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Abstract
The Wasserstein distances between probability distri-
butions are an important tool in modern probability
theory which has been generalized to sets of probabil-
ity distributions. We will show that the (generalized)
𝐿1-Wasserstein metric, with the operations of convo-
lution and rescaling, fits in the abstract framework of
convex combination spaces: nonlinear metric spaces
preserving some of the nice properties of a normed
space but accomodating other unusual behaviours. For
instance, unlike in a linear space, a singleton {𝑃} is
typically not convex (it is so only if 𝑃 is degenerate).
Also, some theorems for convex combination spaces
are applied to this setting.
Keywords: compact sets of probabilities, convolution,
credal set, law of large numbers, Wasserstein metric

1. Introduction
The Wasserstein 𝐿 𝑝-metrics have become an essential tool
for quantifying the disparity between probability measures
[14, 9], due in part to their natural connection to optimal
transport problems and techniques. They are an object of
active interest at the theoretical level [3, 7], in the develop-
ment of new statistical methods [2, 4] and in applications
[5, 15].
Recently, Li and Lin [8] defined a generalizedWasserstein

metric between sets of probabilities, rather than individ-
ual probability measures. Their immediate interest lies
in connecting the convergence of sets of probabilities to
that of functionals (sublinear expectations [10]) which can
be written as suprema of integrals with respect to those
probabilities.
But one can also envisage potential applications in which

a set of probability measures represents a statistical model
(parametric or nonparametric like, e.g., in robust statistics),
a credal set, or is generated by other imprecise proba-
bility models (the core of a capacity, the selectionable
distributions of a random set, and so on), or arises from
decision-theoretical considerations (multiple priors, ambi-
guity).
Our aim is to show that both the 𝐿1-Wasserstein metric

𝑤1 and its generalization to sets of probability measures
fit in the framework of the convex combination spaces

defined by Terán and Molchanov [12]. These (non-linear)
metric spaces provide a generalization of Banach spaces
which is both amenable to probability theory and closed
under uplifting to compact subsets. That means that, given a
convex combination space𝔼, it is always true that the class of
its non-empty compact subsets is also a convex combination
space when endowed with the Hausdorff metric.

In our context, that will mean that Li and Lin’s general-
ized Wasserstein metric immediately satisfies some known
theorems as soon as those are proved for the usual Wasser-
stein metric, which itself just requires establishing that it
defines a convex combination space and applying available
results. Therefore it is an interesting path to showing that the
generalized Wasserstein metric preserves some properties
of the usual Wasserstein metric, without having to devise
new proofs.

The basic operation in a convex combination space is
the convex combination, whether an algebraic sum exists
or not. A convex combination of points 𝑥𝑖 with weights
𝜆𝑖 is directly connected to the expectation of a random
element taking on values 𝑥𝑖 with probabilities 𝜆𝑖 , and
is sufficient to study averages and weighted averages of
random elements. Moreover, note that elements need not
admit an additive inverse since convex combinations only
involve non-negative weights. That is essential in order to
accommodate spaces of probability distributions since the
neutral element is the degenerate distribution 𝛿0 at 0 but
one cannot combine two non-degenerate probabilities to
obtain 𝛿0 (this is only possible for 𝛿𝑥 and 𝛿−𝑥).

The structure of the paper is as follows. Section 2 contains
the necessary preliminaries. In Section 3, we prove that
the Wasserstein space𝑊1 (ℝ), Li and Lin’s generalization,
and an even larger space all satisfy the convex combination
space axioms. In Section 4, a detailed discussion of the
convexification axiom (CC5) below is carried out. Next
section presents some consequences, namely versions of
the strong law of large numbers, Jensen’s inequality and
the dominated convergence theorem, in the setting of ran-
dom probability measures and random sets of probability
measures.

© 2023 M. Alonso de la Fuente & P. Terán.



Alonso de la Fuente Terán

2. Preliminaries
Let (𝔼, 𝑑) be a metric space and let 𝐴 ⊆ 𝔼. Then the closure
of 𝐴 will be denoted by cl 𝐴, its convex hull will be denoted
by co 𝐴 and its closed convex hull will be denoted by co𝐴.
Denote byK(𝔼) the space of non empty compact subsets

of 𝔼.
Let (𝛺,A, 𝑃) be a probability space and let 𝑣 ∈ 𝔼

be an arbitrary point. A Borel measurable mapping 𝑋 :
(𝛺,A, 𝑃) → (𝔼, 𝑑) is called random element. A random
element 𝑋 : (𝛺,A, 𝑃) → 𝔼 is integrable if 𝑑 (𝑋, 𝑣) is an
integrable random variable.
Let 𝑋𝑛, 𝑋 be random elements in 𝔼. Then {𝑋𝑛}𝑛 con-

verges weakly to 𝑋 if 𝐸 [ 𝑓 (𝑋𝑛)] → 𝐸 [ 𝑓 (𝑋)] for every
continuous bounded function 𝑓 : 𝔼 → ℝ.
Let𝑊1 (ℝ) be the set of probability measures in ℝ with

finite expectation. The 𝐿1-norm of a real random variable
with finite expectation is defined as

‖𝑋 ‖1 = 𝐸 [|𝑋 |] .

