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Abstract
Delay time models are stochastic maintenance deci-

sion aid tools that divide the failure time of a system
into the appearance of a defect and its evolution towards
a breakdown. In this study, an imprecise Bayesian ap-
proach to delay time modelling has been developed and
compared with the frequentist and precise Bayesian
approach based on a virtual maintenance problem. The
conditional failure rate was the unknown parameter
that had to be estimated via eight samples of failure
times of increasing size. The goal was to minimise two
loss functions related to the downtime and cost. The
frequentist and precise Bayesian methods converge to-
wards the optimal decision as the sample size grows but
are strongly sub-optimal when no or only few data are
available. The imprecise Bayesian approach based on
E-admissibility returns large decision intervals in the
lack of data, thereby straightforwardly representing the
crucial difference between knowledge and ignorance.
Keywords: stochastic maintenance, robust Bayesian-
ism, decision rules, frequentism

1. Introduction
In the stochastic modelling of maintenance, delay-time
analysis (DTA) explicitly makes a difference between the
appearance of a defect (at a time𝑈) and the system break-
down caused by this defect at time 𝑈 + 𝐻, where 𝐻 is
the delay-time Christer (1999); Wang (2012a); Scarf et al.
(2019). It can be seen as being a kind of periodic off-line
condition monitoring. Christer and Waller (1984) devel-
oped the first detailed delay-time model back in 1984 in
order to optimise either the downtime per unit time 𝐷 (𝑇)
or the cost per unit time 𝐶 (𝑇) as an enterprise can be
primarily interested in either of these two quantities. Delay
time models are conceptually simple (thereby reducing the
risk of over-fitting) and they can successfully be applied
to a wide range of industrial problems Wang (2012a). In
this work, we shall consider the simplest situation, namely
that of a system with a single failure mode where a single
defect appears at a random time and progressively evolves
into a full-blown failure after a random and stochastically
independent delay time. Such a model can be used to sim-
ulate multi-component systems where the failure of one

component has no impact on the proper function of the other
components and it was applied to the maintenance of three
infusion-pump components Baker and Wang (1993) and
to a sample of about 100 infusion pumps Baker and Wang
(1991). DTA generally assumes that the time of appearance
of a defect 𝑈 and the delay time between the arrival of
that defect and the breakdown of the system 𝐻 follow two
exponential or Weibull distributions. The parameters of
these distributions are most often estimated via Maximum
Likelihood Estimation (MLE) Baker and Wang (1991) but
sometimes also through a classical Bayesian approachWang
and Jia (2007); Wang (2012b). There are not, however, yet
any studies that represent our prior ignorance through a
family of priors rather than through a single one, which
is problematic as the reliance on a single prior can all too
easily lead one to mistake ignorance for specific knowledge
Norton (2010); Fischer (2019); Fischer and Vignes (2021).
The present work thus sets out to compare a frequentist,

a classical Bayesian and an imprecise Bayesian approach to
the problem of DTA parameter estimation and inspection
optimisation based on samples of failure times virtually
generated via Monte-Carlo simulations. In Section 2, the
stochastic model is laid out along with the samples that
will be used for the parameter estimation. The frequentist,
classical Bayesian and imprecise Bayesian approach are con-
sidered in Section 3, 4 and 5, respectively. The conclusions
and an outlook are given in Section 6.

2. Delay Time Modelling and Problem Setting
2.1. Stochastic Decision Model

We consider a system that can at most have only one defect
at the same time before a failure. We consider that both the
appearance time of the defect𝑈 and the delay time before
the failure 𝐻 are exponentially distributed and we shall
call their parameters 𝑘 𝑓 (the appearance rate of defects
in defects/month) and 𝜆ℎ (the conditional failure rate in
failures/defect/month), respectively. It can be easily shown
that the failure time 𝑌 = 𝑈 + 𝐻 has a probability density
function given by

𝑓𝑌 (𝑦) = 𝑘 𝑓 𝜆ℎ𝑒
−𝑘 𝑓 𝑦

∫ 𝑦

ℎ=0

𝑒 (𝑘 𝑓 −𝜆ℎ)ℎ𝑑ℎ
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=
𝑘 𝑓 𝜆ℎ𝑒

−𝑘 𝑓 𝑦

𝑘 𝑓 − 𝜆ℎ

(
𝑒 (𝑘 𝑓 −𝜆ℎ)𝑦 − 1

)
(1)

when 𝜆ℎ ≠ 𝑘 𝑓 .
Let us now suppose that an inspection is carried out every

𝑇 units of operating time, i.e. time duringwhich themachine
is operational and isn’t being repaired or inspected. 𝑇 = +∞
means that there is no inspection. Let 𝑑𝑏𝑟 , 𝑑𝑖 , 𝑑𝑑𝑒 𝑓 𝑒𝑐𝑡 be
the downtime due to a breakdown, an inspection and an
inspection repair (when a defect is detected), respectively.
It can be interesting for an enterprise to minimise the ratio
between the downtime and the operating time 𝐷1 (𝑇) given
by 𝐷1 (𝑇) = 𝐸 (𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒)

