
Proceedings of Machine Learning Research 215:321–332, 2023 ISIPTA 2023

Specifying Credal Sets With Probabilistic Answer Set Programming

Denis Deratani Mauá ddm@ime.usp.br
Institute of Mathematics and Statistics, University of São Paulo, Brazil

Fabio Gagliardi Cozman fgcozman@usp.br
Escola Politécnica, University of São Paulo, Brazil

Abstract
Probabilistic Answer Set Programming offers an intu-
itive and powerful declarative language to represent
uncertainty about combinatorial structures. Remark-
ably, under the credal semantics, such programs can
specify any infinitelymonotone Choquet Capacity in an
intuitive way. Yet, one might be interested in specifying
more general credal sets. We examine how probabilis-
tic answer set programs can be extended to represent
more general credal sets with constructs that allow
for imprecise probability values. We characterize the
credal sets that can be captured with various languages,
and discuss the expressivity and complexity added by
the use of imprecision in probabilistic constructs.
Keywords: probabilistic logics, answer set program-
ming, credal networks.

1. Introduction
Probabilistic logic programming languages [24, 26, 27,
28, 32, 31] facilitate the specification of probabilistic sce-
narios by mixing probabilistic choices and logical rules.
Probabilistic graphical models such as Bayesian networks
can be easily specified with probabilistic logic programs
[6]. In addition, such programs allow relational constructs
and cyclic dependencies between variables, thus offering
resources that go beyond (propositional) Bayesian networks
[26]. For example, here is a program in Problog [14], a well
known probabilistic programming framework, that encodes
a random graph and the concept of reachability:

0.6::edge(1,2). 0.1::edge(1,3). 0.4::edge(1,4).
0.3::edge(2,3). 0.3::edge(2,4). 0.8::edge(3,4).
reachable(X,Y) :- edge(X,Y).
reachable(X,Y) :- edge(X,Z), reachable(Z,Y).

The first two lines state the marginal probabilities that each
specific edge is present in the graph. The remaining lines
specify if a node is reachable from another in a recursive
(cyclic) manner.
Probabilistic answer set programs [3, 9, 10, 25] go one

step further. They adopt expressive logic constructs such
as disjunctions and negative cycles between variables [15],
thus enabling one to express nondeterminism as well as

probabilistic knowledge. For instance, the following pro-
gram defines the concept of 3-colorability of a graph:
color(X,red);color(X,green);color(X,blue).
fail :- edge(X,Y), color(X,C), color(Y,C).
colorable :- not fail.

The first line specifies that a node must have at least one
of three colors (note the semicolon indicating logical
disjunction). The remaining lines define a failure as an
edgewith both endpoints of the same color, and a colorable
graph as one that does not contain failures.
Under the credal semantics [9], such programs specify

an infinitely mononote Choquet capacity. For example, the
program obtained by combining the two previous programs
specify that Pr(colorable) ∈ [0.021, 0.998]. These proba-
bilities have an appealing interpretation: the lower endpoint
is the probability that a random graph is generated such that
no assignment of colors fail, whereas the upper probability
is the probability of generating a 3-colorable random graph.
Given the ability of probabilistic answer set programming

to represent Bayesian networks and infinitely monotone
Choquet capacities, one might wonder whether such lan-
guages specify various structured credal sets, including
those specified by credal networks [5]. That is the question
we address in this work.
We start with a simple observation: probabilistic answer

set programs under the credal semantics can specify any and
only infinitely-monotone Choquet capacities, and thus have
limited expressivity. To allow for more general credal sets
that can represent meaningful credal networks and more, we
revisit a previous proposal for interval-valued probabilistic
facts [4]. For example, to specify that an earthquake occurs
with probability between 0.001 and 0.1 we write:
[0.001,0.1]::earthquake.

We show that interval-valued probabilistic facts suffice
to specify any credal network with finitely generated credal
sets, even if we are restricted to nondisjunctive acyclic pro-
grams. Moreover, we show that the addition of (annotated)
disjunctions, negative cycles and other expressive logical
constructs do not add to expressivity, although they allow for
more comfortable description of probabilistic phenomena
such as coarsening.

© 2023 D.D. Mauá & F.G. Cozman.

Mauá Cozman

While expressive, probabilistic answer set programs with
interval-valued probabilistic facts specify credal sets only by
enumeration of their extreme distributions. To obtain a more
practical language, we propose parameterized annotated
disjunctions that allow for the specification of credal sets as
linear probability inequalities. For example, here is how we
may encode that a team is more likely to win than to draw a
match, and more likely to win than to lose:
P1::win;P2::draw;P3::lose :- P1 > P2, P1 > P3.

Credal sets defined by comparative probability judgments
can have an exponential number of extreme points [20],
hence rules as the above can lead to enormous savings in
knowledge representation.
We also discuss the inclusion of variables (i.e., rela-

tional programs), inferential complexity, and the connection
with credal networks and DTProblog [13]; the latter is
an extension of Problog for representing decision-making
situations.

2. Background
We review here two topics we rely on: imprecise probabili-
ties and (probabilistic) answer set programming.

2.1. Imprecise Probability Models

A Choquet capacity is a nonnegative set-valued function
`(𝐴) over some algebra A on 𝛺 that satisfies `(∅) = 0,
`(𝐴) ≤ `(𝐵) for any 𝐴 ⊆ 𝐵 in A, and `(𝛺) = 1. We
focus on finite spaces 𝛺 in this paper, and we assume
w.l.o.g. that A is the power set 2𝛺 of the sample space 𝛺.
The conjugate of ` is the A-valued function ` satisfying
`(𝐴) = 1 − `(𝐴𝑐), where 𝐴𝑐 is the complement of 𝐴 w.r.t.
𝛺. A capacity is 𝑘-monotone (𝑘 ≥ 2) if for any collection
of 𝑛 ≤ 𝑘 events, 𝐵 = {𝐴1, . . . , 𝐴𝑛} ∈ A, we have that:

`(𝐴1 ∪ · · · ∪ 𝐴𝑛) ≥
∑︁
𝑆⊆𝐵
(−1) |𝑆 |+1`(∩𝐴𝑖 ∈𝑆𝐴𝑖). (1)

An infinitely monotone capacity is 𝑘-monotone for any 𝑘 .
A probability distribution Pr dominates a capacity ` if

`(𝐴) ≤ Pr(𝐴) for all 𝐴. A credal set is a set of probability
distributions on the same algebra. Given a credal setM,
the associated lower probability Pr is the Choquet capacity
defined as the lower envelope, Pr(𝐴) = minPr∈M Pr(𝐴), and
the upper probability is defined as its conjugate: Pr(𝐴) =
1−Pr(𝐴𝑐). Conversely, given a lower probability, the credal
set formed by all dominating probability distributions is a
closed and convex polyhedron [33].
A lower probability may satisfy the property of 𝑘-

monotonicity (Expression (1)). In that case [34]:

Pr(𝐴 | 𝐵) =
Pr(𝐴 ∩ 𝐵)

Pr(𝐴 ∩ 𝐵) + Pr(𝐴𝑐 ∩ 𝐵)
, (2)

provided Pr(𝐵) > 0. Equation (2) reduces the computation
of conditional lower probabilities to the computation of two
unconditional lower/upper probabilities.
Let 𝛬 be some finite set called the initial space and

consider a multi-valued mapping 𝛤 : 𝛬→ 2𝛺 to events of
𝛺 such that 𝛤 (_) ≠ ∅ for all _ ∈ 𝛬. Consider a probability
measure Pr on 𝛬. The triple 𝛬, 𝛤 and Pr induce infinitely-
monotone lower and upper probabilities by1

