
Proceedings of Machine Learning Research 215:270–279, 2023 ISIPTA 2023

Evaluating Imprecise Forecasts

Jason Konek Jason.Konek@bristol.ac.uk
Department of Philosophy, University of Bristol, UK

Abstract
This paper will introduce a new class of IP scoring rules
for sets of almost desirable gambles. A set of almost
desirable gambles D is evaluable for what might be
called generalised type 1 and type 2 error. Generalised
type 1 error is roughly a matter of the extent to which
D encodes false judgments of desirability. Generalised
type 2 error is roughly amatter of the extent to whichD
fails to encode true judgments of desirability. IP scoring
rules are penalty functions that average these two types
of error. To demonstrate the viability of IP scoring
rules, we must show that for any coherentD you might
choose, we can construct an IP scoring rule that renders
it admissible. Moreover, every other admissible model
relative to that scoring rule is also coherent. This paper
makes progress toward that goal. We will also compare
the class of scoring rules developed here with the
results by Seidenfeld, Schervish, and Kadane from
2012,which establish that there is no strictly proper,
continuous real-valued scoring rule for lower and upper
probability forecasts.
Keywords: scoring rules, accuracy, forecasting, lower
previsions, closed convex sets of probabilities, sets of
almost desirable gambles

1. Introduction
Policy-makers and stakeholders often rely on expert fore-
casts to inform their decision-making. For example, during
the COVID-19 pandemic, the US Center for Disease Con-
trol funded the Delphi group to run the COVID-19 Forecast
Hub and invited modelling teams from around the world
to submit forecasts of case numbers, hospitalizations, and
death counts. Given the uncertainty around these variables,
modellers were not asked to submit a single, real-valued
forecast for each one. Rather, they were asked to issue
predictive intervals which were treated by assessors at the
Delphi group as lower and upper previsions—imprecise
forecasts.
At the beginning of the pandemic, the Delphi group

constructed a single ensemble forecast by averaging the
lower and upper previsions of all eligible models in COVID-
19 Forecast Hub. By November 2021, they transitioned to
building an ensemble from the best performing models over
the previous 12 week period. To do this, they needed a
method for evaluating the accuracy of past forecasts. They

chose to score the lower/upper prevision pair 〈𝑙, 𝑢〉 for
variable 𝑋 by the Interval Score (at a specified 𝛼 level).

𝐼𝑆𝛼 (𝑙, 𝑢, 𝑥) = (𝑢−𝑙)+ 2
𝛼
(𝑙−𝑥)1(𝑙 > 𝑥)+ 2

𝛼
(𝑥−𝑢)1(𝑥 > 𝑢)

The interval score penalises 〈𝑙, 𝑢〉 for imprecision (measured
by the (𝑢− 𝑙) term), but also penalises 〈𝑙, 𝑢〉 if the true value
𝑥 of 𝑋 falls outside the interval [𝑙, 𝑢] (the further outside, the
worse). Different lower/upper prevision pairs were scored
at different 𝛼 levels (in a way that incentivised modellers to
report central predictive intervals as lower/upper previsions)
and these scores were then averaged. The resulting average
is the Weighted Interval Score (WIS).
To build an ensemble forecast, the Delphi group selected

the 10 models with the best performance according to the
WIS over the prior 12 week period. Component models
were assigned weights based on their relative WIS during
those 12 weeks. Models with a stronger record of accuracy
received higher weight.
IP scoring rules like the WIS can serve a variety of

theoretical and practical functions. They are useful for
incentivising experts to report IP forecasts and deciding
how to aggregate those forecasts, e.g., to produce a single
ensemble forecast for use in policy and decision-making.
They are also potentially useful for incentivising traders to
produce IP forecasts in prediction markets, for evaluating
and improving IP expert systems in medicine, and for train-
ing neural net classifiers to produce imprecise classification
probabilities.
The aim of this paper is to provide a general method

for constructing IP scoring rules for a range of equivalent
imprecise probability models: coherent lower previsions,
nonempty closed convex sets of probability measures, and
coherent sets of almost-desirable gambles.

2. Framework
We will focus our attention, in the first instance, on develop-
ing IP scoring rules for epigraphical sets of almost desirable
gambles. We can then score coherent lower previsions and
nonempty closed convex sets of probability measures by
scoring the equivalent coherent set of almost desirable
gambles.

Let 𝛺 = {𝜔1, . . . , 𝜔𝑛} be a finite possibility space.
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A gamble 𝑔 : 𝛺 → ℝ is an uncertain reward which
pays out in linear utility. We will treat them as elements
𝑔 = 〈𝑔1, . . . , 𝑔𝑛〉 of ℝ𝑛.

A setD ⊆ ℝ𝑛 is a coherent set of almost desirable gambles
iff it satisfies:

AD1. If 𝑔 < 0 then 𝑔 ∉ D (where 𝑔 < 0⇔ 𝑔𝑖 < 0 for all
𝑖 6 𝑛)

AD2. If 𝑔 > 0 then 𝑔 ∈ D (where 𝑔 > 0⇔ 𝑔𝑖 > 0 for all
𝑖 6 𝑛)

AD3. If 𝑔 ∈ D and 𝜆 > 0 then 𝜆𝑔 ∈ D

AD4. If 𝑓 , 𝑔 ∈ D then 𝑓 + 𝑔 ∈ D

AD5. If 𝑔 + 𝜖 ∈ D for all 𝜖 > 0 then 𝑔 ∈ D

The epigraph of a function 𝑏 : ℝ𝑛−1 → [−∞,∞] is

D𝑏 = {〈𝑔1, . . . , 𝑔𝑛〉 |𝑔𝑛 > 𝑏(𝑔1, . . . , 𝑔𝑛−1)} ⊆ ℝ𝑛

Every coherent set of almost-desirable gambles D is epi-
graphical.1 But many epigraphical sets of almost desirable
gambles are not coherent. Indeed,

Proposition 1 For any 𝑏 : ℝ𝑛−1 → [−∞,∞], D𝑏 ⊆ ℝ𝑛

is a coherent set of almost desirable gambles if and only if

E1. If 𝑔 > 0 then 𝑏(𝑔) 6 0

E2. If 𝑔 6 0 then 𝑏(𝑔) > 0

E3. If 𝜆 > 0 then 𝑏(𝜆𝑔) = 𝜆𝑏(𝑔)

E4. 𝑏( 𝑓 + 𝑔) 6 𝑏( 𝑓 ) + 𝑏(𝑔)

We will score an epigraphical set of almost desirable gam-
bles D at a state of the world 𝜔𝑖 by comparing it with the
“ideal set of almost desirable gambles” at 𝜔𝑖 . The ideal set
of almost desirable gambles if 𝜔𝑖 is the true state of the
world is given by

D𝑖 = {𝑔 |𝑔𝑖 > 0} ⊆ ℝ𝑛

D𝑖 contains all and only the gambles that are in fact almost
desirable at 𝜔𝑖 .