𝐸 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇 𝑖𝑚𝑒) where 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 is
the length of a renewal cycle and𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 is the downtime
associated to that renewal cycle. Indeed, according to the
renewal-reward theorem Wang (2008), that quantity is the
long-term ratio between the cumulated downtime and the
cumulated operating time given that the inspection period
is equal to 𝑇 .
Since 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = 𝑚𝑖𝑛(𝑌,𝑇), by virtue of the

law of total expectation, we have

𝐸 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒) =𝐸 (𝑌 |𝑌 ≤ 𝑇)𝐹𝑌 (𝑇)+

𝑇

(
1 − 𝐹𝑌 (𝑇)

)
with 𝐹𝑌 being the cumulative distribution function (cdf) of
the failure time 𝑌 .
Let 𝑋𝑖𝑛𝑡𝑎𝑐𝑡 , 𝑋𝑑𝑒 𝑓 𝑒𝑐𝑡 and 𝑋 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 be binary random

variables equal to 1 when there is no defect during the
renewal cycle, one defect that does not lead to a failure and
a failure, respectively. We have

𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑋𝑖𝑛𝑡𝑎𝑐𝑡𝑑𝑖

+𝑋𝑑𝑒 𝑓 𝑒𝑐𝑡 (𝑑𝑖 + 𝑑𝑑𝑒 𝑓 𝑒𝑐𝑡 ) + 𝑋 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑑𝑏𝑟 ,

(2)

so that

𝐸 (𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒) =𝑝𝑖𝑛𝑡𝑎𝑐𝑡𝑑𝑖+
𝑝𝑑𝑒 𝑓 𝑒𝑐𝑡 (𝑑𝑖 + 𝑑𝑑𝑒 𝑓 𝑒𝑐𝑡 )
+ 𝑝 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑑𝑏𝑟

(3)

Furthermore,

𝑝𝑖𝑛𝑡𝑎𝑐𝑡 = 1 − 𝐹𝑈 (𝑇) (4)

𝑝𝑑𝑒 𝑓 𝑒𝑐𝑡 =

(
1 − 𝑝(𝑌 ≤ 𝑇 |𝑈 ≤ 𝑇)

)
𝐹𝑈 (𝑇) (5)

and

𝑝 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 = 𝐹𝑌 (𝑇). (6)

Likewise, let 𝑐𝑏𝑟 , 𝑐𝑖 , 𝑐𝑑𝑒 𝑓 𝑒𝑐𝑡 be the cost due to a break-
down, an inspection and an inspection repair (when a defect
is detected), respectively. It is interesting to minimise

𝐶1 (𝑇) =
𝐸 (𝐶𝑜𝑠𝑡)

𝐸 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒) (7)

with

𝐸 (𝐶𝑜𝑠𝑡) = 𝑝𝑖𝑛𝑡𝑎𝑐𝑡𝑐𝑖+
𝑝𝑑𝑒 𝑓 𝑒𝑐𝑡 (𝑐𝑖 + 𝑐𝑑𝑒 𝑓 𝑒𝑐𝑡 )+
𝑝 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑐𝑏𝑟

(8)

An enterprise can be interested in minimising the cost by
unit of operating time 𝐶1 (𝑇) but also the downtime by unit
of operating time 𝐷1 (𝑇) (when too much downtime could
lead to the loss of market shares, for example). Often times,
a compromise between these two goals has to be made.
Let 𝑇𝐷1 ,𝑜𝑝𝑡,𝑆 be the optimal inspection period minimis-

ing 𝐷1 (𝑇) based on the information contained in a sample
𝑆 of failure times (when 𝑆 = ∅, this would be a decision
made in the absence of information other than the param-
eter bounds). 𝑇𝐷1 ,𝑜𝑝𝑡,𝜆ℎ,𝑡𝑟𝑢𝑒

is the real optimal inspection
period based on the real value of 𝜆ℎ. Let us consider that
the enterprise will use this type of pumps in 6 factories for
a period equal to 𝑡 = 4 years of operational time (i.e. not in-
cluding all the potential downtimes) 1. It is then interesting
to compute the quantity

𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 =

6
(
𝐷1 (𝑇𝐷1 ,𝑜𝑝𝑡,𝑆 , 𝜆ℎ,𝑡𝑟𝑢𝑒) − 𝐷1 (𝑇𝐷1 ,𝑜𝑝𝑡,𝜆ℎ,𝑡𝑟𝑢𝑒

, 𝜆ℎ,𝑡𝑟𝑢𝑒)
)
𝑡

(9)

which represents the sub-optimality of the decision made on
the basis of sample 𝑆, i.e. the amount of downtime thatwould
have been avoided if we had known the real parameter value
perfectly. 𝐷1 (𝑇𝐷1 ,𝑜𝑝𝑡,𝑆 , 𝜆ℎ,𝑡𝑟𝑢𝑒) is the expected downtime
based on the estimated optimal inspection period obtained
thanks to sample 𝑆 whereas 𝐷1 (𝑇𝐷1 ,𝑜𝑝𝑡,𝜆ℎ,𝑡𝑟𝑢𝑒

, 𝜆ℎ,𝑡𝑟𝑢𝑒) is
the expected downtime based on the true optimal inspection
period determined with the true value of 𝜆ℎ .
Likewise, we can define for the cost

𝛥𝐶𝑜𝑠𝑡 =

6
(
𝐶1 (𝑇𝐶1 ,𝑜𝑝𝑡,𝑆 , 𝜆ℎ,𝑡𝑟𝑢𝑒) − 𝐶1 (𝑇𝐶1 ,𝑜𝑝𝑡,𝜆ℎ,𝑡𝑟𝑢𝑒

, 𝜆ℎ,𝑡𝑟𝑢𝑒)
)
𝑡

(10)

which is the sub-optimality of the decision made on the
basis of sample 𝑆 with respect to 𝐶1 (𝑇).

1Of course, another number of factories can be considered according
to the industrial situation.
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(a) D1 (b) C1

Figure 1: Profile of𝐷1 (𝑇) and𝐶1 (𝑇) for the real parameter
value 𝜆ℎ,𝑡𝑟𝑢𝑒 = 0.09 failures/defect/month

.

2.2. Virtual Case Study

We consider a pump that can have at most one defect
which progressively deteriorates into a failure. The enter-
prise knows the defect arrival rate 𝑘 𝑓 = 1/4 defects/month.
The conditional failure rate 𝜆ℎ is equal to 9/100 fail-
ures/defect/month, however the enterprise only knows that
𝜆ℎ ∈ [0.01; 0.1] failures/defect/month.
We suppose that the cost and downtime parameters are

𝑑𝑖 = 0.4 days, 𝑑𝑑𝑒 𝑓 𝑒𝑐𝑡 = 2 days, 𝑑𝑏𝑟 = 28 days, 𝑐𝑖 = 110 e,
𝑐𝑑𝑒 𝑓 𝑒𝑐𝑡 = 1000 e, and 𝑐𝑏𝑟 = 9000 e.

𝐷1 (𝑇) and 𝐶1 (𝑇) can be seen in Figure 1.
It is worth noting that the results of the analytical model

are very close to those from a Monte-Carlo simulation. The
optimal inspection period for minimising 𝐷1 is 𝑇𝐷1 ,𝑜𝑝𝑡,𝑆 =
47.75 days and that for minimising 𝐶1 is 𝑇𝐶1 ,𝑜𝑝𝑡,𝑆 = 49.93
days and it is these values that the probabilistic approaches
ought to approximately retrieve.
1000 failure times were then generated for 𝑘 𝑓 = 1/4 de-

fects/month and𝜆ℎ = 𝜆ℎ,𝑡𝑟𝑢𝑒 = 9/100 defects/failure/month.
Eight samples of failure times measured in the absence of
inspections 𝑆1 ⊂ 𝑆2 ⊂ 𝑆3 ⊂ 𝑆4 ⊂ 𝑆5 ⊂ 𝑆6 ⊂ 𝑆7 ⊂ 𝑆8
whose lengths are equal to 2, 5, 10, 20, 60, 200, 600, and
1000, respectively, were then created 2. In this way, we
can simulate the situation of a maintenance engineer who
must make an optimal decision in the face of incomplete
information (or no information at all).

3. Frequentist Approach
In a frequentist framework, given a sample of failure times
𝑆, the parameters (here 𝜆ℎ) are typically estimated by max-
imising the likelihood function which is given by Equation
11.

𝐿 (𝜆ℎ |𝑦1, 𝑦2, . . . , 𝑦𝑛) =
𝑛∏
𝑖=1

𝑓𝑌 (𝑦𝑖)

2They can be obtained by sending an email to the author.

