\mathcal{E}}(f) = \sup \left\{ \lim_{n \to +\infty} \hat{\mathcal{E}}(f_n) \colon \mathcal{D}^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \searrow \leq f \right\}.$$
(13)

It remains for us to prove the equality in the statement for all $f \in \mathcal{M}_{b}(\mathcal{D}) \setminus \mathcal{M}^{b}(\mathcal{D})$, so let us fix any such f. Then $(f \wedge k)_{k \in \mathbb{N}}$ is an increasing sequence in $\mathcal{M}_{b}(\mathcal{D}) \cap \mathcal{M}^{b}(\mathcal{D})$ that converges pointwise to f, and therefore

$$\hat{\mathcal{E}}(f) = \lim_{k \to +\infty} \hat{\mathcal{E}}(f \land k) = \sup \{ \hat{\mathcal{E}}(f \land k) \colon k \in \mathbb{N} \}.$$

Because $f \wedge k \in \mathcal{M}_{b}(\mathcal{D}) \cap \mathcal{M}^{b}(\mathcal{D})$ for all $k \in \mathbb{N}$, it follows from this equality and Eqn. (13) that

$$\hat{\mathcal{E}}(f) = \sup \left\{ \lim_{n \to +\infty} \hat{\mathcal{E}}(f_n) \colon k \in \mathbb{N}, \mathcal{D}^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \searrow \leq f \land k \right\}$$
$$= \sup \left\{ \lim_{n \to +\infty} \hat{\mathcal{E}}(f_n) \colon \mathcal{D}^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \searrow \leq f \right\},$$

as required.

Proof of Equation (2). Due to Lemma 8.1 (and Lemma 8.3) in [35], $\sigma(\mathcal{D})$ is generated by the collection of level sets

$$C \coloneqq \left\{ \{ \omega \in \Omega \colon f(\omega) \ge \alpha \} \colon f \in \mathcal{D}, \alpha \in \mathbb{R} \right\}.$$

Hence, it follows from Eqn. (1) that every cylinder $F \in \mathcal{F}$ belongs to *C*, and therefore also to $\sigma(\mathcal{D})$. Consequently, $\sigma(\mathcal{F}) \subseteq \sigma(\mathcal{D})$.

To prove that $\sigma(\mathcal{D}) \subseteq \sigma(\mathcal{F})$, it suffices to verify that any level set in *C* is a cylinder. To this end, we fix any $f \in \mathcal{D}$ and $\alpha \in \mathbb{R}$. By definition of \mathcal{D} , there are some $U \in \mathcal{U}$ and $g \in \mathcal{L}(\mathcal{X}^U)$ such that $f = g \circ \pi_U$. Let A := $\{x \in \mathcal{X}^U : g(x) \ge \alpha\}$. Then clearly

$$\{\omega \in \Omega \colon f(\omega) \ge \alpha\} = \{\omega \in \Omega \colon \pi_U(\omega) \in A\},\$$

so this level set is indeed a cylinder.

Proof of Lemma 9. That R_E is finitely additive with $R_E(\Omega) = 1$ follows immediately because *E* is a linear expectation. Hence, we focus on the second part of the statement.

First, we assume that *E* is downward continuous. Then it follows immediately from the Daniell–Stone Theorem that $R_E = P_E|_{\mathcal{F}}$, and therefore R_E is countably additive.

Second, we assume that R_E is countably additive. Then it is well known, see for example Proposition 9 in [20, Chapter 7] or Lemma 4.3 in [33, Chapter II], that for any decreasing $(F_n)_{n \in \mathbb{N}} \in \mathscr{F}^{\mathbb{N}}$ —meaning that $F_n \supseteq F_{n+1}$ for all $n \in \mathbb{N}$ —with $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$,

$$\lim_{n \to +\infty} R_E(F_n) = 0.$$
(14)

To show that *E* is downward continuous, we fix any $f \in \mathcal{D}$ and any decreasing sequence $(f_n)_{n \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}}$ that converges pointwise to *f*. Then

$$E(f_n) - E(f) = E(f_n - f) \ge 0 \quad \text{for all } n \in \mathbb{N}.$$
 (15)

Obviously, $(f_n - f)_{n \in \mathbb{N}}$ is a decreasing sequence in \mathcal{D} that converges pointwise to 0.