Endow𝑊1 (ℝ) with the 𝐿1-Wasserstein metric

𝑤1 (𝑃,𝑄) = inf
L(𝑋 )=𝑃,L(𝑌 )=𝑄

‖𝑋 − 𝑌 ‖1,

where L(𝑋) and L(𝑌 ) are the distributions of the random
variables 𝑋 and 𝑌 .
Assuming that 𝛺 is a metric space, in [8, p. 2], a sublinear

expectation is defined as

𝔼P [𝜑] = sup
𝜇∈P

𝐸𝜇 [𝜑],∀𝜑 ∈ 𝐶 (𝛺),

where P is a set of Borel probability measures, 𝐶 (𝛺) is the
space of continuous functions 𝜑 : (𝛺, 𝑑) → ℝ and 𝑑 is a
metric in 𝛺.
Let P and Q be sets of probability measures. The gener-

alized Wasserstein metric (see [8, Definition 2.1]) between
P and Q is

W1 (P,Q)

= max
{
sup
𝑃∈P

inf
𝑄∈Q

𝑤1 (𝑃,𝑄), sup
𝑄∈Q

inf
𝑃∈P

𝑤1 (𝑃,𝑄)
}
.

Recall that a weakly compact set is compact with respect
to the weak topology.

Definition 1 We denote by P1 (ℝ) the set of all sets P of
probability measures in the real line such that

(a) P is weakly compact

(b) For an arbitrary point 𝑟 ∈ ℝ,

lim
𝐾→∞

𝔼P [𝑑 (𝑟, ·)𝐼{𝑥∈ℝ:𝑑 (𝑟 ,𝑥) ≥𝐾 }] = 0.

In [8, Definition 2.4], Li and Lin imposed an additional
condition, the convexity of the setsP with respect to the ordi-
nary operations given by (𝑎𝑃 + 𝑏𝑄) (𝐴) = 𝑎𝑃(𝐴) + 𝑏𝑄(𝐴).
Notice these are not the operations between probability
measures that we will consider, which are based on convo-
lution and rescaling. We will denote by P𝑐1 (ℝ) the subset
of P1 (ℝ) in Li and Lin’s definition (which they denote
P1 (ℝ)).
Let 𝐾 be a set of probability measures. Then 𝐾 is tight if

for every 𝜀 > 0 there exists a compact set 𝐿 such that

inf
𝜇∈𝐿

𝜇(𝐿) > 1 − 𝜀.

Wewill use the following characterization of the relatively
compact subsets of𝑊1 (ℝ𝑑) [9, Proposition 2.2.3].

Lemma 2 A tight subset 𝐾 ⊆ 𝑊1 (ℝ𝑑) has a compact
closure in𝑊1 (ℝ) if and only if

sup
𝜇∈𝐾

∫
{𝑥:‖𝑥 ‖>𝑅}

‖𝑥‖𝑑𝜇(𝑥) → 0 (1)

as 𝑅 → ∞.

Another important result related to tight subsets is
Prokhorov’s theorem, which is stated below (see [6]).

Lemma 3 (Prokhorov’s theorem) Let (𝔼, 𝑑) be a com-
plete and separable metric space and let P(𝔼) be the set of
probability measures defined in 𝔼 with its Borel 𝜎-algebra.
Let 𝐾 ∈ P(𝔼). Then 𝐾 is tight if and only if the closure of
𝐾 in P(𝔼) is compact.

Remark 4 Notice that a 𝑤1-compact subset is always
weakly compact and thus tight by Prokhorov’s theorem
(Lemma 3). Therefore, by Lemma 2 a set is 𝑤1-compact if
and only if it is tight, 𝑤1-closed and satisfies (1).

Definition 5 [12] Let (𝔼, 𝑑) be a metric space with a
convex combination operation [·, ·]𝑛

𝑖=1 which for any 𝑛 ≥ 2
numbers 𝜆1, . . . 𝜆𝑛 > 0 satisfying

∑𝑛
𝑖=1 𝜆𝑖 = 1 and any

𝑣1, . . . , 𝑣𝑛 ∈ 𝔼 this operation produces an element of 𝔼,
denoted [𝜆𝑖 , 𝑣𝑖]𝑛𝑖=1 or [𝜆1, 𝑣1; . . . ;𝜆𝑛, 𝑣𝑛]. We will say that
𝔼 is a convex combination space if the following axioms
are satisfied:

(CC1) (Commutativity) For every permutation 𝜎 of
{1, . . . , 𝑛},

[𝜆𝑖 , 𝑣𝑖]𝑛𝑖=1 = [𝜆𝜎 (𝑖) , 𝑣𝜎 (𝑖) ]𝑛𝑖=1;

(CC2) (Associativity)

[𝜆𝑖 , 𝑣𝑖]𝑛+2𝑖=1 = [𝜆1, 𝑣1; . . . ;𝜆𝑛, 𝑣𝑛;𝜆𝑛+1

+𝜆𝑛+2, [
𝜆𝑛+ 𝑗

𝜆𝑛+1 + 𝜆𝑛+2
; 𝑣𝑛+ 𝑗 ]2𝑗=1];
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(CC3) (Continuity) If 𝑢, 𝑣 ∈ 𝔼 and 𝜆 (𝑘) → 𝜆 ∈ (0, 1), then