For any epigraphical set D ⊆ ℝ𝑛 of almost desirable
gambles—coherent or not—let E1

𝑖
= D \ D𝑖 and E2

𝑖
=

D𝑖 \ D. E1𝑖 is the set of type 1 errors that D commits at
𝜔𝑖 . If D says that 𝑔 is almost desirable but it is not—i.e.,
if 𝑔 ∈ D but 𝑔𝑖 < 0 so that 𝑔 ∉ D𝑖—then D commits
a type 1 error. It says something false about 𝑔 (that it is

1Let 𝑏 (𝑔1, . . . , 𝑔𝑛−1) = 𝑔𝑛 if 𝑔𝑛 =

inf
{
𝑧 |𝑃 (𝑔1, . . . , 𝑔𝑛−1, 𝑧) > 0

}
and 𝑏 (𝑔1, . . . , 𝑔𝑛−1) = −∞ if

inf
{
𝑧 |𝑃 (𝑔1, . . . , 𝑔𝑛−1, 𝑧) > 0

}
does not exist, where 𝑃 is the coherent

lower prevision that is equivalent to D.

almost desirable). E1
𝑖
collects up all of the gambles that D

falsely characterises as almost desirable. Likewise E2
𝑖
is the

set of type 2 errors that D commits at 𝜔𝑖 . If 𝑔 is in fact
almost desirable but D fails to say so—i.e., 𝑔𝑖 > 0 so that
𝑔 ∈ D𝑖 but 𝑔 ∉ D—then D commits a type 2 error. It fails
to say something true about 𝑔 (that it is almost desirable).
E2
𝑖
collects up all of the gambles that D fails to (truly)

characterise as almost desirable.
Let E𝑖 be the total set of gambles thatD mischaracterizes

at 𝜔𝑖: E𝑖 = E1
𝑖

⋃ E2
𝑖
. Call this D’s error set. The central

tenet of our approach to IP scoring rules is this:

Inaccuracy is a measure of error.

Formally, we capture this by saying that the inaccuracy
ofD at 𝜔𝑖 , I(D, 𝜔𝑖), is the measure of E𝑖 according to an
appropriate measure 𝜈𝑖:

I(D, 𝜔𝑖) = I𝑖 (D) = 𝜈𝑖 (E𝑖)

Intuitively, 𝜈𝑖 (E𝑖) captures something like the size of the
error set E𝑖 . We assume that 𝜈𝑖 is a measure on the Borel
𝜎-algebra𝔅(ℝ𝑛) that is (i) finite, i.e., 𝜈𝑖 (ℝ𝑛) < ∞, and (ii)
absolutely continuous with respect to the product Lebesgue
measure 𝜇. In that case, the Radon–Nikodym theorem
guarantees that there is some measurable function 𝜙𝑖 :
ℝ𝑛 → ℝ such that

I𝑖 (D) =
∫
E𝑖

|𝜙𝑖 | d𝜇

Wewill also assume that 𝜙𝑖 can be chosen to be continuously
differentiable [10].
Let F𝑖 (𝐷) =

∫
E1
𝑖

|𝜙𝑖 | d𝜇 and S𝑖 (𝐷) =
∫
E2
𝑖

|𝜙𝑖 | d𝜇 so that

I𝑖 (D) = F𝑖 (𝐷) + S𝑖 (𝐷)

We can think of |𝜙𝑖 (𝑔) | as a penalty that you would receive
for mischaracterizing 𝑔. If 𝑔𝑖 < 0, then |𝜙𝑖 (𝑔) | is the penalty
you would receive for falsely characterizing 𝑔 as almost
desirable. If 𝑔𝑖 > 0, then |𝜙𝑖 (𝑔) | is the penalty you would
receive for failing to truly characterize 𝑔 as almost desirable.
For I to count as a measure of inaccuracy, we will insist
that it satisfy at least the following two axioms:

P1. 𝜙𝑖 (𝑔1, . . . , 𝑔𝑛) is (at least weakly) increasing in 𝑔𝑖

P2. 𝜙𝑖 (𝑔1, . . . , 𝑔𝑖−1, 0, 𝑔𝑖+1, . . . , 𝑔𝑛) = 0

P1 and P2 jointly capture the idea that all else equal,
accepting a bigger loss is a bigger type 1 error, and leaving
more utility on the table is a bigger type 2 error.
The central task in developing the foundations of IP

scoring rules is to jointly axiomatize reasonable 𝜈𝑖 and 𝜙𝑖 .
Rather than plumping for some plausible sounding axioms,
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we will attempt to tease axioms on 𝜈𝑖 and 𝜙𝑖 out from our
coherence axioms AD1-AD5. We would like incoherent
sets of almost desirable gambles to be inadmissible, i.e.,
dominated relative to I. We would also like our axioms on
𝜈𝑖 and 𝜙𝑖 to be flexible enough so that for any coherent set of
almost desirable gambles, there is some I relative to which
it is admissible. We will attempt to pin down what 𝜈𝑖 and
𝜙𝑖 must look like in order to make this so. The investigation
in this paper will make progress toward that end, but will
not get us all of the way there.

3. Strictly Proper Scoring Rules
It will prove instructive to briefly consider the relationship
between the IP scoring rules outlined in section 1 and
strictly proper scoring rules.
Let F be the power set of 𝛺 and 𝑐 : F → ℝ be a (not

necessarily probabilistic) assignment of precise forecasts to
the events in F . Let C be the space of all such assignments.
A scoring rule I : C × 𝛺 → ℝ>0 is strictly proper iff∑︁

𝜔∈𝛺
𝑝(𝜔)I(𝑝, 𝜔) <

∑︁
𝜔∈𝛺

𝑝(𝜔)I(𝑐, 𝜔)

for any probability function 𝑝 ∈ C and any 𝑐 ≠ 𝑝.2 Strictly
proper scoring rules have been studied extensively, e.g., their
foundations [2, 4, 9], in elicitation [12], their connection to
guidance value in binary decision problems [13], and their
connection to coherence [11, 7]. Popular strictly proper
scoring rules include:

• Brier Score: I(𝑐, 𝜔) =
∑︁
𝑋 ∈F

(1𝑋 (𝜔) − 𝑐(𝑋))2

• Log Score: I(𝑐, 𝜔) =
∑︁
𝑋 ∈F

−log( |1−1𝑋 (𝜔) − 𝑐(𝑋) |)

• Spherical Score:

I(𝑐, 𝜔) =
∑︁
𝑋 ∈F

(
1 − |1 − 1𝑋 (𝜔) − 𝑐(𝑋) |√︁

𝑐(𝑋)2 + (1 − 𝑐(𝑋))2

)
Strictly proper scoring rules are a special case of the

scoring rules in section 1 under special assumptions. To see
this, first choose a probability mass function 𝑝 : 𝛺 → ℝ.
Let

D𝑝 = {𝑔 |𝑝.𝑔 > 0}
D𝑝 is the (coherent) set of almost desirable gambles asso-
ciated with 𝑝. Our question is: under what conditions do
we have∑︁

𝜔∈𝛺
𝑝(𝜔)I(D𝑝 , 𝜔) <

∑︁
𝜔∈𝛺

𝑝(𝜔)I(D, 𝜔)

2Some authors reserve the term “scoring rule" for the summands of
additive loss functions.

for any D ≠ D𝑝?
Suppose that our IP scoring rule

I(D, 𝜔𝑖) = I𝑖 (D) = 𝜈𝑖 (E𝑖) =
∫
E𝑖

|𝜙𝑖 | d𝜇

is given by measures 𝜈1, . . . , 𝜈𝑛 that satisfy some (unneces-
sarily) restrictive assumptions.

SP1. 𝜙𝑖 (𝜆𝑔) = 𝜆𝜙𝑖 (𝑔) for any 𝜆 > 0 and 𝑔 in measurable 𝑋

SP2. 𝜈𝑖 (E𝑖) = 𝜈𝑖 (E∗
𝑖
) for any E∗

𝑖
s.t.

E∗
𝑖 =

{
〈𝑥1, . . . , 𝑥𝑖−𝑖 , 𝑔𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛〉

��
𝑔 ∈ E𝑖 , 𝑥1, . . . , 𝑥𝑛 ∈ ℝ

}
SP3. 𝜈𝑖 (E𝑖) = 𝜈 𝑗 (E†

𝑗
) where E†

𝑗
is the result of permuting

the 𝑖𝑡ℎ and 𝑗 𝑡ℎ component of any 𝑔 ∈ E𝑖 , i.e.,

E†
𝑗
=

{
𝑔†

���𝑔 ∈ E𝑖 , 𝑔
†
𝑖
= 𝑔 𝑗 , 𝑔

†
𝑗
= 𝑔𝑖 , 𝑔

†
𝑘
= 𝑔𝑘

for all 𝑘 ≠ 𝑖, 𝑗

}
SP1 ensures that the penalty you receive for mischarac-

terizing a gamble 𝑔 scales linearly with its (linear utility)
payout. SP2 ensures that I𝑖 (D) depends only on the values
that the gambles 𝑔 ∈ E𝑖 take at 𝜔𝑖 . Whether those gambles
would have yielded huge gains (or losses) in other states
does not affect your actual degree of type 1 and type 2 error.
Given SP2, SP3 ensures that I𝑖 (D) = I𝑗 (D) whenever E𝑖

and E 𝑗 make equivalent mistakes at 𝜔𝑖 and 𝜔 𝑗 , respectively.
SP1 states that 𝜙𝑖 is positive homogenous of degree 1

(for all 𝑖 6 𝑛). Euler’s homogeneous function theorem then
guarantees that

𝜙𝑖 (𝑔1, . . . , 𝑔𝑛) =
∑︁
𝑗6𝑛

𝑔 𝑗

𝜕𝜙𝑖

𝜕𝑔 𝑗

(𝑔)

SP2 further implies that

𝜙𝑖 (𝑔1, . . . , 𝑔𝑛) = 𝑔𝑖
𝜕𝜙𝑖

𝜕𝑔𝑖
(𝑔)

But this is true iff 𝜙𝑖 (𝑔) = 𝑐𝑖𝑔𝑖 for some 𝑐𝑖 > 0. SP3
further implies that 𝑐𝑖 = 𝑐 𝑗 for all 𝑖, 𝑗 6 𝑛. In that case, it
is straightforward to show that I is strictly proper.

Proposition 2 If there is some 𝑐 > 0 such that for all 𝑖 6 𝑛

I𝑖 (D) =
∫
E𝑖

|𝑐𝑔𝑖 | d𝜇

Then for any probability mass function 𝑝 : 𝛺 → ℝ and any
D ≠ D𝑝 ∑︁

𝑖6𝑛

𝑝𝑖I𝑖 (D𝑝) <
∑︁
𝑖6𝑛

𝑝𝑖I𝑖 (D)

unless both D \ D𝑝 and D𝑝 \ D are sets of measure zero.
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Proof We must show that∑︁
𝑖6𝑛

𝑝𝑖
[
I𝑖 (D) − I𝑖 (D𝑝)

]
=

∑︁
𝑖6𝑛

𝑝𝑖
[
F𝑖 (D) + S𝑖 (D) − F𝑖 (D𝑝) − S𝑖 (D𝑝)

]
=

∑︁
𝑖6𝑛

𝑝𝑖
[
F𝑖 (D) − F𝑖 (D𝑝)

]
+

∑︁
𝑖6𝑛

𝑝𝑖
[
S𝑖 (D) − S𝑖 (D𝑝)

]
> 0

Firstly, note that

F𝑖 (D) − F𝑖 (D𝑝)

=

∫
D\D𝑖

−𝑐𝑔𝑖 d𝜇 −
∫
D𝑝\D𝑖

−𝑐𝑔𝑖 d𝜇

=

∫
D\(D𝑝∪D𝑖)

−𝑐𝑔𝑖 d𝜇 −
∫
D𝑝\(D∪D𝑖)

−𝑐𝑔𝑖 d𝜇

Likewise,

S𝑖 (D) − S𝑖 (D𝑝)

=

∫
D𝑖\D

𝑐𝑔𝑖 d𝜇 −
∫
D𝑖\D𝑝

𝑐𝑔𝑖 d𝜇

=

∫
D𝑝\(D∪D𝐶

𝑖
)
𝑐𝑔𝑖 d𝜇 −

∫
D\(D𝑝∪D𝐶

𝑖
)
𝑐𝑔𝑖 d𝜇

In that case∑︁
𝑖6𝑛

𝑝𝑖
[
F𝑖 (D) − F𝑖 (D𝑝)