Fix any $\epsilon \in \mathbb{R}_{>0}$, and let $\beta := ||f_1 - f|| = \sup f_1 - f$. Then for all $n \in \mathbb{N}$, we let $F_n := \{\omega \in \Omega : f_n(\omega) - f(\omega) > \epsilon\}$; it is a bit laborious to verify that $F_n \in \mathcal{F}$, so we leave this as an exercise to the reader. This way, $(F_n)_{n \in \mathbb{N}}$ is a decreasing sequence in \mathcal{F} with $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$, and for all $n \in \mathbb{N}$, $f_n - f \le \epsilon + \beta \mathbb{I}_{F_n}$ and therefore

$$E(f_n - f) \le \epsilon + E(\mathbb{I}_{F_n}) = \epsilon + R_E(F_n).$$

It follows from this and Eqn. (14) that

$$\lim_{n \to +\infty} E(f_n - f) \le \lim_{n \to +\infty} \epsilon + \beta R_E(F_n) = \epsilon$$

Since this inequality holds for any strictly positive real number ϵ , we infer from it and the one in Eqn. (15) that

$$\lim_{n \to +\infty} E(f_n) = E(f),$$

as required.

Proof of Theorem 7. To prove that \overline{E} is downward continuous, we recall from Proposition 6 that \overline{E} is an upper expectation. By Lemmas 1 and 2, it suffices to verify that every dominated linear expectation E in

$$\mathbb{E}_{\overline{E}} \coloneqq \{ E \in \mathbb{E}_{\mathscr{D}} \colon (\forall f \in \mathscr{D}) \ E(f) \le \overline{E}(f) \}$$

is downward continuous. So fix any $E \in \mathbb{E}_{\overline{E}}$, and let

$$R_E \colon \mathscr{F} \to [0,1] \colon F \mapsto E(\mathbb{I}_F).$$

We know from Lemma 9 that R_E is finitely additive with $R_E(\Omega) = 1$, and that *E* is downward continuous if and only if R_E is countably additive. Hence, it suffices to show that R_E is countably additive, and we will do so by checking that the conditions in Lemma 8 are satisfied.

First, fix any $U \in \mathcal{U}$, and let

$$R_E^U: \, \wp(\mathcal{X}^U) \to [0,1]: A \mapsto R_E\big(\pi_U^{-1}(A)\big) = E\big(\mathbb{I}_{\pi_U^{-1}(A)}\big).$$

Clearly, R_E^U is a non-negative set function with $R_E^U(\mathcal{X}^U) = R_E(\mathcal{Q}) = 1$ that is finitely additive. By a standard result in measure theory—see for example Proposition 9 in [20, Chapter 7] or Lemma 4.3 in [33, Chapter II]— R_E^U is countably additive, and therefore a probability measure, if and only if for any decreasing sequence $(A_k)_{k \in \mathbb{N}}$ in \mathcal{X}^U with $\bigcap_{k \in \mathbb{N}} A_k = \emptyset$, $\lim_{k \to +\infty} R_E^U(A_k) = 0$. For any such sequence $(A_k)_{k \in \mathbb{N}}$, the corresponding sequence of indicators $(\mathbb{I}_{\pi_U^{-1}(A_k)})_{k \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}}$ clearly decreases to 0, and therefore

$$0 \le \lim_{k \to +\infty} R_E^U(A_k) \le \lim_{k \to +\infty} \overline{E}(\mathbb{I}_{\pi_U^{-1}(A_k)})$$
$$= \lim_{k \to +\infty} \overline{E}_U(\mathbb{I}_{A_k}) = 0,$$

where for the final equality we used that \overline{E}_U is downward continuous and constant preserving.

Next, fix some $n \in \mathbb{N}$ and $t \in [0, n]$. Then for all $s \in \mathbb{R}_{\geq 0} \setminus \{t\}$,

$$R_E^{\{t,s\}}(D_{\{t,s\}}^{\neq}) \le \overline{E}_{\{s,t\}}(d_{\{t,s\}}^{\neq}).$$

Hence,

$$\limsup_{s \to t} \frac{R_E^{\{t,s\}}(D_{\{t,s\}}^{\neq})}{|s-t|} \le \limsup_{s \to t} \frac{\overline{E}_{\{t,s\}}(d_{\{t,s\}}^{\neq})}{|s-t|} \le \lambda_n,$$

as required.

Proof of Proposition 13. We have already established that $(\overline{M}_t)_{t \in \mathbb{R}_{\geq 0}}$ is a semigroup of upper transition operators, so it remains for us to verify (i) that \overline{M}_t is downward continuous for all $t \in \mathbb{R}_{>0}$, and (ii) that $(\overline{M}_t)_{t \in \mathbb{R}_{\geq 0}}$ has uniformly bounded rate.