Pr(𝐴) = Pr ({_ ∈ 𝛬 : 𝛤 (_) ⊆ 𝐴}) , (3)

Pr(𝐴) = Pr ({_ ∈ 𝛬 : 𝛤 (_) ∩ 𝐴 ≠ ∅}) . (4)

Augustin [2] and Miranda & de Cooman [21] showed
that if we substitute Pr in the definition of Equation (3)
above by some (other) 𝑘-monotone lower probability Pr′
on 𝛬, then the resulting lower probability Pr on 𝛺 is also
𝑘-monotone. Also, if Pr′ is coherent, then so is Pr [21].
A common way to specify infinitely-monotone lower

probabilities is by means of a normalized 𝑚-function, also
called a basic belief assignment, which is a nonnegative
function on 2𝛺 such that 𝑚(∅) = 0 and ∑𝐴⊆𝛺 𝑚(𝐴) = 1.
The events 𝐴 forwhich𝑚(𝐴) > 0 are called focal sets. Given
such a function, we define Pr(𝐴) = ∑

𝐵⊆𝐴𝑚(𝐵). The lower
probability is then called a belief function [22, 29].
A vacuous lower probability is the one induced by

𝑚(𝛺) = 1 and 𝑚(𝐴) = 0 for all other 𝐴. A vacuous
credal set contains all probability distributions on some
sample space. It is also the set of dominating distributions
for a vacuous lower probability.

2.2. Answer Set Programming

Answer Set Programming (ASP) is a declarative program-
ming language [15] that has its roots in logic programming
and relational database theory. Its main use is in solving
combinatorial search problems, usually by means of a guess-
and-check strategy. Here we use the fragment of ASP that
captures most of its expressivity and functionality.

Syntax An atom is an expression of the form 𝑝(𝑡1, . . . , 𝑡𝑛)
where 𝑝 is a string starting with a lower case letter denoting
the predicate name and 𝑡1, . . . , 𝑡𝑛 are each either a constant,
which begins with a non-capital letter, or a variable, which
begins with a capital letter. For example, route(From,
myCity,20) is an atom with predicate name route, variable
From and constants myCity and 20. A disjunctive normal
rule is an expression of the form
𝐴1;. . . ;𝐴𝑚 :- 𝐵1,. . . ,𝐵𝑛

where 𝐴1, . . . , 𝐴𝑚 are atoms and each 𝐵𝑖 is a literal, that is,
either an atom or an atom preceded by not (which indicates
default negation). The atoms 𝐴𝑖 are collectively called the

1The induced capacity is coherent in Walley’s sense [33], so it is a
lower probability in our definition here.

322

Specifying Credal Sets With Probabilistic Answer Set Programming

head of the rule, and 𝐵1, . . . , 𝐵𝑛 are collectively called the
body of the rule. We denote the set of atoms in the head as
of a rule 𝑟 as head(𝑟) and the set of atoms in the body as
body(𝑟). We allow the body to be empty (i.e., 𝑛 = 0), but
require the head to be non-empty (i.e., 𝑚 ≥ 1). A rule with
a single atom in the head is called a normal rule. A normal
rule with an empty body is a fact. An answer set program
is a finite set of disjunctive normal rules.

Semantics A grounding of an atom is a substitution of
variables by constants. The grounding of a rule applies the
same grounding to all its atoms. The Herbrand base is the
set with all possible groundings of atoms in the program,
using the constants that appear in the program. A program
is propositional if it does not contain any variables. The
semantics of a program with variables is the semantics of its
grounding, with grounded atoms from the Herbrand base.
Hence, for the rest of this section, we assume programs are
propositional. An interpretation is a two-valued mapping
from atoms in theHerbrand base to true or false assignments,
represented as a set of true atoms (this allows us to define
a partial ordering over interpretations by subset inclusion).
An interpretation 𝜔 satisfies a ground atom 𝐴 if 𝐴 ∈ 𝜔,
written as 𝜔 |= 𝐴. The interpretation satisfies a negated
literal not 𝐴 if 𝐴 ∉ 𝜔, written𝜔 |= ¬𝐴. Finally,𝜔 satisfies a
disjunctive normal rule if𝜔∩{𝐴1, . . . , 𝐴𝑚} ≠ ∅ or𝜔 6 |= 𝐵𝑖 ,
for some 𝑖 = 1, . . . , 𝑛 in the body. That is, the rule is satisfied
if the body is false or (the body is true and) some atom in the
head is satisfied. A model is an interpretation that satisfies
all rules of the program. A model is minimal if there is no
other model that is strictly contained in it. Given program 𝑃

and interpretation 𝐼, their reduct 𝑃𝐼 is the program obtained
by removing all rules with not 𝐴 in their body and 𝐴 ∈ 𝐼,
and then by removing each not 𝐴 from all remaining rules.
A stable model of 𝑃 is a minimal model of the reduct 𝑃𝐼

[16].

The dependency structure of a logic program is a directed
graph containing a node for each (ground) atom and an edge
from 𝐵 to 𝐴 if there is a rule with 𝐴 in the head and 𝐵 in
the body. Moreover, we label edges as negative if 𝐵 appears
negated (i.e., preceded by not) in some rule, otherwise the
edge is label positive. A program is acyclic iff its dependency
graph is acyclic and rules are normal. A normal program
is stratified iff there are no negative cycles in the graph.
Figure 1 shows an example program and its dependency
graph; solid (resp., dashed) edges represent positive (resp.,
negative) labels. The program is not acyclic nor stratified,
due the negative cycle between 𝑐 and 𝑑. Removing the
second line of the program makes the program acyclic
(hence stratified). Keeping those rules but removing the not
operations makes the program stratified (but not acyclic).

a.
c :- not d. d :- not c.
c :- a. d :- a.
b :- a.
b :- not a, c. a

c d

b

Figure 1: An example program and its dependency graph.

2.3. Probabilistic Logic Programming

Probabilistic Answer Set Programming (PASP) extends
ASP with probabilistic constructs that allow the truth-value
of some atoms to be selected according to some distribu-
tion. This in effect makes PASP a declarative probabilistic
programming language; in particular, PASP provides an
intuitive and powerful language for describing probability
functions over rich combinatorial objects such as graphs,
routes, ordering, etc [12, 17, 23, 24, 27].
We follow Sato’s suggestions on semantics [28], hence a

probabilistic logic program is a set of independent random
choices that when realized produce a logic program. We
adopt a syntax that is based on annotated disjunctive rules,
which are constructs of the form [31]
𝛼1::𝐴1;. . . ;𝛼𝑚::𝐴𝑚 :- 𝐵1,. . . ,𝐵𝑛

where 𝐴1, . . . , 𝐴𝑚 are different standard atoms, 𝛼𝑖 are non-
negative real values such that

∑
𝑖 𝛼𝑖 = 1, and 𝐵1, . . . , 𝐵𝑛

are literals. Intuitively, an annotated disjunctive rule speci-
fies a categorical random variable with 𝑚 values that are
distributed according to 𝛼1, . . . , 𝛼𝑚, respectively. We allow
the body to be empty (𝑛 = 0), but require the head to be
non-empty (𝑚 ≥ 1). An annotated disjunctive rule with an
empty body is an annotated disjunction. A probabilistic
answer set program (or PASP program, for short) is a finite
set of disjunctive normal rules and annotated disjunctive
rules.
The (credal) semantics of a (propositional) PASP program

\ is built from three ingredients. The first ingredient is a
translation of \ into different ASP programs, each consisting
of different transformations of the annotated disjunctive
rules, as follows. Define an atomic choice as a selection
of exactly one atom 𝐴𝑖 from the head of an annotated
disjunctive rule. A composite choice _ maps each annotated
disjunctive rule in the program into an atomic choice. For
every composite choice _, generate an ASP program \ (_)
by replacing each annotated disjunctive rule 𝑟 in \ with
the normal rule head(𝑟) ∩ _(𝑟) ← body(𝑟). For example,
consider the stratified PASP program
0.3::a; 0.7::c :- d.
0.6::b; 0.4::d.
a :- b.