[𝜆 (𝑘) , 𝑢; 1 − 𝜆 (𝑘) , 𝑣] → [𝜆, 𝑢; 1 − 𝜆, 𝑣];

(CC4) (Negative curvature) For all 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝔼 and
𝜆 ∈ (0, 1),

𝑑 ( [𝜆, 𝑢1; 1 − 𝜆, 𝑢2], [𝜆, 𝑣1; 1 − 𝜆, 𝑣2])

≤ 𝜆𝑑 (𝑢1, 𝑣1) + (1 − 𝜆)𝑑 (𝑢2, 𝑣2);

(CC5) (Convexification) For each 𝑣 ∈ 𝔼, there exists
lim𝑛→∞ [𝑛−1, 𝑣]𝑛

𝑖=1, which will be denoted by K𝔼 (𝑣).
The mapping K𝔼 is called the convexification operator
of 𝔼.

The barycenter of a probability measure 𝑃 in the real line
(i.e., the expectation of a random variable whose distribution
is 𝑃) will be denoted by 𝑏(𝑃).

3. Convex Combinations Based on
Convolution

In this section, we will show that Li and Lin’s space (with
the convexity requirement or removing it) fits into the frame-
work of convex combination spaces when the operations
on probability measures are convolution and rescaling. The
path to that result is as follows.

(1) TheWasserstein space𝑊1 (ℝ) is a convex combination
space.

(2) P1 (ℝ) is exactly K(𝑊1 (ℝ)).

(3) P1 (ℝ) is a convex combination space.

(4) P𝑐1 (ℝ) ⊆ P1 (ℝ) is a convex combination space.

Notice that the intermediate steps have independent inter-
est, as𝑊1 (ℝ) is an important space in modern probability
theory and P1 (ℝ) removes the convexity assumption in the
definition of P𝑐1 (ℝ).
First, we have to show that the space of probability

distributions with finite mean is a convex combination
space. To that end, we define convex combinations using
convolution and rescaling. The convolution of 𝑃 and 𝑄 is
the distribution of 𝑋 + 𝑌 where 𝑋,𝑌 are independent and
have distribution 𝑃,𝑄 respectively. If 𝑃,𝑄 are absolutely
continuous then the density function of the convolution is
the convolution of their density functions given by

𝑓 (𝑥) =
∫ ∞

−∞
𝑓𝑋 (𝑥 − 𝑦) 𝑓𝑌 (𝑦)𝑑𝑦.

Rescaling 𝑃 by a factor 𝑎 means taking the distribution of
𝑎𝑋 for a random variable 𝑋 with distribution 𝑃.

Theorem 6 (𝑊1 (ℝ), 𝑤1) is a convex combination space
with the convex combination operation

[𝜆𝑖 , 𝑃𝑖]𝑛𝑖=1 = L(
𝑛∑︁
𝑖=1

𝜆𝑖𝑋𝑖)

where 𝑋𝑖 are independent random variables with distri-
bution 𝑃𝑖 , respectively. The convexification operator is
K𝑊1 (ℝ) (𝑃) = 𝛿𝑏 (𝑃) .

Proof Properties (CC1) and (CC2) are consequences of
the commutativity and associativity of the sum and product
in ℝ.
(CC3) Let 𝑃,𝑄 ∈ 𝑊1 (ℝ) and let 𝜆 (𝑘) → 𝜆 ∈ (0, 1).

Then 𝜆 (𝑘)𝑋1 + (1 − 𝜆 (𝑘) )𝑋2 → 𝜆𝑋1 + (1 − 𝜆)𝑋2.
(CC4) Let 𝑃1, 𝑃2, 𝑄1, 𝑄2 ∈ 𝑊1 (ℝ). Then

𝑤1 ( [𝜆, 𝑃1; (1 − 𝜆), 𝑃2], [𝜆, 𝑄1; (1 − 𝜆), 𝑄2])
= inf

L(𝑋 )=[𝜆,𝑃1;(1−𝜆) ,𝑃2 ],
L(𝑌 )=[𝜆,𝑄1;(1−𝜆) ,𝑄2 ]

‖𝑋 − 𝑌 ‖1

≤ inf
L(𝑋1)=𝑃1 ,L(𝑋2)=𝑃2 ,
L(𝑌1)=𝑄1 ,L(𝑌2)=𝑄2






(𝜆𝑋1 + (1 − 𝜆)𝑋2)
− (𝜆𝑌1 + (1 − 𝜆)𝑌2)







1

= inf
L(𝑋1)=𝑃1 ,L(𝑋2)=𝑃2 ,
L(𝑌1)=𝑄1 ,L(𝑌2)=𝑄2






(𝜆𝑋1 − 𝜆𝑌1)+ ((1 − 𝜆)𝑋2 − (1 − 𝜆)𝑌2)







1

= inf
L(𝑋1)=𝑃1 ,L(𝑋2)=𝑃2 ,
L(𝑌1)=𝑄1 ,L(𝑌2)=𝑄2






𝜆(𝑋1 − 𝑌1)+ (1 − 𝜆) (𝑋2 − 𝑌2)







