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Abstract
Vertical Barrier Models (VBM) are a family of im-
precise probability models that generalise a number
of well known distortion/neighbourhood models (such
as the Pari-Mutuel Model, the Linear-Vacuous Model,
and others) while still being relatively simple. Several
of their properties were established by Pelessoni, Vi-
cig, and Corsato. In this paper we explore, in a finite
framework, further facets of these models: their inter-
pretation as neighbourhood models, the structure of
their credal set in terms of maximum number of its
extreme points, the result of merging operations with
VBMs, conditions for VBMs to be belief functions or
possibility measures.
Keywords: vertical barrier models, distortion models,
neighbourhood models, 2-monotonicity, belief func-
tions, possibility measures.

1. Introduction
Several imprecise probability models originate from a given
precise probability 𝑃0. While taking account of the agent’s
possible uncertainty on 𝑃0 being the ‘true’ representation
of a certain situation, these models are generally computa-
tionally tractable and easy to explain to non-experts. In fact,
they may be obtained as functions of 𝑃0, therefore applying
a distortion to 𝑃0.
The Vertical Barrier Model (VBM) is an interesting

instance of such distortion models. It was introduced in [4]
within the larger family of Nearly-linear (NL) models. NL
models perform a linear affine transformation to 𝑃0; given
𝑎 ∈ ℝ, 𝑏 > 0, they determine a lower probability given by
𝑃(𝐴) = 𝑏𝑃0 (𝐴) + 𝑎 whenever this value belongs to [0, 1],
𝑃(𝐴) = 0 if 𝑏𝑃0 (𝐴)+𝑎 < 0 and𝑃(𝐴) = 1 if 𝑏𝑃0 (𝐴)+𝑎 > 1.
Vertical Barrier Models add some constraints to parameters
𝑎, 𝑏. They are the most prominent subfamily of NL models,
because (a) they are always (coherent and) 2-monotone,
and (b) they include the Pari Mutuel Model, the Linear
Vacuous Model and other remarkable distortion models
as special cases [4]. Several of their properties have been
investigated in [4, 14, 15, 16], in the frame of NL models:
formulae for their natural extensions are given in [16], their

being stable with conditioning (i.e. conditioning a VBM
on an event 𝐵 returns a VBM) is assessed in [14], their
dilation properties are established in [14, 15]. In this paper
we investigate further features of VBMs. In doing this, we
also relate to previous work discussing these aspects for
partly overlapping models in [9, 10, 11].
After recalling essential preliminary notions in Section 2,

we investigate in Section 3 how VBMs may be viewed as
neighbourhoodmodels. For this, a distorting function 𝑑𝑉 𝐵𝑀
is introduced in Section 3.1, demonstrating some of its
properties and proving that the lower probability of a VBM
can be obtained as the lower envelope of a neighbourhood of
𝑃0, defined bymeans of 𝑑𝑉 𝐵𝑀 . Section 3.2 shows that some
relevant neighbourhood models, such as the Constant Odds
Ratio model, are not included into VBMs. The structure
of the credal set of a VBM is investigated in Section 4.
The main result of this section achieves a strict bound
on the maximum number of extreme points of the credal
set. Section 5 explores the behaviour of VBMs under the
merging procedures of disjunction, conjunction and convex
mixture. Section 6 discusses special VBMs. In Section 6.1,
necessary and/or sufficient conditions are seeked for a VBM
to be (or not to be) a belief function, while Section 6.2
characterises those VBMs that are maxitive (or minitive).
Section 7 concludes the paper.

2. Preliminary Properties
Consider an arbitrary possibility space 𝛺. Let ℙ(𝛺) denote
the set of all probability measures defined on the power set
P(𝛺). We shall use ⊆ to denote inclusion and ⊂ to denote
strict inclusion between events.
Vertical Barrier Models are defined as follows:

Definition 1 Consider 𝑃0 ∈ ℙ(𝛺) and two parameters
𝑎, 𝑏 with 𝑎 ≤ 0, 𝑏 > 0 and 𝑎+𝑏 ∈ [0, 1]. The corresponding
Vertical Barrier Model (VBM) is identified by (𝑃0, 𝑎, 𝑏); its
lower probability 𝑃 is given by

𝑃(𝐴) = max{𝑏𝑃0 (𝐴) + 𝑎, 0} ∀𝐴 ⊂ 𝛺 and 𝑃(𝛺) = 1.
The above definition implies that 𝑃(∅) = 0. Note that
𝑃0 ({𝜔}) is not required to be strictly positive for every𝜔; in
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this paper, the positivity assumption shall only occasionally
be imposed, notably in most of Section 6.
VBMs are superior to other subfamilies of nearly-linear

uncertainty measures in that they satisfy 2-monotonicity:

𝑃(𝐴 ∪ 𝐵) + 𝑃(𝐴 ∩ 𝐵) ≥ 𝑃(𝐴) + 𝑃(𝐵) ∀𝐴, 𝐵 ⊆ 𝛺,

and as a consequence also coherence. We will useM(𝑃)
to denote the credal set associated with 𝑃, given by

M(𝑃) := {𝑃 ∈ ℙ(𝛺) | 𝑃(𝐴) ≥ 𝑃(𝐴) ∀𝐴 ⊆ 𝛺},

and 𝑃 for the conjugate upper probability, given by 𝑃(𝐴) =
1 − 𝑃(𝐴𝑐) for every 𝐴 ⊆ 𝛺. One way to define coherence
of 𝑃, 𝑃 is to require that 𝑃(𝐴) = min𝑃∈M(𝑃) 𝑃(𝐴) and
𝑃(𝐴) = max𝑃∈M(𝑃) 𝑃(𝐴) for every 𝐴 ⊆ 𝛺 [19].
As shown in [16], Vertical Barrier Models include as

particular cases some of the most important distortion
models in the literature:

• When 𝑎 < 0 and 𝑎+𝑏 = 1, they correspond to the Pari-
Mutuel Model (PMM) [19], whose lower probability
is often written as 𝑃𝑃𝑀𝑀 (𝐴) = max{(1 + 𝛿)𝑃0 (𝐴) −
𝛿, 0}, with 𝛿 > 0, so that 𝑎 = −𝛿, 𝑏 = 1 + 𝛿.

• when 𝑎 = 0 and 𝑏 < 1, they boil down to Linear-
Vacuous mixtures (LV) [7];

• finally, when 𝑏 = 1 and 𝑎 ∈ (−1, 0) they correspond
to the Total Variation model (TV) [6].

It was established in [16, Section 3] that the lower (or
upper) probability of any VBM can be expressed as a
convex combination of a PMM and a vacuous probability.
Specifically, denote by 𝑃 (the lower probability of) a VBM
(𝑃0, 𝑎, 𝑏). If 𝑎 + 𝑏 > 0, it holds that

𝑃(𝐴) = (𝑎 + 𝑏)𝑃𝑃𝑀𝑀 (𝐴) + (1− (𝑎 + 𝑏))𝑃𝑉 (𝐴) ∀𝐴, (1)

where 𝑃𝑃𝑀𝑀 is used to denote the PMM determined by
𝑃0, 𝛿 = − 𝑎

𝑎+𝑏 and 𝑃𝑉 denotes the vacuous lower probability,
given by 𝑃𝑉 (𝐴) = 0 for every 𝐴 ⊂ 𝛺 and 𝑃𝑉 (𝛺) = 1. On
the other hand, when 𝑎 + 𝑏 = 0 the VBM 𝑃 is equal to 𝑃𝑉 .
It is not difficult to establish that the converse also holds:

Lemma 2 Let 𝑃𝑃𝑀𝑀 be the PMM associated with a
probability measure 𝑃0 and 𝛿 > 0, and consider 𝜖 ∈ (0, 1).
Then the convex mixture 𝑃 := (1 − 𝜖)𝑃𝑃𝑀𝑀 + 𝜖𝑃𝑉 is a
VBM.

