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Supplementary material: proofs
These proofs are, due to page constraints, not included in the paper. We provide them here so as to allow the interested
reader to check the results.

Proof of Lemma 2
We will abbreviate � B

–
⌫2B I⌫ (⇡c⌫), and show that L(S)>0 ✓ posi(�). This will imply the desired result that

posi( q⇡ [ � [ L(S)>0) = posi( q⇡ [ �): indeed, since posi is a closure operator, we infer that posi( q⇡ [ � [ L>0) ✓
posi( q⇡ [ posi(�) [ L>0) = posi( q⇡ [ posi(�)) ✓ posi(posi( q⇡ [ �)) = posi( q⇡ [ �) ✓ posi( q⇡ [ � [ L>0), where
the first equality follows once we establish that L>0 ✓ posi(�). So consider any 5 in L(S)>0. For any ⌫ in B, let
5⌫ : ⌫ ! R : G 7! 5 (G) be 5 ’s restriction to ⌫, so that 5 =

Õ
⌫2B I⌫ 5⌫ . Collect in E B {⌫ 2 B : 5⌫ 2 L(⌫)>0} =

{⌫ 2 B : 5 (G) > 0 for some G in ⌫} ✓ B the events in B on which 5 attains a positive value. That 5 belongs to L(S)>0
implies that E is non-empty. For every ⌫ in B \ E it follows that 5⌫ = 0, and hence 5 =

Õ
⌫2E I⌫ 5⌫ . Note that, for

every ⌫ in E, the gamble 5⌫ > 0 belongs to ⇡c⌫ by its coherence whence I⌫ 5 2 I⌫⇡c⌫, and therefore, indeed,
5 =

Õ
⌫2B I⌫ 5B 2 posi(–⌫2B I⌫ (⇡c⌫)) = posi(�).

Lemma 16 For any �¢ ✓ L such that posi(�¢) \ L<0 = ;, we have

 posi(�¢) = Rs(Posi( �¢)).

Proof We will show that (i)  posi(�¢) ✓ Rs(Posi( �¢)) and (ii)  posi(�¢) ◆ Rs(Posi( �¢)).
For (i), consider any � in  posi(�¢) , implying that there are = in N, real coefficients _1:= > 0 and 61, . . . , 6= in �¢ such that

6 B
Õ=

:=1 _:6: 2 �. Note that the requirement posi(�¢) \ L<0 = ; implies that 6 8 L<0. By letting �1 B {61} 2  �¢ ,
. . . , �= B {6=} 2  �¢ , and _61:=

1:= B _1:= > 0, we find that {Õ=
:=1 _

51:=
: 5: : 51:= 2 >=

:=1 �:} = {Õ=
:=1 _:6:} = {6} belongs

to Posi( �¢), whence, indeed, � 2 Rs(Posi( �¢)) since 6 8 L<0.
Conversely, for (ii), consider any � in Rs(Posi( �¢)), so � ◆ �0 \ L>0 for some �0 in Posi( �¢). This implies that

�0 = {Õ=
:=1 _

51:=
: 5: : 51:= 2 >=

:=1 �:} for some = in N, �1, . . . , �= in  �¢ and real coefficients _ 51:=
1:= > 0 for every 51:= in

>=
:=1 �: . That all of �1, . . . , �= belong to  �¢ means that �1 \ �¢ < ;, . . . , �= \ �¢ < ;, so there are 61 2 �1 \ �¢, . . . ,

6= 2 �= \ �¢. Then the specific 6 B
Õ=

:=1 _
61:=
: 6: 2 �0 belongs to posi(�¢), which tells us that 6 8 L<0, and hence 6

belongs to �, whence � \ posi(�¢) < ;. Therefore indeed � 2  posi(�¢) .

Lemma 17 For any F ✓ P(L) we have
 – F =

ÿ
�2F

 �.

Proof Consider any �¢ in Q, and infer that, indeed,

�¢ 2  – F , �¢ \
ÿ

F < ; , (9� 2 F )�¢ \ � < ; , (9� 2 F )�¢ 2  � , �¢ 2
ÿ
�2F

 �,

which establishes the desired equality.