1

≤ inf
L(𝑋1)=𝑃1 ,L(𝑋2)=𝑃2 ,
L(𝑌1)=𝑄1 ,L(𝑌2)=𝑄2

(
𝜆‖𝑋1 − 𝑌1‖1
+ (1 − 𝜆)‖𝑋2 − 𝑌2‖1

)
= inf

L(𝑋1)=𝑃1 ,L(𝑌1)=𝑄1
𝜆‖𝑋1 − 𝑌1‖1

+ inf
L(𝑋2)=𝑃2 ,L(𝑌2)=𝑄2

(1 − 𝜆)‖𝑋2 − 𝑌2‖1

= 𝜆 inf
L(𝑋1)=𝑃1 ,L(𝑌1)=𝑄1

‖𝑋1 − 𝑌1‖1

+ (1 − 𝜆) inf
L(𝑋2)=𝑃2 ,L(𝑌2)=𝑄2

‖𝑋2 − 𝑌2‖1

= 𝜆𝑤1 (𝑃1, 𝑄1) + (1 − 𝜆)𝑤1 (𝑃2, 𝑄2).

(CC5) Notice that convergence in the metric 𝑤1 is equiv-
alent to weak convergence and convergence of the first
moment (see Theorem 7.12 in [13]). Let {𝑋𝑛}𝑛 be an inde-
pendent sequence of random variables with distribution 𝑃.
Then [𝑛−1, 𝑃]𝑛

𝑖=1 is the distribution of 𝑛
−1∑𝑛

𝑖=1 𝑋𝑖 , which
converges to 𝐸 (𝑋1) almost surely by the strong law of large
numbers. In particular, convergence in distribution holds
and thus

[𝑛−1, 𝑃]𝑛𝑖=1 → 𝛿𝐸 (𝑋1) = 𝛿𝑏 (𝑃)
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weakly. In its turn, convergence of the first moment is trivial
since

𝐸 (𝑛−1
𝑛∑︁
𝑖=1

𝑋𝑖) = 𝐸 (𝑋1) = 𝑏(𝑃) = 𝑏(𝛿𝑏 (𝑃) ).

Wewill characterize P1 (ℝ) now as the set of all compact
subsets of (𝑊1 (ℝ), 𝑤1).

Proposition 7

P1 (ℝ) = K(𝑊1 (ℝ))

Proof First, let us show that P1 (ℝ) ⊆ K(𝑊1 (ℝ)), that
is, every set of probabilities P verifying (a) and (b) is
a 𝑤1-compact set of integrable probabilities. Let P be a
singleton {𝑃}. Then, by condition (b), {𝑃} is uniformly
integrable, hence integrable.
Moreover, let P ∈ P1 (ℝ), which is weakly compact

by hypothesis. Since (𝑊1 (ℝ), 𝑤1) is complete and separa-
ble (see Proposition 2.2.8 and Theorem 2.2.7 in [9]), by
Prokhorov’s theorem (Lemma 3) P is tight. Since condition
(b) in Definition 1 is satisfied, by Lemma 2, P has compact
closure in the Wasserstein metric.
There remains to show that P is actually closed in 𝑤1.

Let {𝑃𝑛}𝑛 ⊆ P be a convergent sequence to some 𝑃 in
𝑤1. Since the weak topology is weaker than the topology
induced by the Wasserstein metric, the sequence {𝑃𝑛}𝑛
converges to 𝑃 in the weak topology. Then, since P is
compact in the weak topology, it is closed, hence 𝑃 ∈ P.
In conclusion, P is closed in the Wasserstein metric, so it
is compact.
Next, we have to show K(𝑊1 (ℝ)) ⊆ P1, that is, every

compact subset of integrable probabilities satisfies condi-
tions (a) and (b). Condition (a) is inmediate, since every
𝑤1-compact set is weakly compact. For (b), Lemma 2 en-
sures that condition (b) is satisfied, since the equivalence
between tightness and compact closure in 𝑊1 (ℝ) is true
only if the sequences are uniformly integrable.

In [12, Theorem 6.2], it was proven that the property of
(𝔼, 𝑑) being a convex combination space is inherited by
K(𝔼) endowed with the Hausdorff metric

𝑑𝐻 (𝐾, 𝐿) = max{ sup
𝑥∈𝐾
inf
𝑦∈𝐿

𝑑 (𝑥, 𝑦), sup
𝑦∈𝐿
inf
𝑥∈𝐾

𝑑 (𝑥, 𝑦)}.

As a consequence, we obtain the following result.

Theorem 8 (P1 (ℝ),W1) is a convex combination space
with the convex combination operation

[𝜆𝑖 ,P𝑖]𝑛𝑖=1 ={L(
𝑛∑︁
𝑖=1

𝜆𝑖𝑋𝑖) | L(𝑋𝑖) ∈ P𝑖 ,

𝑋𝑖 independent, 𝑖 ∈ {1, . . . , 𝑛}}

and the convexification operator KK(𝑊1 (ℝ)) = co ◦K𝑊1 (ℝ) .

Proof By Theorem 6.2 in [12], that convex combination
operation is well defined and P1 (ℝ) becomes a convex
combination operation when endowed the Hausdorff metric.
But that is just the generalized Wasserstein metric W1
defined byLin andLi. By the same result, the convexification
operator is the composition of the closed convex hull and
the convexification operator in the underlying space.