]
+

∑︁
𝑖6𝑛

𝑝𝑖
[
S𝑖 (D) − S𝑖 (D𝑝)

]
=

∑︁
𝑖6𝑛

𝑝𝑖

[∫
D\(D𝑝∪D𝑖)

−𝑐𝑔𝑖 d𝜇 −
∫
D𝑝\(D∪D𝑖)

−𝑐𝑔𝑖 d𝜇
]

+
∑︁
𝑖6𝑛

𝑝𝑖

[∫
D𝑝\(D∪D𝐶

𝑖
)
𝑐𝑔𝑖 d𝜇 −

∫
D\(D𝑝∪D𝐶

𝑖
)
𝑐𝑔𝑖 d𝜇

]
=

∑︁
𝑖6𝑛

𝑝𝑖

[∫
D𝑝\(D∪D𝐶

𝑖
)
𝑐𝑔𝑖 d𝜇 +

∫
D𝑝\(D∪D𝑖)

𝑐𝑔𝑖 d𝜇

]
−

∑︁
𝑖6𝑛

𝑝𝑖

[∫
D\(D𝑝∪D𝑖)

𝑐𝑔𝑖 d𝜇 +
∫
D\(D𝑝∪D𝐶

𝑖
)
𝑐𝑔𝑖 d𝜇

]
=

∑︁
𝑖6𝑛

𝑝𝑖

∫
D𝑝\D

𝑐𝑔𝑖 d𝜇 −
∑︁
𝑖6𝑛

𝑝𝑖

∫
D\D𝑝

𝑐𝑔𝑖 d𝜇

= 𝑐

(∫
D𝑝\D

𝑝.𝑔 d𝜇 −
∫
D\D𝑝

𝑝.𝑔 d𝜇

)
And for all 𝑔 ∈ D𝑝 \ D, we have 𝑝.𝑔 > 0 with equality
only on the boundary of D𝑝 . So unless D𝑝 − D is a set of

measure zero, we have∫
D𝑝\D

𝑝.𝑔 d𝜇 > 0

Similarly, for all 𝑔 ∈ D \ D𝑝 , we have 𝑝.𝑔 < 0. So unless
D \ D𝑝 is a set of measure zero, we have

−
∫
D\D𝑝

𝑝.𝑔 d𝜇 > 0

This establishes that∑︁
𝑖6𝑛

𝑝𝑖I𝑖 (D𝑝) <
∑︁
𝑖6𝑛

𝑝𝑖I𝑖 (D)

unless both D −D𝑝 and D𝑝 − D are sets of measure zero.

In general, strictly proper scoring rules generated in this
way will not take the additive form of the Brier, Log or
Spherical scores.

Example 1 Let 𝛺 = {𝜔1, 𝜔2, 𝜔3} and let P be the set of all
probability mass functions of 𝛺. Choose 𝑝 = 〈𝑝1, 𝑝2, 𝑝3〉 ∈
P. Let 𝜌 be the normal distribution on the Borel 𝜎-algebra
𝔅(ℝ) with mean 0 and standard deviation 5. Let 𝜇 be the
product measure 𝜌 × 𝜌 × 𝜌 on 𝔅(ℝ3). In that case

I𝑖 (D𝑝) =
5

(
1 − 𝑝𝑖√︃

𝑝21+𝑝
2
2+𝑝

2
3

)
2𝜋

See figure 1 for a plot of I. As we will see in example
2, this is a non-additive analogue of the Spherical score.
Let 𝐻 (𝑝, 𝑞) = 𝑝.

〈
I1 (D𝑞),I2 (D𝑞),I3 (D𝑞)

〉
. It is easy to

check that 𝜕𝐻
𝜕𝑞1

(𝑝, 𝑞) = 𝜕𝐻
𝜕𝑞2

(𝑝, 𝑞) = 𝜕𝐻
𝜕𝑞3

(𝑝, 𝑞) = 0 exactly
when 𝑝 = 𝑞. Hence I is strictly proper. But clearly I does
not take the additive form of the Brier, Log or Spherical
scores.

Non-additive scoring rules of the sort detailed in example
1 are interesting in part because they provide loss functions
for full linear previsions—previsions for an infinite set
of gambles. Proposition 2 shows any probability mass
function 𝑝 expects the set of almost desirable gambles
determined by 𝑝,D𝑝 , to incur lower loss than any arbitrary
measurably distinct D ⊆ ℝ𝑛, including D determined by
incoherent previsions. Such scoring rules may provide a
useful alternative to the strictly proper additive scoring
rules for linear previsions considered by [8].
We can recover all additive strictly proper scoring rules

as follows. Choose an assignment 𝑐 : F → ℝ of precise
forecasts to events in F . For any 𝑋 ∈ F let

D𝑐 (𝑋 ) = {〈𝑔1, 𝑔2〉 |𝑐(𝑋)𝑔1 + (1 − 𝑐(𝑋))𝑔2 > 0}
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(a) I1 (D𝑝) (b) I2 (D𝑝)

(c) I3 (D𝑝)

Figure 1: Plot of I𝑖 (D𝑝) as a function of 𝑝1 (x-axis) and
𝑝2 (y-axis).

Let
𝑠0 (D𝑐 (𝑋 ) ) =

∫
E0

|𝑔1 | d𝜇

and
𝑠1 (D𝑐 (𝑋 ) ) =

∫
E1

|𝑔2 | d𝜇

Proposition 2 implies that the pair 〈𝑠0, 𝑠1〉 is a strictly proper
scoring rule (for a single forecast of a single event). [13]
shows that we can choose 𝜇 appropriately to recover any
additive strictly proper scoring rule.