Proof Clearly, 𝑃(𝛺) = 1. For 𝐴 ≠ 𝛺, we have

𝑃(𝐴) = (1 − 𝜖)max{(1 + 𝛿)𝑃0 (𝐴) − 𝛿, 0} + 𝜖𝑃𝑉 (𝐴)
= max{(1 − 𝜖) (1 + 𝛿)𝑃0 (𝐴) − (1 − 𝜖)𝛿, 0},

which identifies a VBM (𝑃0, 𝑎, 𝑏) with 𝑎 = −(1 − 𝜖)𝛿 < 0,
𝑏 = (1 − 𝜖) (1 + 𝛿) > 0 and 𝑎 + 𝑏 = 1 − 𝜖 ∈ (0, 1).

In the sequel, we shall assume that the possibility space
𝛺 is finite.

3. VBMs as Neighbourhood Models
Distortion models appear in the literature in two forms:
either as a transformation of a probability measure by
means of some function [1, 2, 3] or as lower envelopes
of neighbourhoods of a probability measure [6, 7, 17]. A
unified procedure was presented in [10], showing that the
first type of models can be embedded into the second by
considering the neighbourhood determined by a suitable
premetric. In this section, we show how this can be done
for VBMs.

3.1. Expression in Terms of a Distorting Function

Given a distorting function 𝑑 : ℙ(𝛺) × ℙ(𝛺) → [0,∞), a
probability measure 𝑃0 ∈ ℙ(𝛺) and 𝛿 > 0, we define the
set

𝐵𝛿𝑑 (𝑃0) = {𝑃 ∈ ℙ(𝛺) | 𝑑 (𝑃, 𝑃0) ≤ 𝛿},

and call it the distortion model on 𝑃0 associated with 𝑑, 𝛿.
In this section, we shall prove that the credal setM(𝑃) of

a VBM can be obtained as the distortion model associated
with some distorting function. Since the LV and PMMwere
already dealt with in [10], here we shall consider parameters
𝑎 < 0 < 𝑏 such that 𝑎 + 𝑏 < 1. Given such parameters, let
us define the function 𝑑𝑉 𝐵𝑀(𝑎,𝑏) on ℙ(𝛺) × ℙ(𝛺) by

𝑑𝑉 𝐵𝑀(𝑎,𝑏) (𝑃, 𝑃0) = max
𝐴⊆𝛺

𝑃0 (𝐴) − 𝑃(𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

. (2)

In order to alleviate the notation, we shall denote 𝑑𝑉 𝐵𝑀(𝑎,𝑏)
as 𝑑𝑉 𝐵𝑀 in the sequel, because the properties we shall
establish will hold irrespective of the 𝑎, 𝑏 that we fix.

Lemma 3 𝑑𝑉 𝐵𝑀 is well-defined and takes values in
[0, +∞).

Proof To see that 𝑑𝑉 𝐵𝑀 is well-defined, observe that
(1 − 𝑏)𝑃0 (𝐴) − 𝑎 > 0 for every 𝐴 ⊆ 𝛺:

• 𝑃0 (𝐴) = 0⇒ (1 − 𝑏)𝑃0 (𝐴) − 𝑎 = −𝑎 > 0;

• 𝑃0 (𝐴) = 1⇒ (1 − 𝑏)𝑃0 (𝐴) − 𝑎 = 1 − 𝑏 − 𝑎 > 0;

• 𝑃0 (𝐴) ∈ (0, 1) ⇒ 0 < 𝑎(𝑃0 (𝐴) −1) = 𝑎𝑃0 (𝐴) −𝑎 <

(1 − 𝑏)𝑃0 (𝐴) − 𝑎;

on the other hand, 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) ≥ 𝑃0 ( ∅)−𝑃 ( ∅)
(1−𝑏)𝑃0 ( ∅)−𝑎 = 0 and

moreover 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) is bounded using that 𝛺 is finite.

Let us state some properties of 𝑑𝑉 𝐵𝑀 :

Proposition 4 Let 𝑎 < 0, 𝑏 > 0 with 𝑎 + 𝑏 < 1 and let
𝑑𝑉 𝐵𝑀 be given by Equation (2).

(a) 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) = 0⇔ 𝑃 = 𝑃0. [definiteness]
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(b) For every 𝛼 ∈ [0, 1], 𝑑𝑉 𝐵𝑀 (𝛼𝑃1 + (1 − 𝛼)𝑃2, 𝑃0) ≤
max{𝑑𝑉 𝐵𝑀 (𝑃1, 𝑃0), 𝑑𝑉 𝐵𝑀 (𝑃2, 𝑃0)}. [quasiconvex-
ity]

(c) ∀𝑃0, 𝑃1, 𝑃2 ∈ ℙ(𝛺),∀𝜖 > 0, ∃𝛿 > 0 such that if | |𝑃1−
𝑃2 | | < 𝛿 then |𝑑𝑉 𝐵𝑀 (𝑃1, 𝑃0) − 𝑑𝑉 𝐵𝑀 (𝑃2, 𝑃0) | < 𝜖 ,
where | | · | | is the supremum norm, given by | |𝑃1−𝑃2 | | =
max𝐴⊆𝛺 |𝑃1 (𝐴) − 𝑃2 (𝐴) |. [continuity]

Proof

(a) Trivially, 𝑃 = 𝑃0 implies that 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) = 0.
Conversely, the equality 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) = 0 implies
that 𝑃0 (𝐴) ≤ 𝑃(𝐴) ∀𝐴 ⊆ 𝛺, which, taking into
account that 𝛺 is finite, is equivalent to 𝑃0 (𝐴) =

𝑃(𝐴) ∀𝐴 ⊆ 𝛺.

(b) When 𝛼 ∈ {0, 1} the thesis is trivial. Let 𝛼 ∈ (0, 1).
Observe that for any event 𝐴

𝑃0 (𝐴) − (𝛼𝑃1 (𝐴) + (1 − 𝛼)𝑃2 (𝐴))
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

= 𝛼
𝑃0 (𝐴) − 𝑃1 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

+ (1 − 𝛼) 𝑃0 (𝐴) − 𝑃2 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

,

and this sum is bounded by the maximum of{
𝑃0 (𝐴)−𝑃1 (𝐴)
(1−𝑏)𝑃0 (𝐴)−𝑎 ,

𝑃0 (𝐴)−𝑃2 (𝐴)
(1−𝑏)𝑃0 (𝐴)−𝑎

}
. From this the thesis fol-

lows.

(c) Define𝑚 = min𝐴⊆𝛺 {(1−𝑏)𝑃0 (𝐴) −𝑎}. By Lemma 3
and the finiteness of 𝛺, it is 𝑚 > 0. Fix now 𝜖 > 0 and
take 𝛿 := 𝑚𝜖 . Then

|𝑑𝑉 𝐵𝑀 (𝑃1, 𝑃0) − 𝑑𝑉 𝐵𝑀 (𝑃2, 𝑃0) |

=

����max
𝐴⊆𝛺

𝑃0 (𝐴) − 𝑃1 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

− max
𝐴⊆𝛺

𝑃0 (𝐴) − 𝑃2 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

����
=

����max
𝐴⊆𝛺

𝑃0 (𝐴) − 𝑃1 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

+ min
𝐴⊆𝛺

𝑃2 (𝐴) − 𝑃0 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

����
=

����max
𝐴⊆𝛺

(
𝑃0 (𝐴) − 𝑃1 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

+ min
𝐴⊆𝛺

𝑃2 (𝐴) − 𝑃0 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

)����
≤
����max
𝐴⊆𝛺

(
𝑃0 (𝐴) − 𝑃1 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

+ 𝑃2 (𝐴) − 𝑃0 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

)����
=

����max
𝐴⊆𝛺

𝑃2 (𝐴) − 𝑃1 (𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

����
≤ ||𝑃1 − 𝑃2 | |

𝑚
<

𝑚𝜖

𝑚
= 𝜖,

from which the thesis follows.