Finally, we will complete step (4) above.

Theorem 9 P𝑐1 (ℝ) is a convex combination space with
the operations and W1-metric inherited from P1 (ℝ).

Proof Since P𝑐1 (ℝ) is a subset of P1 (ℝ), properties (CC1)
through (CC5) of the latter will ensure that P𝑐1 (ℝ) is a
convex combination space, as soon as we prove that the
convex combination of elements in P𝑐1 (ℝ) is in P𝑐1 (ℝ).
Moreover, due to the associativity property (CC2), it suffices
to prove it for the convex combination of two elements, as
any larger convex combination can iteratively be reduced
to convex combinations of two elements.
Let 𝜆 ∈ (0, 1) and P,Q ∈ P𝑐1 (ℝ). We need to show

[𝜆,P; 1−𝜆,Q] ∈ P𝑐1 (ℝ), i.e., [𝜆,P; 1−𝜆,Q] is convex in
the sense used in [8]. Specifically, we will show that, when-
ever 𝑝 ∈ (0, 1), 𝑃, 𝑃′ ∈ P and 𝑄,𝑄 ′ ∈ Q, the probability
measure 𝑝 · [𝜆, 𝑃; 1 − 𝜆, 𝑄] + (1 − 𝑝) · [𝜆, 𝑃′; 1 − 𝜆, 𝑄 ′] is
in [𝜆,P; 1 − 𝜆,Q]. As before, the general case follows by
iterating convex combinations of two elements.
Let 𝑋, 𝑋 ′, 𝑌 ,𝑌 ′ be independent random variables whose

distributions, respectively, are 𝑃, 𝑃′, 𝑄, 𝑄 ′. While they
might possibly be defined on different sample spaces
𝛺𝑋 , 𝛺𝑋 ′ , 𝛺𝑌 , 𝛺𝑌 ′ , without loss of generality we may as-
sume that this is not the case. Indeed, otherwise we de-
fine 𝛺 = 𝛺𝑋 × 𝛺𝑋 ′ × 𝛺𝑌 × 𝛺𝑌 ′ and replace 𝑋, 𝑋 ′, 𝑌 ,𝑌 ′

by random variables with the same distribution given by
�̂� : (𝜔1, 𝜔2, 𝜔3, 𝜔4) ∈ 𝛺 ↦→ 𝑋 (𝜔1) and so on.
Consider a random variable 𝜉 : 𝛺 × [0, 1] → ℝ defined

in the product probability space 𝛺 × [0, 1] with the proba-
bility measure ℙ being the product of 𝑃 and the uniform
distribution in [0, 1],

𝜉 (𝜔, 𝑡) =
{
𝜆𝑋 (𝜔) + (1 − 𝜆)𝑌 (𝜔), 𝑡 ∈ [0, 𝑝]
𝜆𝑋 ′(𝜔) + (1 − 𝜆)𝑌 ′(𝜔), 𝑡 ∈ (𝑝, 1]

Since, for any Borel set 𝐴 ⊆ 𝑅,

ℙ(𝜉 ∈ 𝐴) = 𝑝 · 𝑃(𝜆𝑋 + (1 − 𝜆)𝑌 ∈ 𝐴)

+(1 − 𝑝) · 𝑃(𝜆𝑋 + (1 − 𝜆)𝑌 ∈ 𝐴)
and

𝑃𝜆𝑋+(1−𝜆)𝑌 = [𝜆, 𝑃𝑋 ; 1 − 𝜆, 𝑃𝑌 ] = [𝜆, 𝑃; 1 − 𝜆, 𝑄],
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𝑃𝜆𝑋 ′+(1−𝜆)𝑌 ′ = [𝜆, 𝑃𝑋 ′ ; 1 − 𝜆, 𝑃𝑌 ′] = [𝜆, 𝑃′; 1 − 𝜆, 𝑄 ′],
we have

L(𝜉) = 𝑝 · [𝜆, 𝑃; 1 − 𝜆, 𝑄] + (1 − 𝑝) · [𝜆, 𝑃′; 1 − 𝜆, 𝑄 ′] .

There remains to prove L(𝜉) ∈ [𝜆,P; 1 − 𝜆,Q]. For that
purpose, notice 𝜉 = 𝜆𝜉1 + (1 − 𝜆)𝜉2 where

𝜉1 (𝜔, 𝑡) =
{
𝑋 (𝜔), 𝑡 ∈ [0, 𝑝]
𝑋 ′(𝜔), 𝑡 ∈ (𝑝, 1]

and

𝜉2 (𝜔, 𝑡) =
{
𝑌 (𝜔), 𝑡 ∈ [0, 𝑝]
𝑌 ′(𝜔), 𝑡 ∈ (𝑝, 1] .

The distributions of 𝜉1 and 𝜉2 are the mixtures 𝑝 · 𝑃 + (1 −
𝑝) · 𝑃′ and 𝑝 ·𝑄 + (1 − 𝑝) ·𝑄 ′. Since 𝑃, 𝑃′ ∈ P ∈ P𝑐1 (ℝ),
we have L(𝜉1) ∈ P. Similarly, L(𝜉2) ∈ Q. Therefore

L(𝜉) = ℙ𝜆𝜉1+(1−𝜆) 𝜉2

= [𝜆,L(𝜉1); 1 − 𝜆,L(𝜉2)] ∈ [𝜆,P; 1 − 𝜆,Q]
as wished.