Proof of Theorem 5
We start with the first statement. We will first show that Ls (S)>0 ✓ Posi(–⌫2B I⌫ ( c⌫)), which will establish the
second equality: indeed, abbreviating F B –

⌫2B I⌫ ( c⌫), since  and Posi are closure operators, we infer that
Rs(Posi( q [ F [ Ls

>0)) ✓ Rs(Posi( q [ Posi(F ) [ Ls
>0)) = Rs(Posi( q [ Posi(F ))) ✓ Rs(Posi(Posi( q [ F ))) =

Rs(Posi( q [ F )) ✓ Rs(Posi( q [ F [ Ls
>0)), where the first equality follows once we establish that Ls

>0 ✓ Posi(F ). So
consider any { 5 } in Ls (S)>0—which implies that 5 2 L(S)>0—and any ⇡ in D ( ). Then using the same argument
as in the proof of Lemma 2 we infer that 5 2 posi(–⌫2B I⌫ (⇡c⌫)), or, in other words, that { 5 } 2  posi(–⌫2B I⌫ (⇡ c⌫ ) ) .
Now use Lemma 16 to infer that then { 5 } 2 Rs(Posi( –

⌫2B I⌫ (⇡ c⌫ ) )) and hence { 5 } 2 Posi( –
⌫2B I⌫ (⇡ c⌫ ) ) since
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5 2 L>0 and therefore 5 8 L<0, and use subsequently Lemma 17 to infer that then { 5 } 2 Posi(–⌫2B  I⌫⇡ c⌫ ) =
Posi(–⌫2B I⌫ ⇡ c⌫ ) = Posi(–⌫2B I⌫ ⇡cB).

Next we show that b satisfies “agreeing on B” and “rigidity”. To this end, note that b satisfies “agreeing on
B” by its definition and the fact that Rs and Posi are closure operators. Moreover, for any ⌫ in B, we have thatb c⌫ = {� 2 Q(⌫) : I⌫� 2 b } ◆ {� 2 Q(⌫) : I⌫� 2 I⌫ ( c⌫)} =  c⌫ again using that Rs and Posi are closure operators,
so b satisfies “rigidity” also.

We now turn to showing that b is coherent. To this end, we infer from [6, Thm. 10] that if q [ –
⌫2B I⌫ ( c⌫) is

consistent, then b is the expression for its natural extension, which then is guaranteed to be coherent. We verify that
q [ –

⌫2B I⌫ ( c⌫) is consistent by considering any b⇡ in the non-empty bD ✓ D,8 and showing that q [ –
⌫2B I⌫ ( c⌫)

is a subset of  b⇡ , which is a coherent set of desirable gamble sets by [6, Lem. 12]. This will prove in one fell swoop
that b ✓ —b⇡2bD  b⇡ , a useful property that we will use later on in this proof when establishing the second statement .

In order to do so, note that b⇡ = posi( q⇡ [ –
⌫2B I⌫ (⇡c⌫)) for some q⇡ in D ( q ) and ⇡ in D ( ). Consider any � inb , meaning that � ◆ �0 \ L<0 for some = in N, �1, . . . , �= in q [ –

⌫2B I⌫ ( c⌫), and, for every 51:= in
>=

:=1 �: , real
coefficients _ 51:=

1:= > 0 such that �0 = {Õ=
:=1 _

51:=
: 5: : 51:= 2 >=

:=1 �:}. So any �: belongs to q —in which case it also
belongs to  q⇡ as q⇡ 2 D ( q ), and hence �: contains a gamble 6: 2 q⇡—or �: belongs to I⌫ ( c⌫) for some ⌫ in B—in
which case it also belongs to I⌫ ( ⇡c⌫) = I⌫ ( ⇡ c⌫ ) as ⇡ 2 D ( ), and hence � contains a gamble I⌫6: where 6: 2 ⇡c⌫.
In any case, we find that

Õ=
:=1 _

61:=
: 6: 2 �0 belongs to posi( q⇡ [ –

⌫2B I⌫ (⇡c⌫)) = b⇡, and hence �0 2  b⇡ . This implies
that, indeed, � 2  b⇡ .

So we have established that b satisfies “agreeing on B”, “rigidity” and “coherence”. To complete the proof for the first
statement, we show that b is the smallest such set of desirable gamble sets. To this end, consider any set of desirable
gamble sets  ¢ satisfying “agreeing on B”, “rigidity” and “coherence”. Note that  ¢ must include q by “agreeing on B”
and

–
⌫2B I⌫ c⌫ by “rigidity”. By “coherence” it must therefore include Rs

�
Posi

� q⇡ [ –
⌫2B I⌫ (⇡c⌫)

� �
= b , whence

 ¢ ◆ b , showing that, indeed, b is the smallest set of desirable gambles that satisfies “agreeing on B”, “rigidity” and
“coherence”. This also establishes that the smallest set of desirable gamble sets that satisfies “agreeing on B”, “rigidity” and
“coherence” is necessarily unique.