As we have said, VBMs include as particular cases
the PMM, LV and TV distortion models. The distorting

functions associated with these models were investigated in
[10, 11] for the particular case where 𝑃0 ({𝜔}) > 0 for every
𝜔. Let us study the connection between those functions and
the function 𝑑𝑉 𝐵𝑀 given in Equation (2), if this is extended
to the case where 𝑎 = 0 or 𝑎+𝑏 = 1 by taking the maximum
on those events 𝐴 where the denominator is different from
zero:

• If 𝑎+𝑏 = 1 and𝑃0 ({𝜔}) > 0∀𝜔, then 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) =
max𝐴⊂𝛺 𝑃0 (𝐴)−𝑃 (𝐴)

−𝑎 (1−𝑃0 (𝐴)) = max𝐴⊂𝛺 𝑃0 (𝐴)−𝑃 (𝐴)
𝛿 (1−𝑃0 (𝐴)) , which

corresponds to 𝑑𝑃𝑀𝑀

𝛿
for 𝛿 = −𝑎 and 𝑑𝑃𝑀𝑀 the

distorting function of a PMM in [10, Section 4.1].

• If 𝑎 = 0 and 𝑃0 ({𝜔}) > 0 ∀𝜔, then 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) =
max∅≠𝐴⊆𝛺 𝑃0 (𝐴)−𝑃 (𝐴)

(1−𝑏)𝑃0 (𝐴) which corresponds to
𝑑𝐿𝑉
𝛿
for

𝛿 = 1 − 𝑏 and 𝑑𝐿𝑉 the distorting function of a LV in
[10, Section 4.2].

• And finally, if 𝑏 = 1, we obtain 𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) =

max𝐴⊂𝛺 𝑃0 (𝐴)−𝑃 (𝐴)
−𝑎 , that is a scalar transformation of

the total variation distance 𝑑𝑇𝑉 .

Taking into account these connections, it is not difficult
to establish that 𝑑𝑉 𝐵𝑀 is not symmetric nor it satisfies the
triangle inequality in general: we simply need to refer to the
counterexamples for 𝑑𝑃𝑀𝑀 in [10, Proposition 4.1 (b)].
Next, we prove that 𝑑𝑉 𝐵𝑀 is indeed the distorting func-

tion associated with the VBMs. An alternative, more com-
plex proof could be made using similar arguments to those
in [10, 11] together with Proposition 4.

Theorem 5 Let 𝑃 be a VBM associated with a probability
measure 𝑃0 and with parameters 𝑎 < 0, 𝑏 > 0 such that
𝑎 + 𝑏 < 1. Then M(𝑃) = 𝐵1

𝑑𝑉𝐵𝑀
(𝑃0).

Proof Consider 𝑃 ∈ ℙ(𝛺). Then 𝑃 ∈ 𝐵1
𝑑𝑉𝐵𝑀

(𝑃0) iff

𝑑𝑉 𝐵𝑀 (𝑃, 𝑃0) = max
𝐴⊂𝛺

𝑃0 (𝐴) − 𝑃(𝐴)
(1 − 𝑏)𝑃0 (𝐴) − 𝑎

≤ 1

⇔ 𝑃0 (𝐴) − 𝑃(𝐴) ≤ (1 − 𝑏)𝑃0 (𝐴) − 𝑎 ∀𝐴 ⊂ 𝛺

⇔ 𝑃(𝐴) ≥ 𝑏𝑃0 (𝐴) + 𝑎 ∀𝐴 ⊂ 𝛺.

Since 𝑃(𝐴) ≥ 0 ∀𝐴 ⊆ 𝛺 and 𝑃(𝛺) = 𝑃(𝛺) = 1, this
is equivalent to 𝑃(𝐴) ≥ 𝑃(𝐴) ∀𝐴 ⊆ 𝛺, which in turn is
equivalent to 𝑃 ∈ M(𝑃).

Observe that the radius of the neighbourhood above is
always equal to 1, and seemingly does not depend on the
parameters 𝑎, 𝑏; this is because 𝑎, 𝑏 are incorporated in the
definition of 𝑑𝑉 𝐵𝑀 .

3.2. Relationship with Other Distortion Models

As mentioned earlier, VBMs include as particular cases
some of the most prominent distortion models considered
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in the literature. It is not hard to show that they do not
include some other important models, such as the Constant
Odds Ratio (COR), Kolmogorov and 𝐿1-models discussed
in [10, 11]. In the case of the 𝐿1-models, it suffices to
observe that 𝐿1-models do not satisfy the property of 2-
monotonicity [11] while VBMs do. To see that they do not
include the COR or Kolmogorov models either 1, note that
any VBM satisfies

𝑃(𝐴 ∪ 𝐵) − 𝑃(𝐴) − 𝑃(𝐵) = −𝑎 (3)

for every 𝐴, 𝐵 ⊆ 𝛺 such that 𝐴 ∩ 𝐵 = ∅ and
min{𝑃(𝐴), 𝑃(𝐵)} > 0. This is the basis of the following
counterexample:

Example 1 Consider 𝛺 = {𝜔1, 𝜔2, 𝜔3}, 𝑃0 the probability
measure associated with the mass function (0.5, 0.3, 0.2)
and 𝛿 = 0.1. From [10, Example 6.1], the corresponding
COR model satisfies

𝑃𝐶𝑂𝑅 ({𝜔1, 𝜔2})−𝑃𝐶𝑂𝑅 ({𝜔1})−𝑃𝐶𝑂𝑅 ({𝜔2}) = 0.0305

and

𝑃𝐶𝑂𝑅 ({𝜔1, 𝜔3}) − 𝑃𝐶𝑂𝑅 ({𝜔1}) − 𝑃𝐶𝑂𝑅 ({𝜔3}) = 0.02,

whence 𝑃𝐶𝑂𝑅 is not a VBM by Equation (3).
On the other hand, the Kolmogorov distortion model

induced by (𝑃0, 𝛿) satisfies

𝑃𝐾 ({𝜔1, 𝜔2}) − 𝑃𝐾 ({𝜔1}) − 𝑃𝐾 ({𝜔2}) = 0.2

and

𝑃𝐾 ({𝜔1, 𝜔3}) − 𝑃𝐾 ({𝜔1}) − 𝑃𝐾 ({𝜔3}) = 0,

whence 𝑃𝐾 is not a VBM either. �

4. Structure of the Credal Set
Next we investigate the complexity of the credal set associ-
ated with a VBM, in terms of the maximal number of its
extreme points. Recall that given a credal setM, an element
𝑃 ∈ M is an extreme point when 𝑃 = 𝛼𝑃1 + (1 − 𝛼)𝑃2 for
𝛼 ∈ (0, 1), 𝑃1, 𝑃2 ∈ M implies that 𝑃 = 𝑃1 = 𝑃2.
Since any VBM is 2-monotone [4, Proposition 4.1], the

extreme points ofM(𝑃) are determined by the permutations
of 𝛺. Denote by 𝑆𝑛 the set of permutations of {1, . . . , 𝑛}.
Then, given 𝜎 ∈ 𝑆𝑛, defining the probability measure 𝑃𝜎
by means of the equalities

𝑃𝜎 ({𝜔𝜎 (1) , . . . , 𝜔𝜎 ( 𝑗) }) = 𝑃({𝜔𝜎 (1) , . . . , 𝜔𝜎 ( 𝑗) })

for 𝑗 = 1, . . . , 𝑛, it is 𝑒𝑥𝑡 (M(𝑃)) = {𝑃𝜎 : 𝜎 ∈ 𝑆𝑛}.

1We refer to [10, 11] for the expression of the lower probabilities of
these two models and a deeper account of their properties.

This allows us to bound above the number of extreme
points ofM(𝑃) by 𝑛!. As we shall show next, this bound
can be tightened. For this, let us express 𝑃 as a convex com-
bination of 𝑃𝑃𝑀𝑀 (the upper probability that is conjugate
to 𝑃𝑃𝑀𝑀 ) and the vacuous upper probability 𝑃𝑉 , that is
given by

𝑃𝑉 (𝐴) = 1 ∀𝐴 ≠ ∅ and 𝑃𝑉 (∅) = 0; (4)

from Equation (1), it is 𝑃 = (1 − 𝛼)𝑃𝑃𝑀𝑀 + 𝛼𝑃𝑉 , with
𝛼 = 1 − (𝑎 + 𝑏).
Let 𝑗𝜎 = min{𝑖 : 𝑃({𝜔𝜎 (1) , . . . , 𝜔𝜎 (𝑖) }) = 1}. If 𝑗𝜎 ≥

2, this produces

𝑃𝜎 ({𝜔𝜎 (1) }) = (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎 (1) }) + 𝛼

𝑃𝜎 ({𝜔𝜎 (𝑖) }) = 𝑃({𝜔𝜎 (1) , . . . , 𝜔𝜎 (𝑖) })
− 𝑃({𝜔𝜎 (1) , . . . , 𝜔𝜎 (𝑖−1) })

= (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎 (1) , . . . , 𝜔𝜎 (𝑖) }) + 𝛼

− (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎 (1) , . . . , 𝜔𝜎 (𝑖−1) }) − 𝛼

= (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎 (𝑖) })
for 𝑖 = 2, . . . , 𝑗𝜎 − 1

𝑃𝜎 ({𝜔𝜎 ( 𝑗𝜎 ) }) = (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎 ( 𝑗𝜎 ) , . . . , 𝜔𝜎 (𝑛) })
𝑃𝜎 ({𝜔𝜎 (𝑘) }) = 0 for 𝑘 = 𝑗𝜎 + 1, . . . , 𝑛.