The composite choices (written as strings, for clarity) are
ab, ad, cb and cd. The first composite choice produces the
ASP program

323

Mauá Cozman

a :- d. b. a :- b.

That program has a single stable model given by {a, b}.
The second ingredient is a probability distribution over

the induced ASP programs. Let 𝛬 denote the set of all
composite choices of a program. We define a probability
distribution Pr on _ ∈ 𝛬 as the product of the probabilities
annotating each atomic choice in _. This distribution is
extended to a distribution over ASP programs by Pr(_) =
Pr(\ (_)). In the previous example, the probability of ab
and the induced ASP program is 0.3 · 0.6 = 0.18.
The final ingredient extends the translation into a multi-

valued mapping, and the probability distribution into a
lower probability function. Let 𝛺 denote the set of all
interpretations of the Herbrand base of \. Define 𝛤 as the
mapping from composite choices _ to the respective set of
stable models of \ (_). We assume that \ (_) ≠ ∅ for each _,
otherwise \ is said to be inconsistent and has no semantics.
The lower and upper probability functions are thus defined
by Equation (3) and Equation (4), respectively, and they have
an interesting interpretation. The lower probability Pr(𝐴) is
the probability that 𝐴will be satisfied by all stable models of
an induced logic program \ (_) (a logical inference known
as cautious reasoning). The upper probability Pr(𝐴) is the
probability that 𝐴 will be satisfied by some stable model
of an induced logic program (a.k.a. brave reasoning). Note
that if 𝜔 is not a stable model of any induced program
then Pr(𝜔) = Pr(𝜔) = 0. For stratified programs, the multi-
valued mapping 𝛤 (_) always maps to singletons, hence
Pr(𝐴) = Pr(𝐴) = Pr(𝐴), and we recover the standard
semantics of probabilistic logic programs [14].
To observe the subtlety of the semantics of PASP pro-

grams, consider the program
0.3::a;0.7::c. 0.6::b;0.4::d. a :- b.

The respective stable models are 𝛤 (ab) = {ab}, 𝛤 (ad) =
{ad}, 𝛤 (cb) = {abc} and 𝛤 (cd) = {cd}. Notice that a
is false only for the stable model cd, generated by the
composite choice cd. The lower probability of a is thus
Pr(a) = 1 − Pr(cd) = 1 − (0.7 · 0.4) = 0.72 ≠ 0.3.
In [9], the authors suggested adopting a slightly different

semantics to enforce that the marginal probabilities derived
from the semantics agree with the annotated probability
values (e.g., to ensure that Pr(a) = 0.3 in the example). The
same semanticswas suggested earlier byDantsin [10],which
considered only logic programs with single (stable) models.
While appealing, that proposal might leave programs such
as the above with no probability models. It is also equivalent
to explicitly including rules in the program that prevent
alternative composite choices (e.g., a and c) to be true
simultaneously. We do not pursue this strategy in this paper.
We conclude this section with a PASP encoding of the

famousMonty Hall’s problem, to illustrate how PASP offers
an appealing language to specify factored infinitely mono-

tone lower probabilities by means of nondeterminism and
probabilistic choices (lines starting with % are comments):
% A prize is randomly placed behind 1 of 3 doors
1/3::prize(1); 1/3::prize(2); 1/3::prize(3).
% Each door hides either a prize or a goat
goat(X) :- not prize(X).
% The participant selects door 1
select(1).
% The host will open some door
open(1); open(2); open(3).
% which does not hide the prize
false :- prize(X), open(X), not false.
% and has not been selected by the participant
false :- open(X), select(X), not false.
% The host offers a choice to change
choice(1); choice(2); choice(3).
% to some other door that is not open
false :- choice(X), open(X), not false.
% and has not been selected
false :- choice(X), select(X), not false.
% The participant wins if the initial door
% selected has the prize and she does not take
% the offer to change doors
win_keep :- select(X), prize(X).
% or if she changes to the door with the prize
win_change :- choice(X), prize(X).

One interesting modeling strategy in the program above
are the rules of the form
false :- 𝐵1,. . . ,𝐵𝑛,not false.

Such rules create a contradiction whenever 𝐵1, . . . , 𝐵𝑛 are
all true, and it thus excludes any interpretation where the
𝐵𝑖s all hold. Such constructs are called integrity constraints
and are quite common in ASP modeling as they rule out
infeasible candidate solutions (so much that we usually
write them as head-free clauses, viz.:- B1,...,Bn).
Back to theMontyHall example, the reader can check that

Pr(win_change) = Pr(win_change) = 2/3. Thus, the best
strategy for the participant is to always change doors. For the
particular scenario where the participant observes that the
host opens door 2, we have that Pr(win_change |open(2)) =
1/2 and Pr(win_change |open(2)) = 1. The non singleton
intervals reflect the incompleteness of our knowledge about
the preference of the host in selecting a door to open, which
in the program is modeled as a logic disjunction. Despite
that, the best course of action is still to change doors.

3. Specifying Infinitely Monotone Credal Sets
As can be inferred from the definition of semantics of
a PASP program, the induced lower probability function
is infinitely monotone. And since the marginalization (or
projection) of such functions to a subset of variables remains
infinitely monotone, we see that PASP programs can only
specify infinitely monotone lower probabilities. We now
show that the converse also holds.
To start, consider a simple credal set Pr(𝑋 = 1) ∈ [𝛼, 𝛽]

for a Bernoulli randomvariable. It is possible to generate this

324

Specifying Credal Sets With Probabilistic Answer Set Programming

credal set using cycles and probabilistic facts, as explored
in previous literature [9]; however, a very direct encoding
can be adopted by exploiting (annotated) disjunctions and
the set’s 𝑚-function characterization:

𝛼::m(1);1 − 𝛽::m(2);𝛽 − 𝛼::m(3).
x(1) :- m(1). x(0) :- m(2).
x(1); x(0) :- m(3).

The atoms x(1) and x(0) represent the assignments 𝑋 = 1
and 𝑋 = 0, respectively. The PASP program induces three
logic programs, each containing one of m(1), m(2) or m(3)
with probabilities 𝛼, 1 − 𝛽 and 𝛽 − 𝛼, respectively. The
first program contains a single stable model satisfying x
(1) but not x(0). The second program contains a single
stable model satisfying x(0) and not x(1). Finally, the third
program contains two stable models, each one satisfying
either x(0) or x(1) (but not the other). Thus, by collecting
the respective probabilities, we see that Pr(x(1)) = 𝛼 and
Pr(x(1)) = 𝛽, as intended.
The strategy used in this simple example is rather general

in the sense that it can be used to specify any infinitely
monotone lower probability (and its dominating credal set)
by means of an inducing 𝑚-function as follows. Take a
total ordering 𝐴1, . . . , 𝐴𝑛 of focal sets of 𝑚, and add the
annotated disjunction:

𝑚(𝐴1)::m(1);. . . ;𝑚(𝐴𝑛)::m(n).