Now we turn to the second statement. We need to show that b =
—b⇡2bD  b⇡ . Recall from the proof of the first statement

that b ✓ —b⇡2bD  b⇡ , so it suffices to prove the converse set inclusion
—b⇡2bD  b⇡ ✓ b . To this end, we use a theorem

privately communicated to us by Jasper De Bock and Gert de Cooman that follows from their [7, Thm. 9], in the form
of [38, Thm. 6]: ‘The natural extension of a consistent assessment F is given by

—{ ⇡ : ⇡ 2 D, F ✓  ⇡ }’. Applied to the
current case, as the assessment q [–

⌫2B I⌫ ( c⌫) is already known to be consistent from the proof for the first statement,
we infer that b =

Ÿn
 ⇡ : ⇡ 2 D, q [

ÿ
⌫2B

I⌫ ( c⌫) ✓  ⇡

o
,

and hence to establish that
—b⇡2bD  b⇡ ✓ b it suffices to show that any ⇡¢ in D such that q [–

⌫2B I⌫ ( c⌫) ✓  ⇡¢ belongs
to bD. So consider such a ⇡¢, which implies that b ✓  ⇡¢—meaning that ⇡¢ 2 D (b )—and

–
⌫2B I⌫ ( c⌫) ✓  ⇡¢—

meaning that I⌫ ( c⌫) ✓  ⇡¢ and hence  c⌫ ✓  ⇡¢c⌫ =  ⇡¢c⌫ whence ⇡¢c⌫ 2 D ( c⌫) for all ⌫ in B. As–
⌫2B I⌫ (⇡¢c⌫) =

–
⌫2B{I⌫ 5 : 5 2 ⇡¢c⌫} =

–
⌫2B{I⌫ 5 : I⌫ 5 2 ⇡¢} ✓ ⇡¢, we find, taking into account its

coherence, that ⇡¢ = posi(⇡¢ [ –
⌫2B I⌫ (⇡¢c⌫)), whence indeed ⇡¢ 2 bD.

Proof of Proposition 6
We will show (i) that M(b⇢ ) ✓ {% : (8� 2 P(B))%(I�) � %(�) and (8�0 ✓ S, ⌫ 2 B)%(�0 |⌫) � %(�0 |⌫)} and (ii)
that M(b⇢ ) ◆ {% : (8� 2 P(B))%(I�) � %(�) and (8�0 ✓ S, ⌫ 2 B)%(�0 |⌫) � %(�0 |⌫)}. For (i), consider any % in
M(b⇢ ), which implies that % � b⇢ . Since b⇢ � q% as b⇢ extends q⇢ [and q⇢ is q%’s natural extension] and q% (⌫) > 0 for every ⌫
in B, we find that also %(⌫) > 0 for all ⌫ 2 B, whence % = %(%(·|B)), so %(·|⌫) is determined uniquely by Bayes’ rule.
This implies that %( 5 ) � q⇢ ( 5 ) for every 5 2 L(B), and in particular that %(I�) � %(�) for every � 2 P(B). Moreover,
this also implies that %( 5 |⌫) � ⇢ ( 5 |⌫) for every ⌫ 2 B and every 5 2 L, whence %(�0 |⌫) � %(�0 |⌫) for all �0 ✓ S and
⌫ 2 B.

8It is a consequence of Thm. 1, which is a direct consequence of [10, Thm. 3], that every element of bD is a coherent set of desirable gambles.
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To show (ii), the inverse inclusion, consider any % such that %(I�) � %(�) for all � 2 P(B) and %(�0 |⌫) � %(�0 |⌫)
for all �0 ✓ S and ⌫ 2 B. It follows by the natural extension that %( 5 |⌫) � ⇢ ( 5 |⌫) for every 5 in L(⌫) and ⌫ in B, and
similarly, that %(6) � q⇢ (6) for every 6 in L(B). consequence,

%( 5 ) = %(%( 5 |B)) � q⇢ (⇢ ( 5 |B)) = b⇢ ( 5 )

for every 5 2 L(S), which completes the proof.

Proof of Proposition 7
Assume first of all that b% � b⇢ = q⇢ (⇢ (·|B)). Then for any gamble 5 2 L(B) we infer b% ( 5 ) � b⇢ ( 5 ) = q⇢ ( 5 ), whence (a)
holds. With respect to (b), for any ⌫ 2 B such that b% (⌫) > 0, the conditional b% (·|⌫) coincides with the model b% induces
applying regular extension; since M(b%) ◆ M(b⇢ ), this in turn dominates the conditional induced by b⇢ from regular
extension, which must then dominate ⇢ (·|⌫), that satisfies GBR with respect to b⇢ , using [23, Lem. 2]. Thus (c) holds.