This means that, when 𝑗𝜎 ≥ 2, the same extreme point shall
be induced by ( 𝑗𝜎 − 2)!(𝑛 − 𝑗𝜎)! permutations: the ones
with the same elements in the positions {2, . . . , 𝑗𝜎 −1} and
in positions { 𝑗𝜎 + 1, . . . , 𝑛}.
Define now, for a real positive 𝑥, b𝑥c = max{𝑛 ∈ ℕ : 𝑛 ≤

𝑥}, d𝑥e = min{𝑛 ∈ ℕ : 𝑛 ≥ 𝑥}.
We shall make use of the following lemma. Its proof is

elementary and therefore omitted.

Lemma 6 Given 𝑛, 𝑘 ∈ ℕ with 𝑛 ≥ 𝑘 ,

𝑘!(𝑛 − 𝑘)! ≥
⌊𝑛
2

⌋
!
⌈𝑛
2

⌉
! (5)

As a consequence, for any 𝑗 ≥ 2, it holds that

( 𝑗 − 2)!(𝑛 − 𝑗)! ≥
⌊𝑛
2
− 1

⌋
!
⌈𝑛
2
− 1

⌉
!

Proposition 7 Given a VBM 𝑃 on a space 𝛺 of cardinality
𝑛, any vertex of the credal set M(𝑃) is obtained from at
least b 𝑛2 − 1c!d

𝑛
2 − 1e! different permutations of 𝛺.

Proof Consider a permutation 𝜎. When 𝑗𝜎 = min{𝑖 :
𝑃({𝜔𝜎 (1) , . . . , 𝜔𝜎 (𝑖) }) = 1} ≥ 2, there are ( 𝑗𝜎 − 2)!(𝑛 −
𝑗𝜎)! different permutations that originate the same vertex,
and by Lemma 6 this value is not smaller than b 𝑛2 −1c!d

𝑛
2 −

1e!.
On the other hand, if 𝑗𝜎 = 1 and consequently

𝑃({𝜔𝜎 (1) }) = 1, then all the permutations 𝜎′ satisfying
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𝜎′(1) = 𝜎(1) produce the same extreme point, and there
are

(𝑛 − 1)! ≥
⌊𝑛
2
− 1

⌋
!
⌈𝑛
2
− 1

⌉
!

such permutations.

This allows us to establish the main result in this section:

Theorem 8 Given a VBM 𝑃 on a space 𝛺 of cardinality 𝑛,
the maximum number of extreme points of M(𝑃) is

𝑛!
b 𝑛2 − 1c!d

𝑛
2 − 1e!

. (6)

Proof That 𝑛!
b 𝑛2 −1c! d

𝑛
2 −1e!

is an upper bound to the number
of extreme points is a consequence of Proposition 7.
But since TV models are a particular case of VBM, the

maximal number of extreme points must be at least as large
as the maximal number of extreme points for TV models,
that was established in [11, Proposition A.1] to be

𝑛!
b 𝑛2 − 1c!(𝑛 − b 𝑛2 c − 1)!

=
𝑛!

b 𝑛2 − 1c!d
𝑛
2 − 1e!

.

The double inequality establishes the result.

If we look at other particular cases of VBM, we observe
that the maximal number of extreme points in Equation (6)
is strictly larger than the other particular cases discussed in
[10], namely:

• 𝑛 in the case of LV models;

• 𝑛!
b 𝑛2 c b

𝑛
2 −1c! d

𝑛
2 +1e!

in the case of the PMM.

In the following situation the upper bound (6) is notably
lowered:

Proposition 9 Given a VBM 𝑃 on a space 𝛺 of cardinality
𝑛, if 𝑃({𝜔}) > 0,∀𝜔 ∈ 𝛺, the maximum number of extreme
points of M(𝑃) is 𝑛(𝑛 − 1).

Proof By monotonicity of 𝑃, we have that, ∀𝐴 ∈
P(𝛺), 𝐴 ≠ ∅, 𝐴 ≠ 𝛺, 𝑃(𝐴) > 0 and therefore 𝑃(𝐴) < 1.
Hence, 𝑗𝜎 = 𝑛 for any permutation in the proof of Propo-
sition 7, meaning that any vertex is originated by (𝑛 − 2)!
different permutations. Thus, the bound (6) reduces to

𝑛!
(𝑛 − 2)! = 𝑛(𝑛 − 1).

We recall that the same bound 𝑛(𝑛−1) applies to TVmodels
too, when 𝑃 is strictly positive, as shown in [11, Proposition
2.5]. Note also that the condition 𝑃({𝜔}) > 0 for all 𝜔 ∈ 𝛺

in the above result is equivalent to

−𝑎

𝑏
< min
𝜔∈𝛺

𝑃0 ({𝜔}).

5. Processing Vertical Barrier Models
Next we investigate the behaviour of the family of VBMs
under a number of merging operations. Bymerging, we refer
to a procedure aggregating several belief models, defined on
the same domain 𝛺, into a unique one. These models may
arise as the opinion of different experts or from several data
sources, for instance. The problem of aggregating imprecise
beliefs has been analysed from the axiomatic point of view
by Walley in [18]. Other relevant works on this topic are
[12, 13].
In this paper, we shall focus on the threemost fundamental

merging procedures: those of disjunction, conjunction and
convex mixture.

Definition 10 Given two credal sets M1,M2 on 𝛺, their
disjunction is given by M1 ∪M2.

If we interpret M1,M2 as the sets of models that are
considered acceptable by two different experts, the disjunc-
tionM1 ∪M2 considers acceptable those models that are
acceptable for at least one of them.
If we denote by 𝑃1, 𝑃2, 𝑃

∪ the lower probabilities ob-
tained as lower envelopes ofM1,M2 andM1 ∪M2, re-
spectively, it holds that

𝑃∪ (𝐴) = min{𝑃1 (𝐴), 𝑃2 (𝐴)} ∀𝐴.

The disjunctionM1 ∪M2 is not convex in general; it is not
difficult to show that 𝑃∪ is also the lower envelope of the
convex hull 𝑐ℎ(M1 ∪M2).
It was shown in [5, Example 2] that the disjunction of

two PMMs does not produce a PMM in general. The same
example can be used to establish that the family of VBMs
is not closed under disjunction:

Example 2 Let 𝛺 = {𝜔1, 𝜔2, 𝜔3} and consider the
probability measures 𝑃10, 𝑃

2
0 on P(𝛺) associated with

(0.5, 0.3, 0.2) and (0.3, 0.5, 0.2), respectively. Let 𝛿1 =

𝛿2 = 0.1, and denote by 𝑃1, 𝑃2 the PMMs determined by
(𝑃10, 𝛿1) and (𝑃20, 𝛿2), respectively. Then 𝑃1, 𝑃2 and their
disjunction 𝑃∪ are given in the following table:

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1, 𝜔2} {𝜔1, 𝜔3} {𝜔2, 𝜔3}
𝑃1 (𝐴) 0.45 0.23 0.12 0.78 0.67 0.45
𝑃2 (𝐴) 0.23 0.45 0.12 0.78 0.45 0.67
𝑃∪ (𝐴) 0.23 0.23 0.12 0.78 0.45 0.45

To see that 𝑃∪ is not the lower probability associated with
a VBM, observe that

𝑃∪ ({𝜔1, 𝜔2}) − 𝑃∪ ({𝜔1}) − 𝑃∪ ({𝜔2}) = 0.32
≠ 0.1 = 𝑃∪ ({𝜔1, 𝜔3}) − 𝑃∪ ({𝜔1}) − 𝑃∪ ({𝜔3}),

a contradiction with (3). �
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The second merging operation we analyse in this paper
is that of conjunction:

Definition 11 Given two credal sets M1,M2 on 𝛺, their
conjunction is given by M1 ∩M2.