Example 2 Consider the Spherical Score:

I(𝑐, 𝜔) =
∑︁
𝑋 ∈F

(
1 − |1 − 1𝑋 (𝜔) − 𝑐(𝑋) |√︁

𝑐(𝑋)2 + (1 − 𝑐(𝑋))2

)
=

∑︁
𝑋 ∈F:𝜔∉𝑋

(
1 − |1 − 𝑐(𝑋) |√︁

𝑐(𝑋)2 + (1 − 𝑐(𝑋))2

)
+

∑︁
𝑋 ∈F:𝜔∈𝑋

(
1 − |1 − 1 − 𝑐(𝑋) |√︁

𝑐(𝑋)2 + (1 − 𝑐(𝑋))2

)

Let

𝑠0 (𝑐(𝑋)) =
(
1 − |1 − 𝑐(𝑋) |√︁

𝑐(𝑋)2 + (1 − 𝑐(𝑋))2

)
and

𝑠1 (𝑐(𝑋)) =
(
1 − |1 − 1 − 𝑐(𝑋) |√︁

𝑐(𝑋)2 + (1 − 𝑐(𝑋))2

)

Figure 2: Spherical component scores 𝑠0 (orange) and 𝑠1
(blue).

so that

I(𝑐, 𝜔) =
∑︁

𝑋 ∈F:𝜔∉𝑋

𝑠0 (𝑐(𝑋)) +
∑︁

𝑋 ∈F:𝜔∈𝑋
𝑠1 (𝑐(𝑋))

We can recover the spherical score by letting 𝜌 be the
normal distribution on the Borel 𝜎-algebra 𝔅(ℝ) with
mean 0 and standard deviation 5 and letting 𝜇 be the
product measure 𝜌 × 𝜌 on 𝔅(ℝ2). In that case

𝑠0 (𝑐(𝑋)) = 𝑠0 (D𝑐 (𝑋 ) ) =
∫
E0

|𝑔1 | d𝜇

and
𝑠1 (𝑐(𝑋)) = 𝑠1 (D𝑐 (𝑋 ) ) =

∫
E1

|𝑔2 | d𝜇

4. Admissibility
We will follow Lindley’s basic approach to theorizing about
admissibility. Let 𝑥 be a precise forecast for event 𝐸 and 𝑦 be
a precise forecast for ¬𝐸 . The following is a straightforward
consequence of [6, Lemma 2]:

Corollary 3 If I0 (𝑥, 𝑦) = 𝑠0 (𝑥) + 𝑠1 (𝑦) and I1 (𝑥, 𝑦) =

𝑠1 (𝑥) + 𝑠0 (𝑦) is a continuously differentiable strictly proper
scoring rule, then following three conditions are equivalent:

1. There are 𝑎, 𝑏 ∈ ℝ s.t.

∇〈𝑎,𝑏〉I0 (𝑥, 𝑦) < 0

∇〈𝑎,𝑏〉I1 (𝑥, 𝑦) < 0

2. 0 ∉ posi ({∇I0 (𝑥, 𝑦),∇I1 (𝑥, 𝑦)})

3. 𝑦 ≠ 1 − 𝑥
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So if 𝑦 ≠ 1 − 𝑥, then there is some point 〈𝑎, 𝑏〉 such
that nudging 〈𝑥, 𝑦〉 in the direction of 〈𝑎, 𝑏〉 is guaranteed
to decrease inaccuracy (lower your penalty relative to I).
Conversely, if 𝑦 = 1 − 𝑥, this is never so (since I is strictly
proper). Hence a pair of forecasts, 𝑥 and 𝑦, for 𝐸 and ¬𝐸
respectively, are admissible if and only if probabilistic.
Condition 2 allows us to move between 1 and 3 using a

separation theorem. We can proceed in a very similar way
when characterising admissible sets of almost desirable
gambles relative to our IP scoring rules.

For any linear spaceL, the positive hull of 𝑞1, . . . , 𝑞𝑚 ∈ L
is

posi ({𝑞1, . . . , 𝑞𝑚})

=

{∑︁
𝑖6𝑚

𝑎𝑖𝑞𝑖

����𝑎1, ..., 𝑎𝑚 > 0,∑︁
𝑖6𝑚

𝑎𝑖 > 0
}

The linear span of 𝑞1, . . . , 𝑞𝑚 ∈ L is

span ({𝑞1, . . . , 𝑞𝑚}) =
{∑︁
𝑖6𝑚

𝑎𝑖𝑞𝑖

����𝑎1, ..., 𝑎𝑚 ∈ ℝ

}
Theorem 4 For any measure space (𝑋, F , 𝜈) and any
𝑞1, . . . , 𝑞𝑚 ∈ L 𝑝 (𝑋, F , 𝜈) with 𝑝 > 1, if

0 ∉ posi ({𝑞1, . . . , 𝑞𝑚})

then there is some ℎ ∈ L 𝑝′ (𝑋, F , 𝜈), where 𝑝′ is the
conjugate of 𝑝, such that for all 𝑖 6 𝑚∫

𝑋

𝑞𝑖ℎ𝑑𝜈 < 0

Proof Suppose 0 ∉ posi ({𝑞1, . . . , 𝑞𝑚}). Let

𝐴 = posi ({𝑞1, . . . , 𝑞𝑚}) ∪ {0} , 𝐵 = {0}

Note that L 𝑝 (𝑋, 𝜈) with the canonical norm induced topol-
ogy is a metric space and hence Hausdorff. So 𝐴 is closed
[1, 5.25 Corollary]. Moreover, since span ({𝑞1, . . . , 𝑞𝑚}) is
finite dimensional, it is locally compact, by Riesz’s theorem.
And every closed subspace of a locally compact space is
locally compact. So 𝐴 is locally compact. And 𝐵 is trivially
closed.

Let 𝐴′ = 𝐴∩−𝐴. Since 0 ∉ posi ({𝑞1, . . . , 𝑞𝑚}), 𝐴′ = 𝐵 =

{0}.

The previous remarks show that the conditions for Klee’s
separation theorem [5, Theorem 2.5] hold:

• 𝐴 and 𝐵 are closed convex cones in a convex linear
space (i.e. L 𝑝 (𝑋, 𝜈))

• 𝐴 and 𝐵 have vertex 0

• 𝐴 is locally compact

• 𝐴′ = 𝐵 = {0}

Klee’s separation theorem guarantees that there is a contin-
uous linear functional 𝜓 on L 𝑝 (𝑋, 𝜈) such that 𝜙(𝑎) < 0
for all 𝑎 ∈ 𝐴 − 𝐴′ = posi ({𝑞1, . . . , 𝑞𝑚}) [5, Theorem 2.5].
In particular then 𝜓(𝑞𝑖) < 0 for all 𝑖 6 𝑚. Finally, by
the Riesz-Frechet representation theorem, there is some
ℎ ∈ L 𝑝′ (𝑋, 𝜈), where 𝑝′ is the conjugate of 𝑝, such that
for all 𝑏 ∈ L 𝑝 (𝑋, 𝜈)

𝜓(𝑥) =
∫
𝑋

𝑏ℎ𝑑𝜈

Hence for all 𝑖 6 𝑚

𝜓(𝑞𝑖) =
∫
𝑋

𝑞𝑖ℎ𝑑𝜈 < 0

We can use theorem 4 to extend corollary 3 to the
imprecise case.