To verify that \overline{M}_t is downward continuous for all $t \in \mathbb{R}_{>0}$, we fix some $t \in \mathbb{R}_{>0}$ and $z \in \mathbb{Z}_{\geq 0}$, and consider any $\mathscr{L}^{\mathbb{N}} \ni (f_n)_{n \in \mathbb{N}} \searrow f \in \mathscr{L}$. On the one

hand, since \overline{M}_t is isotone, $([\overline{M}_t f_n](z))_{n \in \mathbb{N}}$ decreases, with $\lim_{n \to +\infty} [\overline{M}_t f_n](z) \ge [\overline{M}_t f](z)$. On the other hand, for all $n \in \mathbb{N}$, it follows from the subadditivity of \overline{M}_t that

$$[\overline{\mathbf{M}}_t f_n](z) \le [\overline{\mathbf{M}}_t (f_n - f)](z) + [\overline{\mathbf{M}}_t f](z).$$

Hence, it suffices for us to show that

$$\lim_{n \to +\infty} [\overline{\mathbf{M}}_t (f_n - f)](z) \le 0.$$
(16)

For all $n \in \mathbb{N}$, let

$$\tilde{f}_n \colon \mathbb{Z}_{\ge 0} \to \mathbb{R} \colon x \mapsto \max\{f_n(y) - f(y) \colon y \in \mathbb{Z}_{\ge 0}, y \le x\}.$$

It is easy to verify that for all $n \in \mathbb{N}$, \tilde{f}_n is a bounded function that dominates $f_n - f$, so it follows from the isotonicity of \overline{M}_t that

$$[\overline{\mathbf{M}}_t(f_n - f)](z) \le [\overline{\mathbf{M}}_t \tilde{f}_n](z).$$

Moreover, since \tilde{f}_n is increasing (in the sense that $\tilde{f}_n(z) \leq \tilde{f}_n(y)$ whenever $z \leq y$), it follows from Theorem 15, Proposition 16 and Eqn. (18) in [15] that

$$[\overline{\mathbf{M}}_t(f_n-f)](z) \le \sum_{y=z}^{+\infty} \tilde{f}_n(y)\psi_{\overline{\lambda}t}(\{y-z\}) = \int \tilde{f}_n(z+\bullet)\mathrm{d}\psi_{\overline{\lambda}t},$$

where $\psi_{\overline{\lambda}t} : \wp(\mathbb{Z}_{\geq 0}) \to [0, 1]$ is the probability measure corresponding to the Poisson distribution with parameter $\overline{\lambda}t$. Finally, it is easy to verify that $(\tilde{f}_n)_{n \in \mathbb{N}}$ is monotone and decreases pointwise to 0, so a straightforward application of the Monotone Convergence Theorem yields

$$\lim_{n \to +\infty} \int \tilde{f}_n(z + \bullet) \mathrm{d}\psi_{\overline{\lambda}t} = 0$$

Eqn. (16) follows from this equality and the previous inequality, and this finalises our proof for the downward continuity.

Finally, we verify that the sublinear Markov semigroup $(\overline{M}_t)_{t \in \mathbb{R}_{\geq 0}}$ has uniformly bounded rate—so satisfies Eqn. (4). First, note that due to constant additivity,

$$\limsup_{t \searrow 0} \frac{1}{t} \sup \left\{ [\overline{\mathbf{M}}_t (1 - \mathbb{I}_x)](x) \colon x \in \mathcal{X} \right\}$$
$$= \limsup_{t \searrow 0} \sup \left\{ \frac{[\overline{\mathbf{M}}_t (-\mathbb{I}_x)](x) - (-\mathbb{I}_x(x))}{t} \colon x \in \mathcal{X} \right\}.$$

It follows from this, the definition of the norms $\|\bullet\|$ and $\|\bullet\|_{op}^{0}$ and Eqn. (11) that

$$\limsup_{t \searrow 0} \frac{1}{t} \sup_{t \searrow 0} \left\{ [\overline{\mathbf{M}}_t (1 - \mathbb{I}_x)](x) \colon x \in \mathcal{X} \right\}$$
$$\leq \limsup_{t \searrow 0} \left\{ \left\| \frac{\overline{\mathbf{M}}(-\mathbb{I}_x) - \mathbf{I}(-\mathbb{I}_x)}{t} \right\| \colon x \in \mathcal{X} \right\}$$

$$\leq \lim_{t \searrow 0} \left\| \frac{\overline{\mathbf{M}}_t - \mathbf{I}}{t} \right\|_{\mathrm{op}}^0 = \| \overline{\mathbf{L}} \|_{\mathrm{op}}^0 < +\infty,$$

where the strict inequality holds because \overline{L} is a bounded operator.