If we interpretM1,M2 as the sets of models that are con-
sidered acceptable by two different experts, the conjunction
M1 ∩M2 only considers acceptable those models that are
acceptable for both of them. Unlike disjunction, the process
of conjunction always produces a convex (though possibly
empty) credal set. Note that, if we denote by 𝑃1, 𝑃2, 𝑃

∩ the
lower envelopes ofM1,M2 and the conjunctionM1 ∩M2,
it will hold that

𝑃∩ (𝐴) ≥ max{𝑃1 (𝐴), 𝑃2 (𝐴)} ∀𝐴,

with the inequality being possibly strict on some events.
A sufficient condition for the equality 𝑃∩ = max{𝑃1, 𝑃2}
is precisely the convexity ofM1 ∪M2, as shown in [20,
Theorem 6]. The equality was investigated in the case of
possibility measures in [8].
It was shown in [5, Example 5] that the family of TV

models is not closed under conjunction. Using that example,
we can easily establish that the family of VBMs is not closed
under conjunction either:

Example 3 Let 𝛺 = {𝜔1, 𝜔2, 𝜔3} and consider the
probability measures 𝑃10, 𝑃

2
0 on P(𝛺) associated with

(0.41, 0.37, 0.22) and (0.37, 0.41, 0.22), respectively. Let
𝛿1 = 𝛿2 = 0.12, and denote by 𝑃1, 𝑃2 the TV models deter-
mined by (𝑃10, 𝛿1) and (𝑃20, 𝛿2), respectively. Then 𝑃1, 𝑃2
and their conjunction 𝑃∩ are given in the following table:

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1, 𝜔2} {𝜔1, 𝜔3} {𝜔2, 𝜔3}
𝑃1 (𝐴) 0.29 0.25 0.1 0.66 0.51 0.47
𝑃2 (𝐴) 0.25 0.29 0.1 0.66 0.47 0.51
𝑃∩ (𝐴) 0.29 0.29 0.1 0.66 0.51 0.51

Again, to see that 𝑃∩ is not the lower probability associated
with a VBM, we may observe that

𝑃∩ ({𝜔1, 𝜔2}) − 𝑃∩ ({𝜔1}) − 𝑃∩ ({𝜔2}) = 0.08
≠ 0.12 = 𝑃∩ ({𝜔1, 𝜔3}) − 𝑃∩ ({𝜔1}) − 𝑃∩ ({𝜔3}),

a contradiction with (3). �

The third and last merging operation we consider in this
paper is that of mixture:

Definition 12 Let M1,M2 be two credal sets on 𝛺 and
consider 𝛼 ∈ (0, 1). Their mixture corresponds to the
credal set 𝛼M1 + (1 − 𝛼)M2 := {𝑃 : ∃𝑃1 ∈ M1, 𝑃2 ∈
M2 such that 𝑃 = 𝛼𝑃1 + (1 − 𝛼)𝑃2}.

The mixture aggregation procedure is an intermediate so-
lution between the disjunction and conjunction operations,
and can be seen as giving a weight to the opinion of each
expert. It is easy to see that the mixture 𝛼M1 + (1 − 𝛼)M2
produces a convex credal set. If we denote by 𝑃1, 𝑃2 and 𝑃

𝛼

the lower probabilities that are the lower envelopes of the
credal setsM1,M2 and of their mixture 𝛼M1+ (1−𝛼)M2,
it holds that

𝑃𝛼 = 𝛼𝑃1 + (1 − 𝛼)𝑃2.

It was shown in [5] that the majority of distortion models
of interest are closed under mixtures. Let us show how the
same applies to VBMs:

Proposition 13 Let 𝑃1, 𝑃2 be the lower probabilities asso-
ciated with two VBMs, and let N𝑖 := {𝐴 ∈ P(𝛺) : 𝑃𝑖 (𝐴) =
0}. If N1 = N2, then for any 𝛼 ∈ (0, 1), the mixture

𝑃𝛼 := 𝛼𝑃1 + (1 − 𝛼)𝑃2 (7)

is also the lower probability of a VBM.

Proof Let us denote N := N1 = N2. Given 𝐴 = 𝛺, it
follows from Definition 1 and Equation (7) that 𝑃𝛼 (𝐴) = 1.
For any 𝐴 ∉ N , 𝐴 ≠ 𝛺, it holds that 𝑃𝑖 (𝐴) = 𝑏𝑖𝑃

𝑖
0 (𝐴) + 𝑎𝑖

for 𝑖 = 1, 2, whence

𝑃𝛼 (𝐴) = 𝛼[𝑏1𝑃10 (𝐴) + 𝑎1] + (1 − 𝛼) [𝑏2𝑃20 (𝐴) + 𝑎2]
= (𝛼𝑏1𝑃10 + (1 − 𝛼)𝑏2𝑃20) (𝐴) + [𝛼𝑎1 + (1 − 𝛼)𝑎2]

= (𝛼𝑏1 + (1 − 𝛼)𝑏2) ·
𝛼𝑏1𝑃

1
0 (𝐴) + (1 − 𝛼)𝑏2𝑃20 (𝐴)
𝛼𝑏1 + (1 − 𝛼)𝑏2

+ [𝛼𝑎1 + (1 − 𝛼)𝑎2]
:= 𝑏𝛼𝑃𝛼0 (𝐴) + 𝑎𝛼,

where 𝑏𝛼 = 𝛼𝑏1 + (1 − 𝛼)𝑏2, 𝑎𝛼 = 𝛼𝑎1 + (1 − 𝛼)𝑎2,
𝑃𝛼0 (𝐴) =

𝛼𝑏1𝑃
1
0 (𝐴)+(1−𝛼)𝑏2𝑃

2
0 (𝐴)

𝛼𝑏1+(1−𝛼)𝑏2 .
On the other hand, if 𝐴 ∈ N , then 𝑃𝑖 (𝐴) = 0 for 𝑖 = 1, 2,

whence 𝑏𝑖𝑃𝑖0 (𝐴) + 𝑎𝑖 ≤ 0 for 𝑖 = 1, 2 and from the above
reasoning also 𝑏𝛼𝑃𝛼0 (𝐴) + 𝑎𝛼 ≤ 0.
This implies that 𝑃𝛼 is the VBM (𝑃𝛼0 , 𝑎

𝛼, 𝑏𝛼), noting
also that by construction 𝑏𝛼 > 0, 𝑎𝛼 ≤ 0, 𝑎𝛼 + 𝑏𝛼 ≤ 1 and
𝑃𝛼0 is a probability measure.

6. Special Vertical Barrier Models
Next, we investigate the connection between VBMs and
other families of imprecise probability models. As estab-
lished in [4, Proposition 4.1], the lower probability 𝑃 of a
VBM is always 2-monotone; it was also characterised in
[4, Proposition 7.3] under which conditions it corresponds
to a probability interval. In this section, we shall analyse
under which conditions it corresponds to other particular
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cases of 2-monotone models: belief functions and minitive
measures.
Recall that a lower probability 𝑃 is a belief function if

and only if for every 𝑝 ∈ ℕ and every 𝐴1, . . . , 𝐴𝑝 ∈ P(𝛺),

𝑃(∪𝑝
𝑖=1𝐴𝑖) ≥

∑︁
𝐽 ⊆{1,..., 𝑝}

(−1) |𝐽 |−1𝑃(∩𝑖∈𝐽 𝐴𝑖).

Let an agent assign a VBM (𝑃0, 𝑎, 𝑏), with 𝑃0 defined
on 𝛺. Throughout this section, with the exception of Propo-
sition 17, we shall assume that 𝑃0 ({𝜔}) > 0 for every
𝜔 ∈ 𝛺.