=

𝑛∏
𝑖=1

𝑘 𝑓 ,0𝜆ℎ

𝑘 𝑓 ,0 − 𝜆ℎ

(
𝑒−𝜆ℎ𝑦𝑖 − 𝑒−𝑘 𝑓 ,0𝑦𝑖

)
(11)

There does not appear to be an analytical expression for the
MLE. Instead, the likelihood function must be numerically
maximised. Generally, the maximum likelihood estimate of
the parameter(s) is used to minimise the loss functions 𝐶1

and 𝐷1 Baker and Wang (1991); Christer et al. (1995). Ac-
cordingly, the MLE corresponding to the different samples
were used to compute 𝑇𝐷1 ,𝑜𝑝𝑡,𝑆 , 𝑇𝐶1 ,𝑜𝑝𝑡,𝑆 , 𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒,
and 𝛥𝐶𝑜𝑠𝑡 (see Equation 9 and 10). The results can be seen
in Table 1 (where the last line corresponds to the results
obtained with the true parameter value).

Sample Size 𝜆ℎ,𝑀𝐿𝐸 𝑇𝐷1 ,𝑜𝑝𝑡,𝑆 𝑇𝐶1 ,𝑜𝑝𝑡,𝑆 𝛥 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝛥 𝐶𝑜𝑠𝑡 (e)
2 0.0662 60.3735 67.7731 3.2699 1428.5680
5 0.0690 58.3667 64.6834 2.4081 1033.6236
10 0.0960 45.6374 47.2540 0.1278 49.4582
20 0.0946 46.1062 47.8410 0.0766 29.7284
60 0.0860 49.3381 51.9885 0.0654 26.0579
200 0.0862 49.2551 51.8798 0.0589 23.4314
600 0.0880 48.5267 50.9301 0.0159 6.2836
1000 0.0902 47.6784 49.8361 0.0002 0.0605
+∞ 0.0900 47.7537 49.9327 0.0000 0.0000

Table 1: Optimal inspection corresponding to the different
samples. The last line corresponds to the true pa-
rameter value 𝜆ℎ,𝑡𝑟𝑢𝑒= 0.09 failures/defect/month.
The inspection periods and downtimes are given
in days.

We can see that 𝜆ℎ converges towards 𝜆ℎ,𝑡𝑟𝑢𝑒 while
𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 (days) and 𝛥𝐶𝑜𝑠𝑡 (e) go to zero. However, for
a very small sample size, the differences and sub-optimality
are quite large.

4. Precise Bayesian Approach
In a situation where the only pieces of information we
have about a parameter are its lower and upper bound,
many precise Bayesians think that we ought to represent
our ignorance through a uniform prior, which stems from
the principle of maximum entropy Jaynes (1982). Con-
sequently, we considered a uniform prior over the values
of 𝜆ℎ ∈ [0.01; 0.1] failures/defect/month we shall call
𝑓1,0 (𝜆ℎ), wherein 0 stands for prior and 1 stands for the
index of the probability distribution (see Section 5). The
posterior distribution given a sample 𝑆 is obtained through
a straightforward application of Bayes’ theorem:

𝑓 (𝜆ℎ |𝑆) =
𝐿 (𝑆 |𝜆ℎ) 𝑓1,0 (𝜆ℎ)∫ 0.1

𝜆ℎ=0.01
𝐿 (𝑆 |𝜆ℎ) 𝑓1,0 (𝜆ℎ)𝑑𝜆ℎ

(12)

Given a sample 𝑆, the value of 𝜆ℎ is estimated by

𝐸 (𝜆ℎ |𝑆) =
∫ 0.1

𝜆ℎ=0.01

𝜆ℎ 𝑓 (𝜆ℎ |𝑆) (13)
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Figure 2: Uniform prior and posteriors for 𝜆ℎ .

wherein 𝑓 (𝜆ℎ |𝑆) is the prior when 𝑆 = ∅. For a given
inspection period 𝑇 and a sample 𝑆, the expected value of
𝐷1 with respect to 𝜆ℎ is given by Eq. 14.

𝐸𝜆ℎ

(
𝐷1 (𝑇, 𝜆ℎ)

)
=

∫ 0.1

𝜆ℎ=0.01

𝐷1 (𝑇, 𝜆ℎ) 𝑓 (𝜆ℎ |𝑆)𝑑𝜆ℎ (14)

Likewise, the expected value of 𝐶1 with respect to 𝜆ℎ is
given by Eq. 15.

𝐸𝜆ℎ

(
𝐶1 (𝑇, 𝜆ℎ)

)
=

∫ 0.1

𝜆ℎ=0.01

𝐶1 (𝑇, 𝜆ℎ) 𝑓 (𝜆ℎ |𝑆)𝑑𝜆ℎ (15)

These two quantities are the posterior expected losses
with respect to the downtime and to the cost, respectively.
Minimising such an expected loss function with respect
to 𝑇 is a standard decision criterion for Bayesian decision
making Robert et al. (2007). The prior and posteriors can
be seen in Figure 2 and the posterior estimates of 𝜆ℎ can be
found in Table 2. As could be expected, we can see that the
posterior and expected value of 𝜆ℎ converge towards the
real value 𝜆ℎ,𝑡𝑟𝑢𝑒 = 0.09 failures/defect/month.