4. On Property (CC5)
Convexification property (CC5) is trivially satisfied in a
linear space, while convolution is not a group and moreover
rescaling a distribution by the factor −1 does not provide
its additive inverse. It is therefore interesting to study this
property more specifically in the spaces𝑊1 (ℝ) and P1 (ℝ).

Proposition 10 Let 𝑃 ∈ 𝑊1 (ℝ). Then {𝑃} is convex if and
only if 𝑃 is a degenerate distribution.

Proof By [12, Proposition 3.2], {𝑃} is convex if and only
if 𝑃 = K𝑊1 (ℝ) (𝑄) for some 𝑄, which by (CC5) implies
𝑃 = 𝛿𝑏 (𝑄) .
For the converse, notice 𝑃 = 𝛿𝑥 for some 𝑥 ∈ ℝ implies

every convex combination [𝜆𝑖 , 𝑃]𝑛𝑖=1 is the distribution of
the random variable

∑𝑛
𝑖=1 𝜆𝑖𝑥 = 𝑥, i.e., [𝜆𝑖 , 𝑃]𝑛𝑖=1 = 𝑃.

Remark 11 If 𝑃 has a finite variance 𝜎2, an alternative ar-
gument goes by noticing that [1/2, 𝑃; 1/2, 𝑃] has variance
𝜎2/2, which is impossible unless 𝑃 is degenerate.

Let us present an explicit expression of the convexification
operator in P1 (ℝ). To that end, given P ∈ P1 (ℝ) we define

𝑏(P) = inf
𝑃∈P

𝑏(𝑃) (lower barycenter),

𝑏(P) = sup
𝑃∈P

𝑏(𝑃) (upper barycenter).

Notice these are just the lower and upper expectation defined
by all random variables whose distribution is in P.

Proposition 12 Let P ∈ P1 (ℝ). Then

KP1 (ℝ) (P) = {𝛿𝑥 | 𝑥 ∈ [𝑏(P), 𝑏(P)]}.

Proof By Proposition 7, P1 (ℝ) = K(𝑊1 (ℝ)). Therefore,
using Theorems 8 and 6,

KP1 (ℝ) (P) = coK𝑊1 (ℝ) (P) = co {𝛿𝑏 (𝑃) | 𝑃 ∈ P}.

The convex hull of {𝛿𝑏 (𝑃) | 𝑃 ∈ P} is formed by that
set together with all convex combinations [𝜆𝑖 , 𝛿𝑏 (𝑃𝑖) ]𝑛𝑖=1 =
𝛿∑𝑛

𝑖=1 𝜆𝑖𝑏 (𝑃𝑖) with 𝑃𝑖 ∈ P. It is therefore the set {𝛿𝑥 | 𝑥 ∈
co {𝑏(𝑃) | 𝑃 ∈ P}}.
From the fact that a sequence of degenerate distributions

cannot 𝑤1-converge to a non-degenerate distribution, it
is not hard to show that for any convex set 𝐴 ⊆ ℝ, the
𝑤1-closure of the set {𝛿𝑥 | 𝑥 ∈ 𝐴} is {𝛿𝑥 | 𝑥 ∈ cl 𝐴}.
Accordingly,

KP1 (ℝ) (P) = {𝛿𝑥 | 𝑥 ∈ co {𝑏(𝑃) | 𝑃 ∈ P}}.

The set {𝑏(𝑃) | 𝑃 ∈ P} is bounded due to the weak
compactness of P. Therefore its closed convex hull is a
compact interval, and it follows from the definition that its
endpoints are 𝑏(P) and 𝑏(P).

The set of all independent sequences of random variables
𝑋𝑛 whose distributions are in a set P will be denoted by
X(P). Also, whenever 𝑃 ∈ 𝑊1 (ℝ) and Q ⊆ 𝑊1 (ℝ), we
will denote by 𝑑 (𝑃,Q) the 𝑤1-distance from 𝑃 to Q,

𝑑 (𝑃,Q) = inf
𝑄∈Q

𝑤1 (𝑃,𝑄).

From the fact that P1 (ℝ) is a convex combination space
we obtain the following consequence of (CC5).

Theorem 13 Let P ∈ P1 (ℝ). Then

𝑑 (L(𝑛−1
𝑛∑︁
𝑖=1

𝑋𝑖), {𝛿𝑥 | 𝑥 ∈ [𝑏(P), 𝑏(P)]}) → 0

uniformly over all independent sequences {𝑋𝑛}𝑛 such that
L(𝑋𝑛) ∈ P for all 𝑛 ∈ ℕ.