Conversely, if (a) and (b) holds but there is some gamble such that b% ( 5 ) < b⇢ ( 5 ), then it cannot be 5 2 L(B) by (a);
consider then the conditional lower prevision b% (·|B) where b% (·|⌫) is defined by regular extension if b% (⌫) > 0 andb% (·|⌫) = %(·|⌫) if b% (⌫) = 0. Then b% is coherent with b% (·|B), whence b% ( 5 ) � b% (b% ( 5 |B)). As a consequence, there
must be some ⌫ 2 B such that b% ( 5 |⌫) < %( 5 |⌫). But then can neither be b% (⌫) > 0 (by (b)) nor b% (⌫) = 0 (by definition),
which leads to a contradiction.

Proof of Proposition 8
1. Consider two gambles 51, 52 on S. Then b⇢ ( 51 ^ 52) = q⇢ (⇢ ( 51 ^ 52 |B)) = q⇢ (61 ^ 62) = min{q⇢ (61), q⇢ (62)}, where
61 = ⇢ ( 51 |B), 62 = ⇢ ( 52 |B). Thus, b⇢ is minitive.

2. Assume first of all that q⇢ is minitive on gambles. Given two events �1, �2, infer that b⇢ (�1 \ �2) = q⇢ (⇢ (�1 \ �2 |B)) =
q⇢ (61 ^ 62) = min{q⇢ (61), q⇢ (62)} = min{b⇢ (�1), b⇢ (�2)}, where 61 = ⇢ (�1 |B), 62 = ⇢ (�2 |B).
Next, if ⇢ (·|⌫) is minitive on gambles, it is {0, 1}-valued on events by [12, Prop. 7]. As a consequence, there exists a
filter F⌫ such that

%(�1 \ �2 |⌫) =
(

1 if �1 \ �2 2 F⌫

0 otherwise.

This implies that b⇢ (�1\�2) = q⇢ (�) for� B
–{⌫ : �1\�2 2 F⌫}. But since� = �1\�2 for�1 B

–{⌫ : �1 2 F⌫}
and �2 B

–{⌫ : �2 2 F⌫} since filters are closed under finite intersections, we deduce that b⇢ (�1) = q⇢ (�1) andb⇢ (�2) = q⇢ (�2), and therefore b⇢ (�1 \ �2) = min{b⇢ (�1), b⇢ (�2)}.

3. To see this, we need to find some ⌫ 2 B such that q% (⌫) 2 (0, 1), which always exists because q⇢ is not minitive on
gambles. Similarly, there is some �1 ⇢ ⌫ such that %(�1 |⌫) 2 (0, 1). By defining the events �1 B �1 [ ⌫2 and
�2 B ⌫, we infer that:

b⇢ (�1 \ �2) = b⇢ (�1) = q% (⌫) · %(�1 |⌫)
b⇢ (�2) = q% (⌫)
b⇢ (�1) = %(�1 |⌫) + (1 � %(�1 |⌫)) · %(⌫2),

whence b⇢ (�1 \ �2) < min{b⇢ (�1), b⇢ (�2)}.

Proof of Proposition 11
That the first statement implies the second is trivial. To see the converse, let us establish first of all the implication

(8l 2 ⌫)%(I⌫ (I{l} � ⇢ ({l}|⌫))) = 0 ) (8 5 2 L)%(I⌫ ( 5 � ⇢ ( 5 |⌫))) = 0 (6)
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To this end, consider first of all any event � ✓ ⌫, and we will show that %(⌫(I� � ⇢ (�|⌫))) = 0. If � = ⌫ then we have
%(⌫(I⌫ � ⇢ (⌫ |⌫))) = %(I⌫ � I⌫⇢ (⌫ |⌫)) = %(I⌫ � I⌫1) = 0, so we assume that � ⇢ ⌫. Then indeed

%(⌫(I� � ⇢ (�|⌫))) = %
 ’
l2�

⌫(I{l} � ⇢ ({l}|⌫))
!
=

’
l2�

%(I⌫ (I{l} � ⇢ ({l}|⌫))) = 0,

where the first equality follows from applying Eq. (3) twice, taking into account that ⇢ (�|⌫) is a constant, and that coherent
lower previsions satisfy constant additivity. The second equality follows once we realise that min I⌫ (I� � ⇢ (�|⌫)) =
�⇢ (�|⌫) = �Õ

l2� ⇢ ({l}|⌫) =
Õ

l2� min I⌫ (I{l} � ⇢ ({l}|⌫)), using that � ⇢ ⌫, and the third one by the assumption
in Eq. (6).