Sample Size 𝐸 (𝜆ℎ |𝑆) 𝑇𝐷1 ,𝑜𝑝𝑡,𝑆 𝑇𝐶1 ,𝑜𝑝𝑡,𝑆

0 0.0550 72.1056 88.7999
2 0.0613 64.9950 75.5063
5 0.0664 60.5123 68.0865
10 0.0785 52.9380 56.8024
20 0.0829 50.7739 53.8654
60 0.0843 50.0010 52.9380
200 0.0863 49.2281 51.8559
600 0.0881 48.4552 50.9285
1000 0.0903 47.6823 49.8464
+∞ 0.0900 47.7537 49.9327

Table 2: Optimal inspection periods corresponding to
the different samples. The last line corresponds
to the true parameter value 𝜆ℎ,𝑡𝑟𝑢𝑒= 0.09 fail-
ures/defect/month.

Table 2 also contains the optimal inspection periods for
𝐷1 (𝑇) and 𝐶1 (𝑇) which unsurprisingly converge towards
those obtained for 𝜆ℎ,𝑡𝑟𝑢𝑒. In Table 3, we can see the dif-
ferences between the optimal loss based on a prior (or a

𝑛𝑌 𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝐵 𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝐹 𝛥𝐶𝑜𝑠𝑡𝐵 𝛥𝐶𝑜𝑠𝑡𝐹
2 5.5803 3.2699 2568.2310 1428.5680
5 3.3308 2.4081 1469.9209 1033.6236
10 0.6447 0.1278 261.8602 49.4582
20 0.2298 0.0766 91.3934 29.7284
60 0.1295 0.0654 54.4745 26.0579
200 0.0568 0.0589 22.8585 23.4314
600 0.0131 0.0159 6.2591 6.2836
1000 0.0001 0.0002 0.0481 0.0605
+∞ 0.0000 0.0000 0.0000 0.0000

Table 3: Sub-optimality of the decisions based on the
prior/samples. The last line corresponds to
the true parameter value 𝜆ℎ,𝑡𝑟𝑢𝑒= 0.09 fail-
ures/defect/month.

sample) and the optimal loss based on the true parame-
ter value 𝜆ℎ,𝑡𝑟𝑢𝑒 for the precise Bayesian and frequentist
approach. We can see that the differences are quite large
in the absence of empirical data or for small sample sizes
such as 𝑛𝑌 = 2 or 𝑛𝑌 = 5 failures. Interestingly enough, the
frequentist decisions grounded on 𝜆ℎ,𝑀𝐿𝐸 turn out to be
superior to the Bayesian ones based on the uniform priors
for 𝑛𝑌 ≤ 60 failures but a set of Monte-Carlo simulations
would be required in order to prove the superiority of the
first approach.

5. Imprecise Bayesian Approach

From a precise Bayesian standpoint, since we only
know, in the absence of data, that 𝜆ℎ ∈ [0.01; 0.1] fail-
ures/defect/month, we assume that all values in that interval
are equally likely so that we represent our initial ignorance
through a uniform prior 𝑓1,0 (𝜆ℎ) on this interval.
However, we are, logically speaking, equally ignorant

about the values of any variable 𝑍 = 𝑓 𝑢𝑛(𝜆ℎ) where 𝑓 𝑢𝑛

is a deterministic function (that is not too extreme). We can,
with equal justification, apply the principle of indifference
to

𝑍 ∈ [𝑚𝑖𝑛𝜆ℎ ∈[0.01;0.1]
(
𝑓 𝑢𝑛(𝜆ℎ)

)
, 𝑚𝑎𝑥𝜆ℎ ∈[0.01;0.1]

(
𝑓 𝑢𝑛(𝜆ℎ)

)
]

and then deduce the cumulative probability distribution
(cdf) for 𝑍 and thereupon the corresponding cdf for 𝜆ℎ , the
derivation of which leads to a prior pdf for the values of 𝜆ℎ

that is uniform, i.e., indifferent, with respect to the values
of 𝑍 .
Let us now consider the mean delay time between the ap-

pearance of a defect and the breakdown of the pump 𝐸 (𝐻).
Since 𝐻 ∼ 𝑒𝑥𝑝(𝜆ℎ), we have 𝐸 (𝐻) = 1

𝜆ℎ
∈ [10; 100]

months. Since we are equally ignorant about 𝐸 (𝐻) ∈
[10; 100] months, we are, from a precise Bayesian point of
view, also entitled to representing our ignorance through
a uniform prior over 𝐸 (𝐻) whose probability density as a
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function of 𝜆ℎ is given by Eq. 16.