Proof Combining the preceding results, [𝑛−1,P]𝑛
𝑖=1 con-

verges in the generalized Wasserstein metricW1 to the set
{𝛿𝑥 | 𝑥 ∈ [𝑏(P), 𝑏(P)]}. RecallW1 is the Hausdorff met-
ric between elements ofK(𝑊1 (ℝ)) = P1 (ℝ). In particular,

sup
𝑃∈[𝑛−1 ,P]𝑛

𝑖=1

inf
𝑄∈{𝛿𝑥 |𝑥∈[𝑏 (P) ,𝑏 (P) ] }

𝑤1 (𝑃,𝑄) → 0,

equivalently

sup
𝑃1 ,...,𝑃𝑛∈P

𝑑 ( [𝑛−1, 𝑃𝑖]𝑛𝑖=1, {𝛿𝑥 | 𝑥 ∈ [𝑏(P), 𝑏(P)]})
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= sup
𝑃1 ,...,𝑃𝑛∈P

inf
𝑥∈[𝑏 (P) ,𝑏 (P) ]

𝑤1 ( [𝑛−1, 𝑃𝑖]𝑛𝑖=1, 𝛿𝑥) → 0.

Since every {𝑋𝑛}𝑛 ∈ X(P) satisfies L(𝑛−1∑𝑛
𝑖=1 𝑋𝑖) =

[𝑛−1,L(𝑋𝑖)]𝑛𝑖=1 and L(𝑋𝑖) ∈ P, we deduce

sup
{𝑋𝑛 }𝑛∈X(P)

𝑑 (L(𝑛−1
𝑛∑︁
𝑖=1

𝑋𝑖),

{𝛿𝑥 | 𝑥 ∈ [𝑏(P), 𝑏(P)]}) → 0.

That means the uniform convergence on the statement holds.

When P is a singleton, that reduces to
𝑤1 (L(𝑛−1∑𝑛

𝑖=1 𝑋𝑖), 𝛿𝑏 (𝑃) ) → 0, which is equiva-
lent to the weak law of large numbers. In that sense,
Proposition 13 can be interpreted as a generalization of
the law of large numbers to sets of probability measures.
It shows that the distributions of sample averages of
independent random variables (non-identically) distributed
according to P eventually tend to be concentrated arbitrarily
close to the set of means of P. Moreover, the Wasserstein
metric provides a quantification of the disparity for which
that convergence is uniform across all possible distribution
choices for the sequence.
It is important to note that the distributions

L(𝑛−1∑𝑛
𝑖=1 𝑋𝑖) may not converge to a point in

[𝑏(P), 𝑏(P)]. Indeed, if 𝑋1 is distributed as 𝑃, the next
10 variables are distributed as 𝑄, the next 100 as 𝑃, the
next 1000 as 𝑄, and so on, the distributions of 𝑛−1

∑𝑛
𝑖=1 𝑋𝑖

will oscillate between 𝑏(𝑃) and 𝑏(𝑄) without converging
(provided 𝑏(𝑃) ≠ 𝑏(𝑄)). Thus the claim in Theorem 13
that L(𝑛−1∑𝑛

𝑖=1 𝑋𝑖) will eventually be confined very close
to that ‘limit set’ of degenerate distributions is the best that
can be said.
It can also be reasoned, from the other part of theW1-

convergence, that the limit set [𝑏(P), 𝑏(P)] is optimal in
that each of its points is approached by the sample averages
of some appropriate sequence {𝑋𝑛}𝑛, and that happens for
all of them uniformly in 𝑤1.
In the next section, among other results we apply the law

of large numbers for convex combination spaces which adds
another layer of complexity by replacing, in the condition
L(𝑋𝑖) ∈ P, the fixed P by randomly chosen P𝑖 .

5. Some Consequences
Known theorems for convex combination spaces apply
in particular to P1 (ℝ),P𝑐1 (ℝ) and 𝑊1 (ℝ). This section
illustrates some of the possibilities. For space reasons we
focus on P1 (ℝ) which is the most general of them, leaving
the particularizations to the reader.
Since 𝑊1 (ℝ) is a complete separable metric space by

[9, Theorem 2.2.7 and Proposition 2.2.8], andW1 is the

Hausdorff metric in P1 (ℝ) = K(𝑊1 (ℝ)), the latter is
complete and separable as well. Thus the integration theory
for convex combination spaces in [12] applies, allowing
one to define a notion of expectation in P1 (ℝ).
In order to do so, one considers as random elements of

P1 (ℝ) the Borel measurable mappings from a probability
space (𝛺,A,ℙ) to P1 (ℝ) (i.e., the preimage of each 𝜌-
open set is measurable). These are random (𝑤1-compact)
sets of probability measures.
The expectation of a simple random element 𝛤 =∑𝑛
𝑖=1 𝐼𝛺𝑖

· Q𝑖 (where {𝛺𝑖}𝑛𝑖=1 is a partition of 𝛺) is de-
fined to be 𝐸 (𝛤) = [ℙ(𝛺𝑖),KP1 (ℝ) (Q𝑖)]𝑛𝑖=1. The rationale
of applying the convexification operator is to achieve invari-
ance under partition refinements (an unnecessary step if
every point in the space were convex). Taking into account
Proposition 12 above,

𝐸 (𝛤) = [ℙ(𝛺𝑖), {𝛿𝑥 | 𝑥 ∈ [𝑏(Q𝑖), 𝑏(Q𝑖)]}]

= {𝛿𝑥 | 𝑥 ∈ [
𝑛∑︁
𝑖=1

ℙ(𝛺𝑖)𝑏(Q𝑖),
𝑛∑︁
𝑖=1

ℙ(𝛺𝑖)𝑏(Q𝑖)]}.