Corollary 5 If I satisfies the assumptions in section 1 (on
𝜈1, . . . 𝜈𝑛), then the following two conditions are equivalent:

1. There is some ℎ : ℝ𝑛−1 → ℝ s.t. for all 𝑖 6 𝑛

𝛿I𝑖 ( 𝑓 , ℎ) < 0

2. 0 ∉ posi ({𝜙𝑖 (·, 𝑓 (·)) | 𝑖 6 𝑛})

For notational convenience, let I𝑖 (D 𝑓 ) = I𝑖 ( 𝑓 ).

Proof For any ℎ : ℝ𝑛−1 → ℝ, the first variation of I𝑖 ( 𝑓 )
is given by

𝛿I𝑖 ( 𝑓 , ℎ) =
∫
ℝ𝑛−1

𝛿I𝑖
𝛿 𝑓

ℎ d𝜇 =

∫
ℝ𝑛−1

𝜙𝑖 (·, 𝑓 (·))ℎ d𝜇

Since 𝜈𝑖 is finite for all 𝑖 6 𝑛,
∫
ℝ𝑛−1 𝜙𝑖 (·, 𝑓 (·)) d𝜇 < ∞.

So 𝜙1 (·, 𝑓 (·)), . . . , 𝜙𝑛 (·, 𝑓 (·)) ∈ L1 (ℝ𝑛−1). Hence by the-
orem 4, condition 2 implies 1.
To see that 1 implies 2, suppose that there is some

ℎ : ℝ𝑛−1 → ℝ s.t. for all 𝑖 6 𝑛

𝛿I𝑖 ( 𝑓 , ℎ) < 0

but 0 =
∑

𝑖6𝑚 𝑎𝑖𝜙𝑖 (·, 𝑓 (·)) for some 𝑎1, ..., 𝑎𝑚 > 0 with∑
𝑖6𝑚 𝑎𝑖 > 0. Then∑︁
𝑖6𝑚

𝑎𝑖𝛿I𝑖 ( 𝑓 , ℎ) =
∑︁
𝑖6𝑚

𝑎𝑖

∫
ℝ𝑛−1

𝜙𝑖 (·, 𝑓 (·))ℎ d𝜇

=

∫
ℝ𝑛−1

(∑︁
𝑖6𝑚

𝑎𝑖𝜙𝑖 (·, 𝑓 (·))
)
ℎ d𝜇 < 0,
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which is a contradiction.

Corollary 5 is critical for teasing out axioms on 𝜈𝑖
and 𝜙𝑖 from our coherence axioms AD1-AD5. If we
specify constraints on 𝜙𝑖 which guarantee that 0 ∈
posi ({𝜙𝑖 (·, 𝑓 (·)) | 𝑖 6 𝑛}) implies that 𝑓 satisfies E1-E4,
that is sufficient to show that incoherent sets of almost
desirable gambles are inadmissible.
To illustrate, consider the following example.

Example 3 Suppose that 𝛺 = {𝜔1, 𝜔2, 𝜔3} and that for
some 𝜆 > 𝛾 > 0:

𝜙𝑖 (𝑔1, 𝑔2, 𝑔3) =
{
𝜆𝑔𝑖 if 𝑔𝑖 < 0,
𝛾𝑔𝑖 if 𝑔𝑖 > 0.

Then 0 ∈ posi ({𝜙𝑖 (·, 𝑓 (·)) | 𝑖 6 3}) iff there are 𝛼, 𝛽 > 0
s.t.

𝑓 (𝑔1, 𝑔2) =

−𝛾 (𝛼𝑔1+𝛽𝑔2)
𝜆

if 𝑔1 > 0, 𝑔2 > 0,
−𝜆(𝛼𝑔1+𝛽𝑔2)

𝛾
if 𝑔1 < 0, 𝑔2 < 0,

−(𝛼𝜆𝑔1+𝛽𝛾𝑔2)
𝛾

if 𝑔1 < 0, 𝑔2 > 0, 𝛼𝜆𝑔1 + 𝛽𝛾𝑔2 < 0,
−(𝛼𝜆𝑔1+𝛽𝛾𝑔2)

𝜆
if 𝑔1 < 0, 𝑔2 > 0, 𝛼𝜆𝑔1 + 𝛽𝛾𝑔2 > 0,

−(𝛼𝛾𝑔1+𝛽𝜆𝑔2)
𝛾

if 𝑔1 > 0, 𝑔2 < 0, 𝛼𝛾𝑔1 + 𝛽𝜆𝑔2 < 0,
−(𝛼𝛾𝑔1+𝛽𝜆𝑔2)

𝜆
otherwise.

It is easy to verify that any such 𝑓 satisfies E1-E4 and
hence that D 𝑓 is coherent. By corollary 5, then incoherent
sets of almost desirable gambles are inadmissible. For any
incoherent epigraphical set of almost desirable gambles,D𝑏 ,
there is some ℎ : ℝ𝑛−1 → ℝ such that D𝑏+𝜖 ℎ is guaranteed
to have lower inaccuracy (lower penalty relative to I) for
sufficiently small 𝜖 .

It is certainly possible, then, to specify constraints on
𝜙𝑖 that render incoherent sets of almost desirable gambles
inadmissible. But we would also like our constraints to
be flexible enough so that for any coherent set of almost
desirable gambles, there is some I relative to which it is
admissible. Finding the right balance between these two
tasks—rendering incoherence admissible while retaining
sufficient flexibility in the class of reasonable IP scoring
rules—is challenging. We turn to this task in section 5.

5. A Constructive Method for Generating
Penalty Functions

Let 𝛺 = {𝜔1, 𝜔2, 𝜔3} and let P be the set of all probability
mass functions of 𝛺.

Let ℝ>0 = {𝑔 : 𝑔1, 𝑔2, 𝑔3 > 0}; ℝ60 = {𝑔 : 𝑔1, 𝑔2, 𝑔3 6 0}.

For any 𝑔 ∈ ℝ3 \ (ℝ>0 ∪ℝ60), let

𝐿𝑔 = {𝑝 : 𝑝.𝑔 = 0, 𝑝1 + 𝑝2 + 𝑝3 = 1}

Let 𝑃 be a closed convex set of probability mass func-
tions on 𝛺 such that int 𝑃 ≠ ∅ and 𝑃 ∩ int ℙ ≠ ∅.
Choose 𝑚 = 〈𝑚1, 𝑚2, 𝑚3〉 in the interior of 𝑃. Let
𝑃(𝑔) = inf {𝑝.𝑔 |𝑝 ∈ 𝑃} and D =

{
𝑔 |𝑃(𝑔) > 0

}
.