Take also an ordering 𝜔1, 𝜔2, . . . of the elements in 𝛺, and
for each focal set 𝐴𝑖 = {𝜔𝑖1 , . . . , 𝜔𝑖𝑘 }, add the rule

x(𝑖1);. . . ;x(𝑖𝑘) :- m(𝑖).

The atoms x(i) represent the elements 𝜔𝑖 ∈ 𝛺. This
straightforward scheme shows that:

Theorem 1 Every infinitely monotone lower probability
can be specified by a probabilistic answer set program in
size proportional to the number of focal sets of its𝑚-function
characterization.

Proof Any such lower probability can be characterized
uniquely by its corresponding 𝑚-function. Thus write the
corresponding program, as described. It is clear that the
program size is proportional to the size of the 𝑚-function
characterization. To show that the program encodes the
intended lower probability, observe that the composite
choices _ : 𝑟 ↦→ m(i) are in one-to-one correspondence
with the focal sets 𝐴𝑖 , and for each such _ the stable
models are 𝛤 (_) = {{m(i), x(k)} : 𝜔𝑘 ∈ 𝐴𝑖}. Hence,
the credal semantics assigns Pr(𝐴) = ∑

:𝛤 () ⊆𝐴 Pr(_) =∑
𝐴𝑖⊆𝐴′ 𝑚(𝐴𝑖) to any event 𝐴, where 𝐴′ in the last sum
maps the interpretations in 𝐴 to elements of 𝛺.

4. Specifying General Credal Sets
As we have noted in the previous section, PASP programs
can only capture infinitely-monotone lower probabilities
(and their corresponding dominating credal sets). Following
an approach initiated by Augustin [2], we extend the expres-
siveness of the PASP programs by allowing the probability
mass functions over composite choices (i.e., the basic belief
assignments, in belief theory’s jargon) to vary inside a
credal set. This idea has already been put forward by Bueno
et al. [4] in the context of Markov Decision Processes. In
that work, however, the credal sets characterized by such
constructs were not discussed, and imprecision was limited
to probabilistic facts, hence constrained to intervals. In this
section, we provide a more in-depth discussion of credal
sets constructed with imprecisely specified PASP programs,
as well as more general specification languages.

4.1. Probability Intervals

We start with the simplest case of interval-valued annotated
disjunctive rules:
[ℓ1, 𝑢1]::𝐴1;. . . ;[ℓ1, 𝑢1]::𝐴𝑚 :- 𝐵1,. . . ,𝐵𝑛 .

We assume the intervals of any such construct are reachable,
that is, ℓ𝑖+

∑
𝑗≠𝑖 𝑢 𝑗 ≥ 1 and 𝑢𝑖+

∑
𝑗≠𝑖 ℓ 𝑗 ≤ 1 for 𝑖 = 1, . . . , 𝑚.

The semantics of programs with such rules is the set
of all PASP programs where the probability of annotated
disjunctions are selected according to the respective inter-
vals. That is, given a program \ we generate a (possibly
infinite) set of PASP programs by replacing each interval-
valued rule 𝑟 in \ by an annotated disjunctive rule with
weights 𝛼1, . . . , 𝛼𝑚 such that 𝛼𝑖 ∈ [ℓ𝑖 , 𝑢𝑖], 𝑖 = 1, . . . , 𝑚,
and

∑
𝑖 𝛼𝑖 = 1. Each such program then defines a probability

distribution Pr(_) over composite choices as the product of
associated probabilities, as before. LetM(𝛬) denote such
set of probabilities. We define a lower probability function
Pr′ over sets of composite choices 𝛬′ ⊆ 𝛬 as the lower
envelope of those probability distributions:

Pr′(𝛬′) = min {Pr(𝛬′) ∈ M(𝛬)} . (5)

Because we assumed that the intervals of annotated dis-
junctive rules are reachable, the set in the equation above is
always non-empty and hence the lower probability is well-
defined. Finally, the extended credal semantics of a program
with interval-valued annotated disjunctive rules is the ex-
tension of that lower probability function in Equation (5)
by the multi-valued mapping 𝛤:

Pr(𝐴) = Pr′ ({_ ∈ 𝛬 : 𝛤 (_) ⊆ 𝐴}) . (6)

Thus, we now have two sources of incompleteness, one
arising from the imprecision in the specification of the
composite probability distribution Pr(_), and other from

325

Mauá Cozman

the multi-valued mapping to stable models 𝛤 (_). Take the
following simple illustrative program.
[0.3,0.7]::a; [0.7,0.3]::c.
0.6::b; 0.4::d.
a :- b.

The extended credal semantics of the program is the set of
PASP programs obtained by varying the probability values
for the annotated disjunction in the first line within the given
(reachable) intervals. Each such PASP program is acyclic
and hence each composite choice induces a single answer
set. Hence, we have probability \ + 0.6 − \ · 0.6 of a being
true, where \ ∈ [0.3, 0.7]. For instance, Pr(a) = 0.72 and
Pr(a) = 0.88. Note that a non-sharp probability value is
generated in spite of the deterministic semantics (unique
stable models) of the induced logic programs.
The lower probability function in Equation (6) is no

longer necessarily an infinitely monotone Choquet capacity.
In fact, we have that:

Theorem 2 Every finitely-generated credal set can be
represented by an acyclic and positive probabilistic logic
program with a single vacuous interval-valued annotated
disjunction and a set of precise annotated disjunction.

Proof Let 𝛺 = {𝜔1, . . . , 𝜔𝑛} be the sample space, and
𝑝1, . . . , 𝑝𝑚 denote the vertices characterizing the credal set.
Write the program:
[0, 1]::𝑣1;. . . ;[0, 1]::𝑣𝑚.
𝑝𝑖 (𝜔1)::𝑤1;. . . ;𝑝𝑖 (𝜔𝑚)::𝑤𝑚 :- 𝑣𝑖. [∀𝑖 = 1, . . . , 𝑚]

Intuitively, the first rule defines the set of convex combi-
nation of the extreme distributions of the credal set. Each
remaining rule selects the respective extreme distribution
once the corresponding vertex has been defined. The ex-
treme distributions are obtained by placing all probability
mass to a single 𝑣𝑖 atom in the annotated disjunction, thus
effectively “selecting” a vertex of the probability mass
function polytope. We obtain the desired credal set by
marginalizing out 𝑣𝑖 .
To obtain the same result using only annotated disjunc-

tions, transform each annotated disjunctive rule into one
annotated disjunction 𝑝𝑖 (𝜔1) :: 𝑐1, . . . , 𝑝𝑖 (𝜔𝑛) :: 𝑐𝑛, and
𝑛 normal rules of the form 𝑤 𝑗 :− 𝑣𝑖 , 𝑐 𝑗 , for 𝑗 = 1, . . . , 𝑛.

It is important to notice that under the extended credal
semantics, vacuous annotated disjunctions and (standard)
disjunctions have very different effects. For example, the
following program specifies a credal set Pr(x(1)) ∈ [𝛼, 𝛽]:
[0,1]::v(1);[0,1]::v(2).
𝛼::x(1);(1 − 𝛼)::x(0) :- v(1),
𝛽::x(1);(1 − 𝛽)::x(0) :- v(2).