The expectation in the general case is well defined using
approximation by simple functions. Integrable random ele-
ments are those whose expected distance from an arbitrary
element is finite, i.e.,

𝐸 (W1 (𝛤, {𝛿0})) = 𝐸 ( sup
𝑃∈𝛤

𝑤1 (𝑃, 𝛿0))

= 𝐸 ( sup
𝑃∈𝛤

inf
L(𝑋 )=𝑃

𝐸 |𝑋 |) < ∞.

The strong law of large numbers is then a generalization
for random elements of property (CC5) of non-random
elements.

Theorem 14 Let 𝛤 be an integrable random element of
P1 (ℝ). Let {𝛤𝑛}𝑛 be pairwise independent random elements
of P1 (ℝ) identically distributed as 𝛤. Then

W1 ( [𝑛−1;𝛤𝑖]𝑛𝑖=1, 𝐸 (𝛤)) → 0

almost surely.
Accordingly, for almost every 𝜔 ∈ 𝛺 the set of distribu-

tions

{L(𝑛−1
𝑛∑︁
𝑖=1

𝑋𝑖) | 𝑋𝑖 has a distribution

in 𝛤𝑖 (𝜔), 𝑋𝑖 independent}
W1-converges to the set of degenerate distributions 𝐸 (𝛤)
which is independent of 𝜔.

Proof Apply [12, Theorem 5.1].

In the case of singletons, which can be identified with ele-
ments of𝑊1 (ℝ), the distribution L(𝑛−1∑𝑛

𝑖=1 𝑋𝑖) is shown

8



Sets of Probability Measures and Convex Combination Spaces

to converge to a deterministic limit independent of 𝜔 while
the distributions of the 𝑋𝑛 are chosen randomly in a way
that depends on 𝜔. That is, 𝛤𝑖 (𝜔) is a set of distributions
from which a probability measure 𝑃𝑖 is taken and then 𝑋𝑖 is
a random variable, on a different probability space, whose
distribution is 𝑃𝑖 .
Another classical result that extends to this setting is

Jensen’s inequality.

Theorem 15 Let 𝜑 : P1 (ℝ) → ℝ be a lower semicontin-
uous function, i.e.,

W1 (Q𝑛,Q) → 0⇒ lim inf
𝑛

𝜑(Q𝑛) ≥ 𝜑(Q),

and midpoint convex, i.e., such that

𝜑( [1/2,P; 1/2,Q]) ≤ 𝜑(P) + 𝜑(Q)
2

for all P,Q ∈ P1 (ℝ). Let 𝛤 be an integrable random
element of P1 (ℝ) such that 𝐸 (𝜑(𝛤)) < ∞. Then

𝜑(𝐸 (𝛤)) ≤ 𝐸 (𝜑(𝛤)).

Proof This is an application of [11, Theorem 3.1].

A similar result holds also for 𝑊1 (ℝ) (since it is a
complete separable convex combination space) but it would
not follow trivially from Theorem 15 due to the necessity
to extend 𝜑 from𝑊1 (ℝ) to P1 (ℝ).
Finally, we present a dominated convergence theorem

under weak convergence. For similar results obtaining
convergence in more general quasimetrics, the reader is
referred to [1].

Theorem 16 Let 𝛤𝑛, 𝛤 be random elements of P1 (ℝ) such
that

W1 (𝛤𝑛, {𝛿0}) ≤ 𝑔

for some 𝑔 ∈ 𝐿1 (𝛺,A,ℙ). If 𝛤𝑛 → 𝛤 weakly then

W1 (𝐸 (𝛤𝑛), 𝐸 (𝛤)) → 0.

Proof It follows from [1, Corollary 5.2].

Notice weak convergence (a generalization to metric
spaces of convergence in distribution) is weaker than con-
vergence in probability and almost sure convergence, the
usual assumptions in the dominated convergence theorem.
Due to the definition of the convex combination via con-

volution and rescaling, these extensions of classical results
can be restated as properties of averages of independent
random variables whose distributions belong to randomly
chosen sets of probability measures.

6. Concluding Remarks
First, in Section 3, we have shown that the spaces𝑊1 (ℝ),
P1 (ℝ) and P𝑐1 (ℝ) are convex combination spaces when
endowed with the Wasserstein metric and its generalization
to sets of probability measures. In the same section, we
have shown that the space P1 (ℝ) is exactly the space of
compact sets of probability measures with finite expectation.
In addition, we have identified the convexification operator
on these spaces, which has a simple expression (see Sections
3 and 4). Furthermore, it has been seen that 𝑊1 (ℝ) and
P1 (ℝ) have the same properties due to the fact that they
both fit within the framework of convex combination spaces.
This shows that there are properties of P1 (ℝ) that need not
be constructed as if P1 (ℝ) were superior to𝑊1 (ℝ), which
is what has been done in [8]. Finally, in Section 5, we have
extended some classical results to this setting using already
existing theorems for convex combination spaces.
As a possible future line of research, the relationships

between the strong laws of large numbers for random sets
and the one we have shown here (Theorem 14) could be
studied.
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