The aim now is to construct a function 𝜙 : ℝ𝑛 → ℝ𝑛

with
𝜙(𝑔) = 〈𝜙1 (𝑔), 𝜙2 (𝑔), 𝜙3 (𝑔)〉

such that D is admissible relative to the IP scoring rule
determined by 𝜙, i.e.

I𝑖 (D) =
∫
E𝑖

|𝜙𝑖 | d𝜇

and all other admissible sets of almost desirable gambles
relative to I are coherent.
It will be useful in what follows to define a few terms.

Choose any 𝑔 = 〈𝑔1, 𝑔2, 𝑔3〉 ∈ ℝ3 \ (ℝ>0 ∪ℝ60) with
distinct components. Let 𝛼𝑔, 𝛽𝑔, 𝜅𝑔 be defined as follows:

𝛼𝑔 =

〈
𝑔2

𝑔2 − 𝑔1
,

−𝑔1
𝑔2 − 𝑔1

, 0
〉

(1)

𝛽𝑔 =

〈
𝑔3

𝑔3 − 𝑔1
, 0,

−𝑔1
𝑔3 − 𝑔1

〉
(2)

𝜅𝑔 =

〈
0,

𝑔3
𝑔3 − 𝑔2

,
−𝑔2

𝑔3 − 𝑔2

〉
(3)

Note:

1. If 𝑔1, 𝑔2, 𝑔3 are all non-zero, then two of 𝛼𝑔, 𝛽𝑔, 𝜅𝑔 are
probability mass functions and one is not. Moreover,
𝛼𝑔 is the unique non-pmf iff 𝑔1 and 𝑔2 have the same
sign. 𝛽𝑔 is the unique unique non-pmf iff 𝑔1 and 𝑔3
have the same sign. 𝜅𝑔 is the unique unique non-pmf
iff 𝑔2 and 𝑔3 have the same sign.

2. If one of 𝑔1, 𝑔2, 𝑔3 is zero, then two of 𝛼𝑔, 𝛽𝑔, 𝜅𝑔 are
identical indicator functions and one is a distinct prob-
ability mass function. Moreover, 𝛼𝑔 = 𝛽𝑔 = 〈1, 0, 0〉
iff 𝑔1 = 0; 𝛼𝑔 = 𝜅𝑔 = 〈0, 1, 0〉 iff 𝑔2 = 0; 𝛽𝑔 = 𝜅𝑔 =

〈0, 0, 1〉 iff 𝑔3 = 0.

Let 𝜋𝑔 be the unique element of
{
𝛼𝑔, 𝛽𝑔, 𝜅𝑔

}
that is not a

probability mass function (case 1) or the unique indicator
function in

{
𝛼𝑔, 𝛽𝑔, 𝜅𝑔

}
(case 2).

For any 𝑔 = 〈𝑔1, 𝑔2, 𝑔3〉 ∈ ℝ3\ (ℝ>0 ∪ℝ60) with 𝑃(𝑔) = 0
define 𝜙(𝑔) as follows. If 𝑔1, 𝑔2, 𝑔3 are all distinct, then
𝜙(𝑔) is the unique gamble s.t.

𝜋𝑔 .𝜙(𝑔) = 𝑚.𝜙(𝑔) = 0
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‖𝑔‖ = ‖𝜙(𝑔)‖ and sign(𝑔) = sign(𝜙(𝑔)). If 𝑔1, 𝑔2, 𝑔3 are
not all distinct, then 𝜙(𝑔) is the unique gamble s.t. 𝑚 ∈
𝐿𝜙 (𝑔) , 𝐿𝑔 ∩ 𝐿𝜙 (𝑔) = ∅, ‖𝑔‖ = ‖𝜙(𝑔)‖ and sign(𝑔) =

sign(𝜙(𝑔)).
Before continuing with the construction of 𝜙, it is worth
pausing to observe that however we extend 𝜙, D will be
admissible relative to I. To see this, note that since D
is coherent, it is epigraphical. Let D = D 𝑓 so that D
is the epigraph of 𝑓 . Then for any 𝑔 = 〈𝑔1, 𝑔2, 𝑔3〉 ∈
ℝ3 \ (ℝ>0 ∪ℝ60) with 𝑃(𝑔) = 0,

𝜙(𝑔) = 〈𝜙1 (𝑔1, 𝑔2, 𝑓 (𝑔1, 𝑔2)),
𝜙2 (𝑔1, 𝑔2, 𝑓 (𝑔1, 𝑔2)), 𝜙3 (𝑔1, 𝑔2, 𝑓 (𝑔1, 𝑔2))〉

And by construction 𝑚.𝜙(𝑔) = 0 for all such 𝑔. Hence
0 ∈ posi ({𝜙𝑖 (·, 𝑓 (·)) | 𝑖 6 3}). So by corollary 5 it is
admissible.

Return now to our construction. For any 𝑔 = 〈𝑔1, 𝑔2, 𝑔3〉 ∈
ℝ3 \ (ℝ>0 ∪ℝ60) with 𝑃(𝑔) ≠ 0, define 𝑔∗ and 𝜙(𝑔) as
follows.

If 𝑔1, 𝑔2, 𝑔3 are all distinct, then let 𝑔∗ be the unique gamble
s.t.

𝜋𝑔 .𝑔
∗ = 𝑃(𝑔∗) = 0

‖𝑔‖ = ‖𝑔∗‖ and sign(𝑔) = sign(𝑔∗). If 𝑔1, 𝑔2, 𝑔3 are not
all distinct, then 𝑔∗ is the unique gamble s.t. 𝑃(𝑔∗) = 0,
𝐿𝑔 ∩ 𝐿𝑔∗ = ∅, ‖𝑔‖ = ‖𝑔∗‖ and sign(𝑔) = sign(𝑔∗).
Let 𝑣𝑔 be defined as follows.

𝑣𝑔 =



𝟙{𝜔1 } if 𝑔1 > 𝑔2 > 0, 𝑔3 < 0, 𝑃(𝑔) < 0
𝟙{𝜔2 } if 𝑔2 > 𝑔1 > 0, 𝑔3 < 0, 𝑃(𝑔) < 0
𝟙{𝜔3 } if 𝑔1, 𝑔2 > 0, 𝑔3 < 0, 𝑃(𝑔) > 0
𝟙{𝜔1 } if 𝑔1 6 𝑔2 6 0, 𝑔3 > 0, 𝑃(𝑔) > 0
𝟙{𝜔2 } if 𝑔2 6 𝑔1 6 0, 𝑔3 > 0, 𝑃(𝑔) > 0
𝟙{𝜔3 } if 𝑔1, 𝑔2 6 0, 𝑔3 > 0, 𝑃(𝑔) < 0

Define 𝑣𝑔 similarly if (i) 𝑔1, 𝑔3 > 0 and 𝑔2 < 0, (ii)
𝑔1, 𝑔3 6 0 and 𝑔2 > 0, (iii) 𝑔2, 𝑔3 > 0 and 𝑔1 < 0, or (iv)
𝑔2, 𝑔3 6 0 and 𝑔1 > 0.