Replacing the vacuous annotated disjunction with
v(1);v(2).

produces Pr(x(1)) = 𝛼𝛽.
In closing this section, we note that an interval-valued

annotated disjunction induces lower probabilities that are ac-
tually two-monotone capacities [11] over composite choices.
Given that a multi-valued mapping whose domain is en-
dowed with a two-monotone capacity also generates a
two-monotone capacity in its range [2, 21], we have that a
program with a single interval-valued annotated disjunction
specifies a two-monotone lower probabilities over atoms.

4.2. Probabilistic Facts

Probabilistic logic programs are most often defined with
probabilistic facts in lieu of annotated disjunctions. A
probabilistic fact is an expression of the form 𝛼 :: 𝐴,
where 𝐴 is a standard atom [14]. It is easily encoded as
an annotated disjunction 𝛼 :: 𝐴; (1 − 𝛼) :: 𝐴′, where
𝐴′ is a fresh atom only appearing in this rule, so that
allowing probabilistic facts does not increase the mod-
eling power of our language. The converse is also true:
an annotated disjunction with sharp probabilities such as
𝑝1 :: 𝑎1; . . . ; 𝑝𝑛 :: 𝑎𝑛 can be translated into an equivalent
(acyclic) subprogram formed by a set of probabilistic facts
𝑞1 :: 𝑐1, . . . , 𝑞𝑛 :: 𝑐𝑛 and (non probabilistic) logic rules
𝑎𝑖 :− not 𝑐1, . . . , not 𝑐𝑖−1, 𝑐𝑖 , for 𝑖 = 1, . . . , 𝑛 [14]. The
probabilities 𝑞𝑖 are set to 𝑝𝑖/

∏
𝑗<𝑖 𝑞 𝑗 = 𝑝𝑖/(1 −

∑
𝑗<𝑖 𝑝𝑖).

For example,
0.2::red;0.3::green;0.5::blue.

can be translated into
0.2::c1. 3/8::c2. 1.0::c3.
red :- c1.
green :- not c1, c2.
blue :- not c1, not c2, c3.

The latter induces the same (joint) distribution over red,
green and blue as the annotated disjunction.
Hence, with sharp probabilities, annotated disjunctions

are no more expressive than probabilistic facts. That trans-
formation does not extend easily to the the case of interval-
valued probabilities. For example,
[0.1,0.3]::red;[0.2,0.4]::green;[0.4,0.6]::blue.

is not equivalent to the program
[0.1,0.3]::c1. [2/7,4/9]::c2. [𝛼3,𝛽3]::c3.
red :- c1.
green :- not c1, c2.
blue :- not c1, not c2, c3.

Here, the interval [𝛼2, 𝛽2] = [2/7, 4/9] for c2 is defined as
𝛼2 = 0.2/(1− 𝛽1) and 𝛽2 = 0.4/(1−𝛼1), where [𝛼1, 𝛽1] =
[0.1, 0.3]. These numbers produce correct marginal lower
and upper probabilities for red and green, which are not
affected by the choice of values for 𝛼3 and 𝛽3. Hence, if
we modify the intervals of c1 or c2 (with the rest fixed),
we produce the wrong lower probability. Now, Pr(blue) =

326

Specifying Credal Sets With Probabilistic Answer Set Programming

(1 − Pr(c1)) (1 − Pr(c2))Pr(c3), whence 𝛼3 > 1. Similarly,
we have that 𝛽3 < 1. Hence, there are not values for 𝛼𝑖 and
𝛽𝑖 , 𝑖 = 1, 2, 3, that jointly achieve the desired marginals.
We can however take a different route, by noting that

interval-valued annotated disjunctions specify themselves
(local) credal sets, hence they can also be reduced to a
combination of one vacuous interval-valued annotated dis-
junction and a set of precise annotated disjunctions, by
Theorem 2. These precise annotated disjunctions can then
be transformed to probabilistic facts and non-probabilistic
normal rules. Moreover, the vacuous interval-valued credal
set can be encoded as vacuous probabilistic facts. Therefore,
we can convert any interval-valued annotated disjunction
to an equivalent acyclic program containing only (vacuous
and precise) probabilistic facts and non-probabilistic rules.
To illustrate the translation, consider again that same

interval-valued annotated disjunction over atoms red, green
and blue. We can represent the same model by enumerating
the vertices using probabilistic facts:

[0,1]::v1. [0,1]::v2. [0,1]::v3.
v(1) :- v1, v2, v3.
v(2) :- not v1, v2, v3.
v(3) :- v1, not v2, v3.
v(4) :- not v1, not v2, v3.
v(5) :- v1, v2, not v3.
v(6) :- not v1, v2, not v3.
v(6) :- not v2, not v3.

0.1::w1(1);0.3::w2(1);0.6::w3(1).
0.1::w1(2);0.4::w2(2);0.5::w3(2).
0.3::w1(3);0.2::w2(3);0.5::w3(3).
0.2::w1(4);0.2::w2(4);0.6::w3(4).
0.2::w1(5);0.4::w2(5);0.4::w3(5).
0.3::w1(6);0.3::w2(6);0.4::w3(6).

red :- w1(X), v(X).
green :- not w1(X), w2(X), v(X).
blue :- not w1(X), not w2(X), w3(X), v(X).

The annotated disjunctive rules specifying the vertices can
additionally be converted to probabilistic facts (and some
rules), as explained. Hence, we have:

Theorem 3 Any probabilistic answer set program with
interval-valued annotated disjunctions can be converted
into an equivalent program containing only interval-valued
probabilistic facts and non-probabilistic rules. If the origi-
nal program is acyclic (resp., nondisjunctive), the resulting
program is also acyclic (resp., nondisjunctive).

Note that unlike the translation of annotated disjunctions
into probabilistic facts, the translation stated by the Theorem
above is very inefficient, as it requires enumerating all
vertices of (the credal set induced by) an interval-valued
annotated disjunction.

4.3. Relational Programs

The semantics of a PASP program with variables is given
by the semantics of its grounding. Thus, for instance, the
semantics of the program
urn(a). urn(b).
[0.3,0.6]::red(X);[0.4,0.7]::green(X) :- urn(X).

is the semantics of the ground program
urn(a). urn(b).
[0.3,0.6]::red(a);[0.4,0.7]::green(a) :- urn(a).
[0.3,0.6]::red(b);[0.4,0.7]::green(b) :- urn(b).

An alternative interpretation would be to consider non-
ground annotated disjunctive rules as specifying a set of
grounded annotated disjunctive rules, all which share the
same distributions. For instance, we might interpret the
program
urn(a). urn(b).
[0.3,0.6]::red(X);[0.4,0.7]::green(X) :- urn(X).

as intending
urn(a). urn(b).
𝛼::red(a);1 − 𝛼::green(a) :- urn(a).
𝛼::red(b);1 − 𝛼::green(b) :- urn(b).

for some 𝛼 ∈ [0.3, 1]. That leads to ground programs
that cannot be written in the language we specified before.
Inference in under such semantics is more challenging, as,
for example, upper and lower bounds are not necessarily
attained at the local extrema of intervals. We leave the
analysis of such alternative semantics as future work.