6.1. Belief Functions

We shall first of all give sufficient (and, in some cases,
necessary) conditions for the lower probability of a VBM
to be a belief function, and then give sufficient conditions
for this lower probability not to be a belief function.
With respect to the first problem, we begin recalling that

a necessary and sufficient condition for 𝑃 to be a belief
function is that its mass function 𝑚, given by

𝑚(𝐴) =
∑︁
𝐵⊆𝐴

(−1) |𝐴\𝐵 |𝑃(𝐵), (8)

is non-negative. In this respect, recall from Equation (1)
that any VBM 𝑃 satisfies 𝑃(𝐴) = (𝑎 + 𝑏)𝑃𝑃𝑀𝑀 (𝐴) for
every 𝐴 ≠ 𝛺, where 𝑃𝑃𝑀𝑀 is the PMM associated with
the probability measure 𝑃0 and the parameter 𝛿 = − 𝑎

𝑎+𝑏 .
We shall refer to this 𝑃𝑃𝑀𝑀 as the PMM associated with
the VBM 𝑃.
When 𝑎 + 𝑏 = 0, it follows that 𝑃 is the vacuous lower

probability, that is a belief function. Similarly, the case
𝑎 = 0 gives a LV model that is also a belief function. As
a consequence, in the remainder of this section we shall
assume that 𝑎 + 𝑏 > 0 > 𝑎. The case 𝑎 + 𝑏 = 1 corresponds
to the PMM, for which the connection with belief functions
was established in [9].
From the correspondence (1) between VBM and PMM,

it is immediate to establish that:

Lemma 14

(a) For every 𝐴 ⊆ 𝛺, 𝑃(𝐴) > 0 ⇔ 𝑃𝑃𝑀𝑀 (𝐴) > 0,
and for 𝐴 ≠ 𝛺, 𝑚(𝐴) = (𝑎 + 𝑏)𝑚𝑃𝑀𝑀 (𝐴) Q 0 ⇔
𝑚𝑃𝑀𝑀 (𝐴) Q 0.

(b) 𝑚(𝛺) = 1 − (𝑎 + 𝑏) (1 − 𝑚𝑃𝑀𝑀 (𝛺)).

(c) 𝑚𝑃𝑀𝑀 (𝛺) ≥ 0⇔ 𝑚(𝛺) ≥ 1 − (𝑎 + 𝑏).

Proof

(a) Trivial.

(b) This is a consequence of the first statement to-
gether with the equality 1 =

∑
𝐵⊆𝛺 𝑚(𝐵) = 𝑚(𝛺) +∑

𝐵⊂𝛺 𝑚(𝐵) = 𝑚(𝛺) + (𝑎 + 𝑏) (1 − 𝑚𝑃𝑀𝑀 (𝛺)).

(c) The second statement together with 𝑎 + 𝑏 > 0 implies
that 𝑚𝑃𝑀𝑀 (𝛺) =

𝑚(𝛺)−(1−(𝑎+𝑏))
𝑎+𝑏 , from which the

result follows.

Following [9], we define the non-vacuity index of 𝑃 by

𝑘 = min{|𝐴| : 𝑃(𝐴) > 0}.

We shall denote P∗ = {𝐴 ⊆ 𝛺 : 𝑃(𝐴) > 0} = {𝐴 ⊆ 𝛺 :
𝑃0 (𝐴) > − 𝑎

𝑏
} and P∗

𝑃𝑀𝑀
= {𝐴 ⊆ 𝛺 : 𝑃𝑃𝑀𝑀 (𝐴) > 0},

where 𝑃𝑃𝑀𝑀 is the PMM associated with 𝑃. Using this
notion and the connection between VBM and PMM, we
can give sufficient and necessary conditions for 𝑃 to be a
belief function:

Theorem 15

(a) The following are sufficient conditions for the lower
probability 𝑃 of a VBM to be a belief function:

(i) 𝑘 = 𝑛 − 1 and
∑
𝜔∈𝛺 𝑃({𝜔}𝑐) ≤ 1.

(ii) There exists a unique event 𝐵 such that |𝐵 | =
𝑘 < 𝑛 − 1 and P∗ = {𝐴 ⊆ 𝛺 : 𝐴 ⊇ 𝐵}.

(iii) There exists a unique event 𝐵 such that |𝐵 | =
𝑘 − 1 < 𝑛 − 2, 𝑏𝑃0 (𝐵) + 𝑎 = 0 and P∗ = {𝐴 ⊆
𝛺 : 𝐴 ⊃ 𝐵}.

(b) If 𝑚(𝛺) ≥ 1− (𝑎 + 𝑏), then it is necessary that one of
(i)–(iii) holds for 𝑃 to be a belief function.

Proof

(a) Let us show that each of the conditions (i)–(iii) is
sufficient for 𝑃 to be a belief function.

(i) In this case it is 𝑚(𝐴) = 0 for every 𝐴 with
|𝐴| < 𝑛 − 1, 𝑚(𝐴) = 𝑃(𝐴) for every 𝐴 with
|𝐴| = 𝑛−1 and𝑚(𝛺) = 1−∑𝜔∈𝛺 𝑚({𝜔}𝑐) ≥ 0,
so 𝑃 is a belief function.

(ii) Let 𝑃𝑃𝑀𝑀 be the PMM associated with 𝑃. It
follows that 𝑃𝑃𝑀𝑀 satisfies the conditions of [9,
Proposition 8], whence𝑚𝑃𝑀𝑀 (𝐴) ≥ 0 for every
𝐴 and 𝑚𝑃𝑀𝑀 (𝛺) = 0. Applying Lemma 14, we
deduce that 𝑚(𝐴) ≥ 0 for every 𝐴 ≠ 𝛺 and
𝑚(𝛺) = 1 − (𝑎 + 𝑏) > 0.

(iii) The condition 𝑏𝑃0 (𝐵) + 𝑎 = 0 is equivalent to
the following condition in the associated PMM:

𝛿 = − 𝑎

𝑎 + 𝑏
=

𝑏𝑃0 (𝐵)
−𝑏𝑃0 (𝐵) + 𝑏

=
𝑃0 (𝐵)
1 − 𝑃0 (𝐵)

.
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It follows that 𝑃𝑃𝑀𝑀 satisfies the conditions in
[9, Proposition 9], whence𝑚𝑃𝑀𝑀 (𝐴) ≥ 0 for ev-
ery 𝐴 and 𝑚𝑃𝑀𝑀 (𝛺) = 0. Applying Lemma 14,
we deduce again that 𝑚(𝐴) ≥ 0 for every 𝐴 ≠ 𝛺

and 𝑚(𝛺) = 1 − (𝑎 + 𝑏) > 0.

(b) Since 𝑃 is a non-vacuous belief function, its non-
vacuity index 𝑘 is strictly smaller than 𝑛. There are
two possibilities:

– If 𝑘 = 𝑛− 1, then it holds that∑𝜔∈𝛺 𝑃({𝜔}𝑐) =∑
𝜔∈𝛺 𝑚({𝜔}𝑐) ≤ 1, taking into account that∑
𝐴⊆𝛺 𝑚(𝐴) = 1 and that 𝑚(𝐴) ≥ 0 for every 𝐴.
Thus, condition (i) holds.

– Assume next that 𝑘 < 𝑛 − 1. Since 𝑃 is a belief
function, we have that 𝑚𝑃𝑀𝑀 (𝐴) ≥ 0,∀𝐴 ≠

𝛺, by Lemma 14 (a). Further, the assumption
𝑚(𝛺) ≥ 1− (𝑎+𝑏) implies that𝑚𝑃𝑀𝑀 (𝛺) ≥ 0
by Lemma 14 (c). Therefore, we conclude that
𝑃𝑃𝑀𝑀 is also a belief function. But since from
Lemma 14 (a) the non-vacuity index 𝑘 is the
same for the VBM 𝑃 and its associated PMM
𝑃𝑃𝑀𝑀 , it follows from [9, Theorem 2] that, if
𝑃𝑃𝑀𝑀 is a belief function and 𝑘 < 𝑛 − 1, either
there exists a unique 𝐵 with |𝐵 | = 𝑘 and such
that P∗

𝑃𝑀𝑀
= {𝐴 ⊆ 𝛺 : 𝐴 ⊇ 𝐵} = P∗, and

we are in case (ii); or there is a unique 𝐵 with
|𝐵 | = 𝑘 − 1 and such that P∗

𝑃𝑀𝑀
= {𝐴 ⊆ 𝛺 :

𝐴 ⊃ 𝐵} = P. In that case, [9, Theorem 2] implies
that 𝛿 = − 𝑎

𝑎+𝑏 =
𝑃0 (𝐵)
1−𝑃0 (𝐵) , which is equivalent to

𝑏𝑃0 (𝐵) + 𝑎 = 0. Therefore, we are in case (iii).