Let 𝛿𝑔 be defined as follows.

𝛿𝑔 =



𝛽𝑔 if 𝑔1 > 𝑔2 > 0 and 𝑔3 < 0
or 𝑔1 6 𝑔2 6 0 and 𝑔3 > 0

𝜅𝑔 if 𝑔2 > 𝑔1 > 0 and 𝑔3 < 0
or 𝑔2 < 𝑔1 6 0 and 𝑔3 > 0

𝛼𝑔 if 𝑔1 > 𝑔3 > 0 and 𝑔2 < 0
or 𝑔1 6 𝑔3 6 0 and 𝑔2 > 0

𝜅𝑔 if 𝑔3 > 𝑔1 > 0 and 𝑔2 < 0
or 𝑔3 < 𝑔1 6 0 and 𝑔2 > 0

𝛼𝑔 if 𝑔2 > 𝑔3 > 0 and 𝑔1 < 0
or 𝑔2 6 𝑔3 6 0 and 𝑔1 > 0

𝛽𝑔 if 𝑔3 > 𝑔2 > 0 and 𝑔1 < 0
or 𝑔3 < 𝑔2 6 0 and 𝑔1 > 0

Let 𝜇 ∈ (0, 1) be the unique value s.t.

𝛿𝑔 = 𝜇𝑣𝑔 + (1 − 𝜇)𝛿𝑔∗

Finally 𝜙(𝑔) is the unique gamble s.t.

𝛿𝜙 (𝑔) = 𝜇𝑣𝑔 + (1 − 𝜇)𝛿𝜙 (𝑔∗)

‖𝑔‖ = ‖𝜙(𝑔)‖ and sign(𝑔) = sign(𝜙(𝑔)).

We conjecture that the following two propositions are true.

Conjecture 6 For any 𝑝 ∈ P, 𝑔 ∈ ℝ3 \ (ℝ>0 ∪ℝ60) and
𝜆 > 0, if 𝑝.𝜙(𝑔) = 0 then 𝑝.𝜙(𝜆𝑔) = 0.

Conjecture 7 For any 𝑝 ∈ P, 𝑓 , 𝑔 ∈ ℝ3 \ (ℝ>0 ∪ℝ60)
and 0 < 𝜆 < 1, if 𝑝.𝜙( 𝑓 ) = 𝑝.𝜙(𝑔) = 0 then 𝑝.𝜙(𝜆 𝑓 + (1−
𝜆)𝑔) > 0.

This construction is lamentably baroque. But it does (i)
render our original coherent set of almost desirable gambles
admissible, (ii) satisfy P1 and P2, and if conjectures 6
and 7 are correct, then (iii) it renders incoherent sets of
almost desirable gambles inadmissible. If successful, it may
provide clues toward a fully adequate axiomatization of IP
scoring rules.

6. Discussion
The theory of IP scoring rules is still in its infancy. There
are many open questions yet to tackle. If the construction in
section 5 is successful, we must still generalise it to arbitrary
finite dimensional sample spaces and fully characterize
reasonable IP scoring rules.
Let us finish with a discussion of what not to hope for

out of IP scoring rules. Seidenfeld et al. [14] establish that
there is no strictly proper, continuous real-valued scoring
rule for lower and upper probability forecasts. Some lower
and upper probability forecasts will be weakly dominated
according to any continuous real-valued scoring rule. As a
result:

When the interval [𝑝, 𝑞] is the forecaster’s IP-
uncertainty for event 𝐸 , she/he will not have
reason to announce that interval as her/his forecast
rather than the rival forecast [𝑝′, 𝑞′]. [14, p. 1256]

Seidenfeld et al. abandon the search for continuous real-
valued IP scoring rules and opt for a lexicographic scoring
rule, which is strictly proper for lower/upper probability
forecasts of a single event. They are undoubtedly right
to be cautious about the limitations of continuous real-
valued loss functions. But it is worth emphasising that for
IP models to be useful in many domains, we need well-
behaved, continuous, even differentiable, real-valued IP

277



Konek

loss functions. For example, to train neural net classifiers to
produce imprecise classification probabilities using standard
Python packages, we must be able to calculate the gradient
of our real-valued IP loss functions.
Moreover, depending on the purpose at hand, it may not

be necessary or even desirable to provide a forecaster with
reason to announce her true IP model (lower and upper
probabilities, set of almost desirable gambles, etc.). As
William James forcefully argued in his exchange with W.K.
Clifford:

He who says “Better to go without belief forever
than believe a lie!” merely shows his own prepon-
derant private horror of becoming a dupe. . . Our
errors are surely not such awfully solemn things.
In a world where we are so certain to incur them in
spite of all our caution, a certain lightness of heart
seems healthier than this excessive nervousness
on their behalf. [3, section VII]

A forecaster may, a bit like Clifford, manifest an “exces-
sive nervousness” over committing type 1 errors (making
false judgments of desirability) and as a result have overly
imprecise opinions. In that case, it might be a good thing if
our IP scoring rule incentivises them to announce a slightly
more informative set of almost desirable gambles. That
might allow us to extract useful information that could help
guide decisions. (Compare: Tetlock’s team won the IARPA
forecasting tournament by extremizing ensemble forecasts.)
Alternatively, a forecaster may have a pathologically light

heart. They may care too much about avoiding type 2 errors
(missing out on true judgments of desirability) and not
enough about type 1 errors. In that case, it might be a good
thing if our IP scoring rule incentivises them to announce
a slightly less informative set of almost desirable gambles.
For example, public health officials might reasonably want
experts to announce IP forecasts as if they were more
concerned with type 1 errors than they actually are.
Continuous, real-valued IP scoring rules are tools for

evaluating IP forecasts on the basis of type 1 and type 2 error.
They do, as Seidenfeld et al. [14] show, incentivise tactical
forecasting. But not all forms of tactical forecasting are
problematic. Whether, when and how they are problematic
depends on the type of tactical forecasting involved and the
purposes of the evaluator.
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