4.4. Linear Inequalities

Even though (vacuous) interval-valued annotated disjunc-
tions suffice to represent any credal set, they can ensure
such an expressivity only by enumeration of the extreme
distributions. This is often computationally demanding and
cause a blown up in program size. To avoid that, we pro-
pose parameterized annotated disjunctive rules, which are
expressions of the form
𝑋1::𝐴1;. . . ;𝑋𝑚::𝐴𝑚 :- 𝐵1,. . . ,𝐵𝑛 .

where 𝑋𝑖 are probability variables (i.e., strings beginning
with upper case letters), and each 𝐵𝑖 is either a standard
literal or a linear (in)equality involving only the probability
variables in the head and numeric constants (i.e., rational
numbers). For example,
P::a;Q::b;R::c :- P < Q, Q < R, P >= 0.3

is a valid parameterized annotated disjunction encoding
the credal set of probability distributions over a random
variable 𝑋 taking values on {𝑎, 𝑏, 𝑐}, with

0.3 ≤ Pr(𝑋 = 𝑎) < Pr(𝑋 = 𝑏) < Pr(𝑋 = 𝑐) ≤ 1.

327

Mauá Cozman

Here is another example, where we have an urn containing
at least twice as many red balls as green balls (and none of
any other color):
P::red;Q::green :- P >= 2*Q.

This is equivalent to:
[2/3,1]::red;[0,1/3]::green.

The semantics of PASP programs with parameterized an-
notated disjunctive rules intuitively extends the semantics of
programs with interval probabilities. Thus, in Equation (5),
we replace the intervals with the more general constraints
given by linear probability inequalities. Note that, as it hap-
pens with standard annotated disjunctions, the constraints
for different annotated disjunctions are taken to denote
different probability constraints. For example, the rules
P::a;Q::b :- P > Q.
P::a;Q::b :- P <= Q.

specify two separately credal sets, one of distributions
where Pr(a) > Pr(b) and other where Pr(a) ≤ Pr(b). The
resulting program will induce marginal probabilities Pr(a)
that will not satisfy either constraint.
The use of parameterized probabilities (a.k.a. probability

variables) extends the use of annotated disjunctions with
interval-valued probabilities, but is more expressive. For ex-
ample, with such constructs, one can specify unconditional
open credal sets such as Pr(a) > 0.
As with interval-valued annotated disjunctive rules, the

semantics of a non-ground program is the semantics of its
grounding. Thus, for example, the program
urn(a). urn(b).
P::red(X);Q::green(X) :- P >= 0.3, urn(X).

is understood as the ground program
urn(a). urn(b).
P::red(a);Q::green(a) :- P >= 0.3, urn(a).
P::red(b);Q::green(b) :- P >= 0.3, urn(b).

Note that logical variables are resolved before probability
variables are even considered. Thus, we interpret
prop(0.8). P::draw(P) :- prop(P).

as the ground program
prop(0.8). P::draw(0.8) :- prop(0.8).

In that program, P is free to take any value in [0, 1], and
draw(0.8) is true with probability P. While the semantics of
such programs are well-defined, they are certainly confusing
and should well be avoided.
Because logical variables are grounded by the time we

assign a semantics to the program, we might as well allow
logical variables to interact with probability variables. For
example, we might have a program such as
urn(30,70).
P::red;Q::green :- P >= R/(R+O), urn(R,O).

whose grounding is
urn(30,70).
P::red;Q::green :- P >= 30/(30+30), urn(30,30).
P::red;Q::green :- P >= 30/(30+70), urn(30,70).
P::red;Q::green :- P >= 70/(70+30), urn(70,30).
P::red;Q::green :- P >= 70/(70+70), urn(70,70).

Of course, we might run into problems when probability
variables are combined with nonnumerical constants, such
as for instance if we added the fact urn(a,b). To avoid such
complications, we do not pursue this possibility here.

4.5. Credal Networks

Any Bayesian network over discrete random variables can
be specified as an acyclic probabilistic logic program, with
an almost direct translation that associates root nodes with
annotated disjunctions and inner nodes with annotated
disjunctive rules. For example, consider a simple network
with edges 𝑋 → 𝑌 and 𝑍 → 𝑌 , where 𝑋 and 𝑍 are
binary and 𝑌 is ternary. The conditional probability values
Pr(𝑌 = 𝑖 | 𝑋 = 𝑗 , 𝑍 = 𝑘) are given by table 𝑇𝑘 (𝑖, 𝑗) below:

𝑇1 =
©«
0.3 0.9
0.1 0.05
0.6 0.05

ª®¬ , 𝑇2 =
©«
0.2 0.05
0.3 0.05
0.5 0.9

ª®¬ .
That network can be specified by a program with proba-
bilistic facts x and z, and the annotated disjunctive rules:
0.30::y1;0.10::y2;0.60::y3 :- not x, not z.
0.90::y1;0.05::y2;0.05::y3 :- x, not z.
0.20::y1;0.30::y2;0.50::y3 :- not x, z.
0.05::y1;0.05::y2;0.90::y3 :- x, z.

The same process can be adapted to translate a separately
specified credal network into an acyclic probabilistic pro-
gram. Root nodes are specified as parameterized annotated
disjunctions and inner nodes are specified as parameterized
annotated disjunctive rules whose body are the configura-
tions of parent variables.
We can also benefit from logic programming to represent

richer types of conditional credal sets. For instance, we
can easily specify extensive conditional credal sets. To
see this, consider a simple extensive credal network with
graph 𝑋 → 𝑌 such that 𝑋 is binary and the conditional
credal set of 𝑌 is extensively defined by the distributions
𝑇1 and 𝑇2; in other words, the selection of a conditional
probability distribution Pr(𝑌 |𝑥) constrains the choice of the
conditional distribution Pr(𝑌 |¬𝑥) to the one in the same
table 𝑇𝑧 . We can specify such a model by augmenting the
previous program with a vacuous fact that selects a table:
[0,1]::z.

Previous work has shown that any acyclic probabilistic
logic program with only probabilistic facts and logic rules
specifies a Bayesian network whose graph is the dependency

328

Specifying Credal Sets With Probabilistic Answer Set Programming

graph of the program and whose conditional probabilities
are immediately derived from the facts and rules [6]. This
way, acyclic (propositional) programs and binary Bayesian
networks specify the same class of models (if we ignore the
specification of CPTs).
By a much similar argument, one can show that an acyclic

program containing only interval-valued probabilistic facts
and non-probabilistic rules can be interpreted as a credal
network over the same dependency graph. Since a program
with (parameterized) annotated disjunctions can be trans-
lated into an equivalent program with only (interval-valued)
probabilistic facts and logic rules, we have that:

Theorem 4 The semantics of an acyclic probabilistic an-
swer set program is given by a credal network; if only
probabilistic facts and nonprobabilistic rules appear, the
network structure is the dependency graph of the program.

Proof For simplicity, we consider only programs with
interval-valued probabilistic facts; annotated disjunctions
can be compiled into probabilistic facts, as discussed. We
also assume that no atom appears in more than one prob-
abilistic fact; if that is not the case, then we create a new
atom to encode the event “one of the occurrences of the
fact is true”. Given such a program, we obtain a credal net-
work using essentially the same enconding used for precise
probabilistic programs [7], except that we associate root
nodes with intervals instead of sharp probabilities. Note
that the resulting network has imprecise root nodes and
deterministic inner nodes.