Note that the necessity part in this proposition depends
on the assumption 𝑚(𝛺) ≥ 1 − (𝑎 + 𝑏), which in turn is
equivalent to 𝑚𝑃𝑀𝑀 (𝛺) ≥ 0. It is not difficult to find
VBMs that are belief functions for which the associated
PMM is not:

Example 4 Let 𝛺 = {𝜔1, 𝜔2, 𝜔3, 𝜔4}, 𝑏 = 0.7, 𝑎 = −0.3
and 𝑃0 the probability measure determined by the mass
function (0.24, 0.26, 0.25, 0.25). The associated VBM is
given by:

𝑃({𝜔𝑖}) = 0 ∀𝑖 = 1, . . . , 4
𝑃({𝜔1, 𝜔3}) = 𝑃({𝜔1, 𝜔4}) = 0.043
𝑃({𝜔1, 𝜔2}) = 𝑃({𝜔3, 𝜔4}) = 0.05
𝑃({𝜔2, 𝜔3}) = 𝑃({𝜔2, 𝜔4}) = 0.057
𝑃({𝜔1, 𝜔2, 𝜔3}) = 𝑃({𝜔1, 𝜔2, 𝜔4}) = 0.225
𝑃({𝜔1, 𝜔3, 𝜔4}) = 0.218, 𝑃({𝜔2, 𝜔3, 𝜔4}) = 0.232.

From these values and Equation (8) we deduce that the
mass function 𝑚 is given by:

𝑚({𝜔𝑖}) = 0 ∀𝑖 = 1, . . . , 4
𝑚({𝜔𝑖 , 𝜔 𝑗 }) = 𝑃({𝜔𝑖 , 𝜔 𝑗 }) ≥ 0∀𝑖 ≠ 𝑗

𝑚({𝜔1, 𝜔2, 𝜔3}) = 𝑚({𝜔1, 𝜔2, 𝜔4}) = 0.075
𝑚({𝜔1, 𝜔3, 𝜔4}) = 0.082, 𝑚({𝜔2, 𝜔3, 𝜔4}) = 0.068
𝑚(𝛺) = 0.4.

Thus, 𝑃 is a belief function. However, if we consider the
associated PMM it is 𝑚𝑃𝑀𝑀 (𝛺) = −0.5, meaning that the
latter is not a belief function; and indeed we observe that
none of the conditions (i)–(iii) holds. �

In the case of cardinality three, it is not difficult to find a
sufficient condition for a VBM to induce a belief function:

Proposition 16 Let 𝛺 = {𝜔1, 𝜔2, 𝜔3} and consider a
VBM on P(𝛺) associated with a probability measure 𝑃0
and two parameters 𝑎 ≤ 0, 𝑏 > 0 such that 𝑎 + 𝑏 ∈ [0, 1].
Then 𝑃 is a belief function if 𝑏 ≤ 1.

Proof We shall proceed by determining the mass function
of 𝑃 in the different alternatives:

1) 𝑃({𝜔𝑖}) > 0 for 𝑖 = 1, 2, 3. In that case, we get:

• 𝑚({𝜔𝑖}) = 𝑏𝑃0 ({𝜔𝑖}) + 𝑎 (𝑖 = 1, 2, 3).
• 𝑚({𝜔𝑖 , 𝜔 𝑗 }) = −𝑎 ≥ 0 ∀𝑖 ≠ 𝑗 .
• 𝑚(𝛺) = 1 − 𝑏 ≥ 0⇔ 𝑏 ≤ 1.

2) ∃!𝜔𝑖 : 𝑃({𝜔𝑖}) = 0. Assume w.l.o.g. 𝑖 = 1. Then the
mass function of 𝑃 is:

• 𝑚({𝜔1}) = 0, 𝑚({𝜔 𝑗 }) = 𝑏𝑃0 ({𝜔 𝑗 }) + 𝑎 ( 𝑗 =
2, 3).

• 𝑚({𝜔1, 𝜔2}) = 𝑚({𝜔1, 𝜔3}) = 𝑏𝑃0 ({𝜔1}),
𝑚({𝜔2, 𝜔3}) = −𝑎 ≥ 0.

• 𝑚(𝛺) = 1 − (𝑏 + 𝑏𝑃0 ({𝜔1}) + 𝑎) ≥ 1 − 𝑏 ≥ 0
if 𝑏 ≤ 1.

3) ∃!𝜔𝑖 : 𝑃({𝜔𝑖}) > 0. Assume w.l.o.g. 𝑖 = 3. Then the
mass function of 𝑃 is:

• 𝑚({𝜔1}) = 𝑚({𝜔2}) = 0 and 𝑚({𝜔3}) =

𝑏𝑃0 ({𝜔3}) + 𝑎.
• 𝑚({𝜔1, 𝜔3}) = 𝑏𝑃0 ({𝜔1}), 𝑚({𝜔2, 𝜔3}) =

𝑏𝑃0 ({𝜔2}), 𝑚({𝜔1, 𝜔2}) = 𝑃({𝜔1, 𝜔2}) ≥ 0.
• 𝑚(𝛺) = 1 − (𝑏 + 𝑎 + 𝑃({𝜔1, 𝜔2})) ≥ 1 −

𝑏 ≥ 0 if 𝑏 ≤ 1. The first inequality is
immediate if 𝑃({𝜔1, 𝜔2}) = 0, otherwise
1 − 𝑏 − 𝑎 − 𝑃({𝜔1, 𝜔2}) = 1 − 𝑏 − 𝑎 −
𝑏𝑃0 ({𝜔1}) − 𝑏𝑃0 ({𝜔2}) − 𝑎 ≥ 1 − 𝑏, because
−𝑎 − 𝑏𝑃0 ({𝜔𝑖}) ≥ 0 for 𝑖 = 1, 2.
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4) Finally, if 𝑃({𝜔𝑖}) = 0 for 𝑖 = 1, 2, 3, we get:

• 𝑚({𝜔𝑖}) = 0 (𝑖 = 1, 2, 3).
• 𝑚({𝜔𝑖 , 𝜔 𝑗 }) = 𝑃({𝜔𝑖 , 𝜔 𝑗 }) ≥ 0 ∀𝑖 ≠ 𝑗 .
• 𝑚(𝛺) = 1 − ∑

𝑖≠ 𝑗 𝑃({𝜔𝑖 , 𝜔 𝑗 }) ≥ 1 − 𝑏 ≥ 0 if
𝑏 ≤ 1. Here, the first inequality can be verified by
considering all the possible cases, and reasoning
analogously to case 3.

To see that this sufficient condition is not necessary,
observe that there are cases with cardinality 3 where the
PMM, that is a particular case of VBM with 𝑏 > 1, induces
a belief function.
To investigate further the role of belief functions within

VBMs, we give next a sufficient condition for 𝑃 not to be a
belief function. Note the following proposition holds even
if 𝑃0 ({𝜔}) = 0 for some 𝜔 ∈ 𝛺.

Proposition 17 Let 𝑃 be a VBM on P(𝛺) such that 𝑃0 is
an arbitrary probability (not necessarily strictly positive).
If there exist 𝐴1, 𝐴2, 𝐴3 ∈ P(𝛺) such that 𝐴𝑖 ∩ 𝐴 𝑗 = ∅,
∀𝑖 ≠ 𝑗 , 𝑃(𝐴𝑖) > 0, 𝑖 = 1, 2, 3, 𝐴 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ≠ 𝛺, then
𝑃 is not a belief function.