𝑓2,0 (𝜆ℎ) =
1

𝜆2
ℎ

1
1

𝜆ℎ,𝑚𝑖𝑛
− 1

𝜆ℎ,𝑚𝑎𝑥

(16)

Given a very large number of pumps having a defect which
appeared at time 0, let 𝑝𝑟𝑜𝑝𝑆𝑎 𝑓 𝑒 (𝑡, 𝜆ℎ) = 𝑒−𝜆ℎ 𝑡 be the
expected proportion of pumps still working at time 𝑡. For a
given 𝑡, our maintenance engineer only knows that

𝑝𝑟𝑜𝑝𝑆𝑎 𝑓 𝑒 (𝑡, 𝜆ℎ) ∈ [𝑒−0.1𝑡 , 𝑒−0.01𝑡 ] (17)

If he or she decides to represent his/her ignorance through
a uniform pdf with respect to 𝑝𝑟𝑜𝑝𝑆𝑎 𝑓 𝑒 (𝑡, 𝜆ℎ), the pdf of
𝜆ℎ is given by Eq. 18.

𝑓3,0 (𝜆ℎ) =
𝑡𝑒−𝜆ℎ 𝑡

𝑒−0.01𝑡 − 𝑒−0.1𝑡
(18)

If we are ignorant about the value of 𝑝𝑟𝑜𝑝𝑠𝑎 𝑓 𝑒 (𝑡, 𝜆ℎ),
we are logically equally ignorant about the value of

1
𝑝𝑟𝑜𝑝𝑠𝑎 𝑓 𝑒 (𝑡 ,𝜆ℎ) which belongs to the interval [𝑒

0.01𝑡 ; 𝑒0.1𝑡 ].
If the engineer decides to express his/her initial ignorance
via a uniform prior over 1

𝑝𝑟𝑜𝑝𝑠𝑎 𝑓 𝑒 (𝑡 ,𝜆ℎ) , the corresponding
pdf with respect to 𝜆ℎ is given by Eq. 19.

𝑓4,0 (𝜆ℎ) = 𝑡
𝑒𝜆ℎ 𝑡

𝑒0.1𝑡 − 𝑒0.01𝑡
(19)

From a fundamental point of view, our engineer only knows
that 𝜆ℎ ∈ [0.01; 0.1], which is equivalent to 𝐸 (𝐻) ∈
[10; 100],

𝑝𝑟𝑜𝑝𝑆𝑎 𝑓 𝑒 (𝑡, 𝜆ℎ) ∈ [𝑒−0.1𝑡 , 𝑒−0.01𝑡 ] (20)

and
1

𝑝𝑟𝑜𝑝𝑠𝑎 𝑓 𝑒 (𝑡, 𝜆ℎ)
∈ [𝑒0.01𝑡 ; 𝑒0.1𝑡 ] . (21)

According to objective precise Bayesianism, he or she ought
to represent his/her initial ignorance through a flat prior over
the variable he/she is ignorant about. Unluckily, such a flat
prior for, say, 𝐸 (𝐻), would be non-uniform with respect to
the three other Bayesian random variables and thus express
a specific knowledge about their distributions even though
we are supposed to only know their bounds Norton (2008).
Moreover, it would be very hard and contrived to argue that
we are actually ignorant about only one of these variables
(such as 𝜆ℎ) and that we would be irrational if we were
to feel equally ignorant about the other variables. Instead,
in such a situation our genuine ignorance can only be
realistically expressed through a family of prior probability
distributions Walley (1990, 2000).
Since it seems to be extremely hard (if not downright

impossible) to build up a prior/posterior distribution conju-
gate to the likelihood function given by Eq.11, our engineer

Figure 3: The four priors of 𝜆ℎ .

(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure 4: The four posteriors for Sample 1, 2, 3, and 4
based on the uniform prior.

decides to represent his/her initial ignorance through a
discrete set of four priors, namely 𝑓1,0, 𝑓2,0 and 𝑓3,0 with 𝑡
= 50 months and 𝑓4,0 with 𝑡 = 50 months (other values of
𝑡 or even a whole interval of values are possible based on
the engineer’s subjective beliefs). Epistemically, this means
that our engineer feels that she has no reasons to favour
any (range of ) values of 𝜆ℎ (as the precise Bayesian in
Section 4 did) but also no reasons to favour any values of
𝐸 (𝐻), of the proportion of pumps (with an initial defect)
still working 50 months later and of the multiplicative in-
verse of that proportion. The four priors can be visualised
in Figure 3. For each of the four priors, as in Section 4,
the posteriors based on the eight samples and the optimal
inspection periods obtained by minimising the posterior
expected loss with respect to 𝐷1 and 𝐶1 were computed.
The posteriors can be seen in Figure 4-5. The lower and up-
per predictions for 𝐸𝑖 (𝜆ℎ |𝑆) (𝑖 being the index of the prior)
are compared with the frequentist and precise Bayesian
estimate of 𝜆ℎ in Table 4. It can be seen that the interval
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(a) Sample 5 (b) Sample 6

(c) Sample 7 (d) Sample 8

Figure 5: The four posteriors for Sample 5, 6, 7, and 8
based on the uniform prior.