5. Inferential Complexity
We are often interested in computing Pr(𝑎 | 𝑏) for arbitrary
atoms 𝑎 and 𝑏 in a PASP programwith imprecisely specified
probabilities.
The complexity of computing the lower or upper prob-

ability of an atom in a precise PASP program has been
thoroughly investigated elsewhere in terms of program de-
pendency structure (negation, acyclicity, stratification) and
the language richness (disjunction, aggregation, variables,
etc) [6, 8, 18]. We only note here that the complexity of
such an inference in nondisjunctive stratified programs
is 𝑃𝑃-complete, and climbs up to 𝑃𝑃𝑁𝑃-complete for
programs with negation or disjunction (but not both) to
𝑃𝑃𝛴

𝑝

2 -complete for disjunctive normal programs.
As with other imprecise probability extensions of (clas-

sical) probabilistic models, allowing imprecisely specified
probabilistic constructs adds to the computational power
of the inferential machine, which reflects in higher com-
plexity. In fact, Bueno et al. [4, Theorem 2] showed that the
computation of a lower probability in a PASP program with

interval-valued probabilistic facts is 𝑁𝑃𝑃𝑃-hard. The result
is intuitive: to calculate the desired probability bound, one
must first nondeterministically select an extreme probability
value for each probabilistic fact, then run inference it the
resulting (precise) probabilistic program. The reason we
don’t get a higher complexity in the oracle (say, 𝑁𝑃 with
a 𝑃𝑃𝛴

𝑝

2 oracle) is Toda’s celebrated result [30] that 𝑃𝑃𝑃

encompasses the entire polynomial complexity hierarchy
(thus such “hierarchy” collapses to its first level as an oracle
machine).
The following result shows that the situation is unaltered

by the adoption of linear probability constraints in rules.

Theorem 5 Deciding whether the unconditional lower
probability of an atom is above a given threshold is 𝑁𝑃𝑃𝑃-
complete in probabilistic answer set programs with param-
eterized annotated disjunctions.

Proof Hardness follows from [4]. To show membership,
note that inference can be cast as a multilinear program over
the probabilities of parameterized annotated disjunctions.
Thus, the lower probability is attained at a combination of the
vertices of the local polytopes defined by linear probability
inequalities. To compute the inference nondeterministically
guess a local vertex, for each parameterized annotated
disjunction, then solve the resulting inference problem by a
call to a 𝑃𝑃𝛴

𝑝

2 oracle; the latter is equivalent to polynomially
many calls to a 𝑃𝑃 oracle [30].

A conditional lower probability query Pr(𝑎 |𝑏) can be
reduced to the computation of (several) unconditional lower
probability bounds, by means of the Generalized Bayes
Rule (GBR) [33]. According to the rule, Pr(𝑎 |𝑏) is the
unique solution ` of:

min
Pr
Pr(𝑎, 𝑏)−` Pr(𝑏) = 0⇔ min

Pr
Pr(𝑎, 𝑏)+` Pr(¬𝑏) = `.

To compute the left hand side of the second equation for a
fixed `, we extend the probabilistic program with the rules

𝑞 :− 𝑎, 𝑏 and ` :: 𝑞 :− not 𝑏,

where 𝑞 is a fresh atom. Then Pr(𝑞) = ` iff Pr(𝑎, 𝑏) +
` Pr(¬𝑏) = `. Now to find the desired conditional lower
probability we only need to perform a binary search for
` ∈ [0, 1] that solves the GBR’s equation. We thus get the
following corollary:

Corollary 6 Deciding the conditional lower probability
of an atom in a probabilistic answer set program with
parameterized annotated disjunctions is 𝑁𝑃𝑃𝑃-complete.

6. Decision Making
One use of interval-valued annotated disjunctions is to
encode decisions that an agent can make. For example, in

329

Mauá Cozman

the Monty-Hall encoding, we might specify whether the
participant accepts or not the offer to change doors as
[0,1]::change;[0,1]::keep.

Then we can re-state the outcomes based on that decision:
win_keep :- select(X), prize(X), keep.
win_change :- choice(X), prize(X), change.

Computing e.g. Pr(win_keep) and Pr(win_keep) thus gives
us the minimum and maximum probability of a strategy:
selecting a door and deciding to change or not.
Van den Broeck et al. [13] extended Problog’s syntax to

cope with such decision making situations. They introduced
decision facts, denoted as ? :: 𝐴 where 𝐴 is a fact, to
represent an agent’s decisions. They also introduced utility
attributes, specified by the special two-place predicate
util(𝐴,𝑈 (𝐴)), which maps an atom 𝐴 to a real value
𝑈 (𝐴). The objective is to find an optimal strategy, that
is, a selection of 0/1 probabilities to decision facts that
maximizes the sum of the utilities of satisfied atoms.
Here is an illustrative example from [13] of a decision

problem encoded in DTProblog:
?::umbrella. ?::raincoat. 0.3::rainy. 0.5::windy.

broken :- umbrella, rainy, windy.
dry :- umbrella, not broken.
dry :- raincoat.
dry :- not rainy.
util(umbrella,-2). util(raincoat,-20).
util(dry,60). util(broken,-40).

The optimal strategy for the program is 𝜎(umbrella) ↦→ 1
and 𝜎(raincoat) ↦→ 0, which implies Pr(dry) = 0.85,
Pr(broken) = 0.15, Pr(umbrella) = 1, Pr(raincoat) = 0,
and hence in the expected utility (−2) · 1 + (−40) · 0.15 +
(−20) · 0 + 60 · 0.85 = 43.
We can represent DTProblog programs as stratified PASP

programs by transforming decision facts into vacuous facts
and by encoding the additive utility function as a probabil-
ity model, as described in [19]. To perform the converse,
translate each interval-valued annotated disjunction into a
series of decision facts and specify a utility as an indicator
function of the query atom. It thus follows that:

Theorem 7 The computation of a maximum expected
utility in a DTProblog program can be efficiently reduced
to an unconditional inference in a stratified PASP program
with interval-valued annotated disjunctions, and vice-versa.

Conditional inferences in imprecise PASP programs can
also be reduced to the (several) computation(s) of maximum
expected utility of DTProblog programs by encoding the
binary search of GBR as discussed in Section 5. Combined,
these arguments show that:

Theorem 8 The computation of maximum expected utility
for DTProblog programs is NPPP-complete.

Proof Membership follows from Theorem 7. Hardness
follows as the inferential complexity of DTProblog is NPPP-
complete, as this is the complexity of inference of PASP
programs with imprecise probabilistic facts [4].

To our knowledge, the complexity of DTProblog infer-
ence has not been obtained previously.

7. Conclusion
We have discussed extensions of probabilistic answer set
programming languages that allow for a rich class of im-
precise probability models. In particular, we have proposed
a semantics for programs whose probabilistic choices are
annotated either with intervals or with linear inequality
constraints over probability values.
In many ways, this work is preliminary. For instance, one

important point that we have left out of this discussion is how
to effectively perform inference with imprecisely-specified
probabilistic answer set programs. In fact, we have imple-
mented the probabilistic answer set programs with interval-
valued probabilistic facts in an open-source package, avail-
able at http://kamel.ime.usp.br/dpasp/. Cur-
rently, unconditional inferences are performed by vertex enu-
meration, and interval-valued annotated disjunctive rules
are not supported. Future work must devise more efficient
algorithms that allow for faster inference, and that support
also linear probability constraints. One possibility is to com-
bine ideas from knowledge compilation [9] and inference
in credal networks [1].
There are also theoretical questions about the complexity

of other types of inferences (e.g., maximum a posteriori)
with imprecise programs, as well as of lower/upper proba-
bility queries in programs with richer constructs (variables,
aggregates, etc), as has been explored for the case of pro-
grams with sharp probabilities [18]. We hope this paper
instigates research in that direction.