Proof Consider a partition 𝛺𝑐 coarser than 𝛺, such that
𝐴1, 𝐴2, 𝐴3 are atomic events of 𝛺𝑐 , and let 𝑃𝑐 be the
restriction of 𝑃 on P(𝛺𝑐) and 𝑚𝑐 its mass function.
Clearly, if 𝑃 is a belief function on P(𝛺) also 𝑃𝑐 is on

P(𝛺𝑐). Thus, we shall show that 𝑃𝑐 is not a belief function
to prove the thesis. Indeed

𝑚𝑐 (𝐴1 ∪ 𝐴2 ∪ 𝐴3) = 𝑏𝑃0 (𝐴1 ∪ 𝐴2 ∪ 𝐴3) + 𝑎

−
∑︁

1≤𝑖< 𝑗≤3
(𝑏𝑃0 (𝐴𝑖 ∪ 𝐴 𝑗 ) + 𝑎) +

3∑︁
𝑖=1

(𝑏𝑃0 (𝐴𝑖) + 𝑎)

= 𝑎 < 0

Hence, 𝑃𝑐 is not a belief function and so neither is 𝑃.

In terms of (𝑃0, 𝑎, 𝑏), the condition in this proposition
implies that 𝑃0 (𝐴𝑖) > − 𝑎

𝑏
for 𝑖 = 1, 2, 3, from which it

follows that it can only hold when − 3𝑎
𝑏

< 1. Proposition 17
also shows us that

(a) the sufficient condition for belief functions 𝑏 < 1 in
Proposition 16 does not extend to cardinalities higher
than 3.

(b) Belief functions are characterized when 𝑚(𝛺) ≥ 1 −
(𝑎 + 𝑏) in Theorem 15. When 𝑘 < 𝑛 − 1, the set P∗ =
{𝐴 ∈ P(𝛺) : 𝑃(𝐴) > 0} must be either (Theorem
15 (ii)) a filter generated by 𝐵 or (Theorem 15 (iii))
‘nearly’, in the sense that 𝐵 does not belong to the filter.

When 𝑚(𝛺) < 1 − (𝑎 + 𝑏), these constraints do not
necessarily apply, as Example 4 shows. Yet, the path to
obtain a belief function remains narrow: Proposition 17
requires (implicitly) that 𝑛 ≥ 4, but its other hypotheses
are rather mild: it suffices that three disjoint, non-
exhaustive events are given positive lower probability.

6.2. Possibility Measures

Next we investigate under which conditions the lower prob-
ability of the VBM is minitive, that is, when it satisfies

𝑃(𝐴1 ∩ 𝐴2) = min{𝑃(𝐴1), 𝑃(𝐴2)} ∀𝐴1, 𝐴2 ⊆ 𝛺.

This is equivalent to showing when the conjugate upper
probability 𝑃 of 𝑃 is maxitive, i.e., whether

𝑃(𝐴1 ∪ 𝐴2) = max{𝑃(𝐴1), 𝑃(𝐴2)} ∀𝐴1, 𝐴2 ⊆ 𝛺;

we shall focus on this second condition in this section. Note
that, since in this paper we are focusing on finite possibility
spaces, minitivity is equivalent to being a necessity measure
and maxitivity is equivalent to being a possibility measure.
The upper probability of a VBM can be computed as [4]

𝑃(𝐴) = min{𝑏𝑃0 (𝐴) + 𝑐, 1} ∀𝐴 ≠ ∅, 𝑃(∅) = 0, (9)

where 𝑐 = 1 − (𝑎 + 𝑏).
Recall that we are assuming in this section that

𝑃0 ({𝜔}) > 0 for every 𝜔 ∈ 𝛺. Then, it is easy to show that
𝑃 is only maxitive on very special cases:

Proposition 18 Let 𝑃 be the upper probability of a VBM
where 𝑃0 ({𝜔}) > 0 for every 𝜔 ∈ 𝛺. Then

𝑃 maxitive ⇔ |{𝜔 : 𝑃({𝜔}) < 1}| ≤ 1.

Proof

(⇒) Let 𝑃 be maxitive and assume ex-absurdo the exis-
tence of different 𝜔1, 𝜔2 in 𝛺 satisfying 𝑃({𝜔1}),
𝑃({𝜔2}) < 1. Then

max{𝑃({𝜔1}), 𝑃({𝜔2})}
= max{𝑏𝑃0 ({𝜔1}) + 𝑐, 𝑏𝑃0 ({𝜔2}) + 𝑐}
< 𝑏𝑃0 ({𝜔1, 𝜔2}) + 𝑐,

taking into account that 𝑃0 ({𝜔1}), 𝑃0 ({𝜔2}) > 0 by
assumption. Since on the other hand we also have that
max{𝑃({𝜔1}), 𝑃({𝜔2})} < 1, it follows that

max{𝑃({𝜔1}), 𝑃({𝜔2})}
< min{𝑏𝑃0 ({𝜔1, 𝜔2}) + 𝑐, 1} = 𝑃({𝜔1, 𝜔2}),

a contradiction with the maxitivity of 𝑃.
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(⇐) If 𝑃({𝜔}) = 1 for every 𝜔 ∈ 𝛺, then 𝑃 coincides with
the vacuous upper probability given by Equation (4),
that is maxitive. On the other hand, if there is a unique
𝜔′ with 𝑃({𝜔′}) < 1, then it follows by monotonicity
that

𝑃(𝐴) =
{
𝑃({𝜔}) if 𝐴 = {𝜔}
1 otherwise,

that is also maxitive.

Note that, by (9), the condition in this last proposition can
be equivalently expressed as 𝑃({𝜔}) ∈ (0, 1) ⇔ 𝑃({𝜔}) ∈
(𝑐, 1) ⇔ 𝑏𝑃0 ({𝜔}) + 𝑐 < 1⇔ 𝑃0 ({𝜔}) < 1−𝑐

𝑏
= 𝑎+𝑏

𝑏
.

The limited relevance of possibility measures within
VBMs is anyway already patent from the statement of
Proposition 18: a VBM is a possibility iff it is vacuous or
nearly, i.e. with non-vacuous imprecise probability assess-
ment on at most one event.

7. Conclusions
Vertical Barrier Models have been originally introduced as
distortion models, i.e. as functions of a given probability 𝑃0.
We have seen in this paper how they can be interpreted as
neighbourhood models, originated from a neighbourhood
of 𝑃0 by means of a suitable distorting function. The
complexity of the credal set of a VBM has been discussed
in terms of the maximum number of its extreme points.
Perhaps surprisingly, the bound we found is the same as
for TV models, a proper subfamily of VBMs. Mixtures
of VBMs are, under some conditions, still VBMs, while
disjunction and conjunction operations do not retain this
closure property. Several features of VBMs that are (or are
not) belief functions have been detected. Although VBMs
that are belief functions are certainly not the rule, there is
anyway some more flexibility with respect to the already
well known subcase of Pari-Mutuel Models.
The following tables summarise some of our results and

establish a comparison with the properties of the PMM, LV
and TV models:

Conj. Disj Mixt. Belief?
PMM YES NO YES* [9, Thm. 2] (⇔)
LV YES NO YES YES
TV NO NO YES NO
VBM NO NO YES* Thm. 15 (sufficient)

In the case of mixtures, the assumption N1 = N2 is
needed. We make this assumption in Proposition 13 and
it holds in particular if the two lower probabilities to be
combined are strictly positive on all non-impossible events.
More generally, the interpretation of the assumption is that

the opinions of two experts may differ on all events but
those given null lower probability, in order for the mixture
to be a VBM again.
Concerning the maximum number of extreme points of

M(𝑃) in terms of 𝑛 = |𝛺 |, the bounds are as follows:

Number of extreme points ofM(𝑃)
PMM 𝑛!

b 𝑛2 c b
𝑛
2 −1c! d

𝑛
2 +1e!

LV 𝑛

TV 𝑛!
b 𝑛2 −1c! d

𝑛
2 −1e!

VBM 𝑛!
b 𝑛2 −1c! d

𝑛
2 −1e!

A complete characterisation of belief functions within
VBMs has however still to be determined. A related issue
regards exploring the structure of the mass function of a
VBM. A further topic for future work could be the role
of VBMs in outer or inner approximations of coherent
imprecise probabilities.
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