𝑛𝑌 𝜆ℎ,𝑀𝐿𝐸 𝐸1 (𝜆ℎ) 𝑚𝑖𝑛𝑖

(
𝐸𝑖 (𝜆ℎ)

)
𝑚𝑎𝑥𝑖

(
𝐸𝑖 (𝜆ℎ)

)
0 0.0550 0.0256 0.0810
2 0.0662 0.0613 0.0364 0.0812
5 0.0690 0.0664 0.0475 0.0816
10 0.0960 0.0785 0.0655 0.0867
20 0.0946 0.0829 0.0748 0.0883
60 0.0860 0.0843 0.0800 0.0879
200 0.0862 0.0863 0.0845 0.0881
600 0.0880 0.0881 0.0874 0.0889
1000 0.0902 0.0903 0.0899 0.0908

Table 4: Expectation intervals for 𝜆ℎ .

becomes smaller and smaller as the sample size 𝑛𝑌 grows
but that it is quite large in the absence of data ([0.0256 ;
0.0810] failures/defect/month) and for a sample of only two
failure times ([0.0364 ; 0.0812] failures/defect/month).

𝑛𝑌 𝑚𝑖𝑛(𝑇𝐷1 ,𝑜𝑝𝑡 ) 𝑚𝑎𝑥(𝑇𝐷1 ,𝑜𝑝𝑡 ) 𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝐵 𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝐹
0 51.7014 +∞ 9.8058
2 51.5468 118.6333 5.5803 3.2699
5 51.3922 83.0805 3.3308 2.4081
10 49.0735 61.1306 0.6447 0.1278
20 48.3007 54.9475 0.2298 0.0766
60 48.6098 52.0105 0.1295 0.0654
200 48.4552 50.0010 0.0568 0.0589
600 48.1461 48.7644 0.0131 0.0159
1000 47.5278 47.8369 0.0001 0.0002

Table 5: Imprecise optimal inspection for 𝐷1.

According to the criterion of E-admissibility Troffaes
(2007), each inspection period which is optimal with respect
to one of the four probability distributions representing the
agent’s uncertainty is admissible. The lower and upper pos-
terior optimal inspection periods for 𝐷1 and 𝐶1 alongside
the suboptimality of the frequentist and precise Bayesian

𝑛𝑌 𝑚𝑖𝑛(𝑇𝐶1 ,𝑜𝑝𝑡 ) 𝑚𝑎𝑥(𝑇𝐶1 ,𝑜𝑝𝑡 ) 𝛥𝐶𝑜𝑠𝑡𝐵 𝛥𝐶𝑜𝑠𝑡𝐹
0 55.1021 +∞ 4837.4707
2 54.9475 +∞ 2568.2310 1428.5680
5 54.6383 114.7689 1469.9209 1033.6236
10 51.5468 69.0140 261.8602 49.4582
20 50.7739 59.5848 91.3934 29.7284
60 50.9285 55.5658 54.4745 26.0579
200 50.9285 52.7834 22.8585 23.4314
600 50.4647 51.2376 6.2591 6.2836
1000 49.5373 50.0010 0.0481 0.0605

Table 6: Imprecise optimal inspection for 𝐶1.

decisions are shown in Table 5 and 6. For large sample sizes
(such as 𝑛𝑌 = 1000 and 𝑛𝑌 = 600), the intervals for𝑇𝐷1 ,𝑜𝑝𝑡,𝑆

and 𝑇𝐶1 ,𝑜𝑝𝑡,𝑆 are very narrow and the suboptimality of the
frequentist and precise Bayesian decision (represented by
𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝐹 , 𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝐵, 𝛥𝐶𝑜𝑠𝑡𝐹 , and 𝛥𝐶𝑜𝑠𝑡𝐵) is
quite small.
Nevertheless, in the absence of any data, the optimal

inspection period for minimising 𝐷1 belongs to the interval
[51.7014 ; +∞] days. This means that the optimal decision
is extremely uncertain, which corresponds to the fact that
the precise Bayesian decision would lead to a sub-optimality
of 𝛥𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝐵 = 9.8058 days of downtime in compar-
ison to the true optimal inspection period that could be
calculated if we knew the real value of 𝜆ℎ. Likewise, for
𝑛𝑌 = 2 failure times, the optimal inspection periods for
minimising 𝐶1 belongs to the interval [54.9475 ; +∞] days.
This extremely strong imprecision corresponds to the fact
that the frequentist and precise Bayesian decisions would
be highly sub-optimal in that 𝛥𝐶𝑜𝑠𝑡𝐵 = 2568.2310 e and
𝛥𝐶𝑜𝑠𝑡𝐹 = 1428.5680 e.