Acknowledgments
The first author is partially supported by São Paulo Re-
search Agency grant #2022/02937-9 and CNPq grant
#305136/2022-4. The second author is partially supported
by CNPq grant #305753/2022-3. Both authors received
generous support from the C4AI (supported by FAPESP
grant 2019/07665-4 and IBM corporation) and CAPES
Finance Code 001.

Author Contributions
Both authors contributed with ideas, discussion and revision
of the text; results and text were produced primarily by the
first author.

330

http://kamel.ime.usp.br/dpasp/

Specifying Credal Sets With Probabilistic Answer Set Programming

References
[1] Alessandro Antonucci, Cassio Polpo de Campos,
David Huber, and Marco Zaffalon. Approximate
credal network updating by linear programming with
applications to decisionmaking. International Journal
of Approximate Reasoning, 58:25–38, 2015.

[2] Thomas Augustin. Generalized basic probability as-
signments. International Journal of General Systems,
34(4):451–463, 2005.

[3] Chitta Baral, Michael Gelfond, and Nelson Rushton.
Probabilistic reasoning with answer sets. Theory and
Practice of Logic Programming, 9(1):57–144, 2009.

[4] Thiago P. Bueno, Denis D. Mauá, Leliane N. Barros,
and Fabio G. Cozman. ModelingMarkov decision pro-
cesses with imprecise probabilities using probabilistic
logic programming. In Proceedings of the Tenth
International Symposium on Imprecise Probability:
Theories and Applications, pages 49–60, 2017.

[5] Fabio Gagliardi Cozman. Credal networks. Artificial
intelligence, 120(2):199–233, 2000.

[6] Fabio Gagliardi Cozman and Denis Deratani Mauá.
Probabilistic graphical models specified by proba-
bilistic logic programs: Semantics and complexity.
In Proceedings of the 8th International Conference
on Probabilistic Graphical Models, pages 110–122,
2016.

[7] Fabio Gagliardi Cozman and Denis Deratani Mauá.
On the complexity of propositional and relational
credal networks. International Journal of Approximate
Reasoning, 83:298–319, 2017.

[8] Fabio Gagliardi Cozman and Denis Deratani Mauá.
On the semantics and complexity of probabilistic logic
programs. Journal of Artificial Intelligence Research,
60:221–262, 2017.

[9] Fabio Gagliardi Cozman and Denis Deratani Mauá.
The joy of probabilistic answer set programming:
Semantics, complexity, expressivity, inference. In-
ternational Journal of Approximate Reasoning, 125:
218–239, 2020.

[10] Eugene Dantsin. Probabilistic logic programs and
their semantics. In Proceedings of the 1st Russian
Conference on Logic Programming, pages 152–164,
1992.

[11] Luis M. de Campos, Juan F. Huete, and Serafín Moral.
Probability intervals: a tool for uncertain reasoning.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 2:167–196, 1994.

[12] Eduardo Menezes De Morais and Marcelo Finger.
Probabilistic answer set programming. In Proceed-
ings of the 2013 Brazilian Conference on Intelligent
Systems, pages 150–156, 2013.

[13] Guy Van den Broeck, Ingo Thon, Martijn van Otterlo,
and Luc De Raedt. DTProbLog: A decision-theoretic
probabilistic prolog. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence,
pages 1217–1222, 2010.

[14] Daan Fierens, Guy Van den Broeck, Joris Renkens,
Dimitar Shterionov, Bernd Gutmann, Ingo Thon,
Gerda Janssens, and Luc De Raedt. Inference
and learning in probabilistic logic programs using
weighted boolean formulas. Theory and Practice of
Logic Programming, 15(3):358–401, 2015.

[15] Martin Gebser, Roland Kaminski, Benjamin Kauf-
mann, and Torsten Schaub. Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence
and Machine Learning (SLAIML). Springer Cham,
2013.

[16] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Proceed-
ings of the Fifth International Conference on Logic
Programming, pages 1070–1080, 1988.

[17] Joohyung Lee and Yi Wang. Weighted rules under the
stable model semantics. In Proceedings of the 15th
International Conference on Principles of Knowledge
Representation and Reasoning, pages 145–154, 2016.

[18] Denis Deratani Mauá and Fabio Gagliardi Cozman.
Complexity results for probabilistic answer set pro-
gramming. International Journal of Approximate
Reasoning, 118:133–154, 2020.

[19] Denis Deratani Mauá, Cassio Polpo de Campos, and
Marco Zaffalon. The complexity of approximately
solving influence diagrams. In Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 604–613, 2012.

[20] Enrique Miranda and Sébastien Destercke. Extreme
points of the credal sets generated by comparative
probabilities. Journal of Mathematical Psychology,
64–65:44–57, 2015.

[21] Enrique Miranda, Gert de Cooman, and Inés Couso.
Lower previsions induced by multi-valued mappings.
Journal of Statistical Planning and Inference, 133(1):
173–197, 2005.

[22] Hung T. Nguyen. On random sets and belief functions.
Journal of Mathematical Analysis and Applications,
65(3):531–542, 1978.

331

Mauá Cozman

[23] Nils J. Nilsson. Probabilistic logic. Artificial Intelli-
gence, 28(1):71–87, 1986.

[24] David Poole. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial
Intelligence, 94:7–56, 1997.

[25] David Poole. Abducing through negation as failure:
Stable models within the independent choice logic.
Journal of Logic Programming, 44(1–3):5–35, 2000.

[26] Luc De Raedt, Angelika Kimmig, and Hannu Toivo-
nen. ProbLog: A probabilistic Prolog and its appli-
cation in link discovery. In Proceedings of the 20th
International Joint Conference on Artificial Intelli-
gence, pages 2462–2467, 2007.

[27] Fabrizio Riguzzi. Foundations of Probabilistic Logic
Programming: Languages, Semantics, Inference and
Learning. River Publishers, 2018.

[28] Tiasuke Sato. A statistical learning method for logic
programs with distribution semantics. In Proceed-
ings of the 12th International Conference on Logic
Programming, pages 715–729, 1995.

[29] Glenn Shafer. A Mathematical Theory of Evidence.
Princeton University Press, 1976.

[30] Seinosuke Toda. PP is as hard as the polynomial-
time hierarchy. SIAM Journal on Computing, 20(5):
865–877, 1991.

[31] Joost Vennekens, Sofie Verbaeten, and Maurice
Bruynooghe. Logic programs with annotated dis-
junctions. In Proceedings of the 20th International
Conference on Logic Programming, pages 431–445,
2004.

[32] Joost Vennekens, Marc Denecker, and Maurice
Bruynooghe. CP-logic: A language of causal proba-
bilistic events and its relation to logic programming.
Theory and Practice of Logic Programming, 9(3):
245–308, 2009.

[33] Peter Walley. Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall, 1991.

[34] Larry A. Wasserman and Joseph B. Kadane. Bayes’
theorem for choquet capacities. The Annals of Statis-
tics, 18(3):1328–1339, 1990.

332

	Introduction
	Background
	Imprecise Probability Models
	Answer Set Programming
	Probabilistic Logic Programming

	Specifying Infinitely Monotone Credal Sets
	Specifying General Credal Sets
	Probability Intervals
	Probabilistic Facts
	Relational Programs
	Linear Inequalities
	Credal Networks

	Inferential Complexity
	Decision Making
	Conclusion