6. Discussion and Conclusions

In this work, we have developed and applied an imprecise
Bayesian approach to delay time modelling for the choice
of optimal inspection periods in industrial maintenance.
Eight samples of virtual data have been generated and the
frequentist and precise Bayesian approaches were compared
with the newly developed imprecise Bayesian approach.
While the three approaches give very similar results for large
sample sizes (”the priorswash out”Hawthorne (1994)) , they
strongly differ for small sample sizes or in the absence of any
data. In contrast to other imprecise decision criteria such
as 𝛤-maximax and 𝛤-maximin Troffaes (2007) that would
have returned a single decision value for the inspection
period, E-admissibility returns a set of inspection periods.
Far from being a defect, it allows the engineer to realise that
when the interval returned by the imprecise probabilistic
approach is very large (or even infinite), the evidential
basis at his/her disposal is so thin that it is not possible to
tell which inspection period would be optimal. A practical
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consequence of this result is that the enterprise needs to
collect more data in order to make an informed decision.
Opponents of imprecise probabilities often argue that

sharp, single-valued probabilities are all we need to repre-
sent all forms of uncertainty. For instance, Lindley wrote
that

Whatever way uncertainty is approached, proba-
bility is the only sound way to think about it

Lindley (2013). The results obtained through this study
undermine that notion. The precise Bayesian method always
returns a single optimal inspection periodwithout any regard
for its reliability and the level of information it is based
upon. To be sure, a compentent Bayesian statistician would
be able to see that the evidential basis is much stronger for
𝑛𝑌 = 1000 than for 𝑛𝑌 = 2 because the posterior pdf of
𝜆ℎ is much flatter in the latter case. However, the shape of
the probability distribution of 𝜆ℎ has no bearing upon the
precise Bayesian optimal decision that is always based on
minimising the posterior expected loss without considering
the variance of the loss Bradley (2019). What is more,
experience shows that time and time again many classical
Bayesians draw very strong conclusions that are entirely
grounded on the prior probability distribution and not on
any empirical data Benetreau-Dupin (2015); Norton (2010).
A precise Bayesian who wants to avoid these pitfalls must
resort to ad-hoc reasoning, which contradicts the aspiration
of precise Bayesianism to be a universal holistic framework
for dealing with every sort of uncertainty as expressed by
Lindley (2013).
In contrast, an imprecise Bayesian approach relying on

E-admissibility allows one to make a distinction between
different degrees of knowledge and ignorance, as Sturgeon
elegantly expressed it:

Evidence and attitude aptly based on it must
match in character. When evidence is essentially
sharp, it warrants sharp or exact attitude; when
evidence is essentially fuzzy -as it is most of the
time- it warrants at best a fuzzy attitude.

Sturgeon (2008) It is worth noting that the present study also
undermines the use of frequentist methods that are often
defended on the grounds that they do not rely on a prior that
is not capable of expressing genuine ignorance. Like the
precise Bayesian approach, the frequentist approach also
returns a single number that does not indicate how strongly
the empirical evidence truly supports the decision.
Finally, while we considered a finite set of priors in this

study as an easy way to demonstrate how the inclusion of
imprecision can reveal the difference between ignorance,
knowledge and degrees of ignorance, it might be more
epistemically realistic to consider a continuous family of

priors that are to be updated. This could, for example, be
realised by considering the function sets

𝑓0,𝑡 (𝜆ℎ) = 𝑡
𝑒−𝜆ℎ 𝑡

𝑒−0.01𝑡 − 𝑒−0.1𝑡
(22)

and

𝑔0,𝑡 (𝜆ℎ) = 𝑡
𝑒𝜆ℎ 𝑡

𝑒0.1𝑡 − 𝑒0.01𝑡
(23)

and defining the prior set

=0 = { 𝑓0,𝑡 , 𝑔0,𝑡 , 𝑡 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]} (24)

with =0 becoming the vacuous prior set as 𝑡𝑚𝑎𝑥 → +∞.
Developing this thought would, however, demand much
further work.
Finally, it is worth noting that the imprecise Bayesian

approach developed and tested throughout this study can and
should also be applied to more complex delay time models
such as those involving multi-component systems where
several defects can accumulate before a breakdown and
where the probability distributions of the defect appearance
time and the delay time are best approximated through two
Weibull distributions Wang (2012a).
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