Next, consider a gamble 5 on S such that 5 = ⌫ 5 , and let us express it as 5 =
Õ=

8=1 G8I�8 , for G1 > G2 > · · · > G= and a
partition {�1, . . . , �=} of ⌫. Since a coherent lower prevision always satisfies constant additivity, we can assume without
loss of generality that G= = 0. Then

%

 
=’
8=1

G8I�8 � ⇢ ( 5 |⌫)
!
= %

 
=’
8=1

G8I�8 �
=’
8=1

G8⇢ (�8 |⌫)
!

= %

 
=’
8=1

G8 (I⌫ (I�8 � ⇢ (�8 |⌫)))
!
=

=’
8=1

G8%(I⌫ (I�8 � ⇢ (�8 |⌫))) = 0.

Here the first equality follows from

⇢ ( 5 |⌫) = (1 � X⌫)%⌫

 
=’
8=1

G8I�8

!
+ X⌫ min

 
=’
8=1

G8I�8

!
= (1 � X⌫)%⌫

 
=’
8=1

G8I�8

!
=

=’
8=1

G8⇢ (�8 |⌫),

the third from

%

 
=’
8=1

G8I⌫ (I�8 � ⇢ (�8 |⌫)))
!
= (1 � X)%

 
=’
8=1

G8I⌫ (I�8 � ⇢ (�8 |⌫))
!
+ Xmin

 
=’
8=1

G8I⌫ (I�8 � ⇢ (�8 |⌫))
!

= (1 � X)
=’
8=1

G8%(I⌫ (I�8 � ⇢ (�8 |⌫))) � X
=’
8=1

G8⇢ (�8 |⌫)

=
=’
8=1

G8
�
(1 � X)%(I⌫ (I�8 � ⇢ (�8 |⌫))) + Xmin I⌫ (I�8 � ⇢ (�8 |⌫))

�

=
=’
8=1

G8%(I⌫ (I�8 � ⇢ (�8 |⌫))),

and the fourth one by the assumption in Eq. (6). This establishes Eq. (6). Since % is coherent with q⇢ , ⇢ (·|B) if and only if
%( 5 ) = q⇢ ( 5 ) and %(I⌫ ( 5 � ⇢ ( 5 |⌫)) = 0 for every 5 2 L and every ⌫ 2 B, we deduce (a) from (b).

Let us now prove the equivalence between the second and third statements. To this end, note already that two LV models
determined by (%1, X1) and (%2, X2) are equal if and only if %1 = %2 and X1 = X2. Therefore, we see that % = q⇢ is equivalent
to (⌫ 2 B)%(⌫) = %B (⌫) and X = 1 � Õ

⌫2B q⇢ (⌫) = 1 � Õ
⌫2B %B (⌫) = XB :

Next, given ⌫ 2 B and l 2 ⌫,

%(⌫(I{l} � ⇢ ({l}|⌫))) = (1 � X)%(⌫(I{l} � ⇢ ({l}|⌫))) + Xmin(⌫(I{l} � ⇢ ({l}|⌫)))
= (1 � X) (%(l) � %(⌫)⇢ ({l}|⌫)) + X(�⇢ ({l}|⌫)),

whence %(⌫(I{l} � ⇢ ({l}|⌫))) = 0 if and only if %({l}) = ⇢ ({l} |⌫) (X+% (⌫) )
1�X . Moreover, since %(⌫) = Õ

l2⌫ %({l}),
we infer that ’

l2⌫

⇢ ({l}|⌫) (X + %(⌫))
1 � X = %(⌫).
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The left hand side is equal to
’
l2⌫

(1 � X⌫)%⌫ ({l}|⌫) (X + %(⌫))
1 � X =

(1 � X⌫) (X + %(⌫))
1 � X ,

so this is equal to %(⌫) if and only if

X⌫ =
X + X%(⌫)
X + %(⌫) .

This completes the proof.

Proof of Proposition 12
Consider the conditional probability measure %(·|B) given by %(�|⌫) = %⌫ (�) for every ⌫ in B and � ✓ ⌫, and let %0
denote the probability measure on S determined by %B , %(·|B). Then it holds that, for any ⌫ 2 B and l 2 ⌫,

b⇢ ({l}) = q⇢ ((1 � X⌫)%({l}|⌫)I⌫) = (1 � XB)(1 � X⌫)%0 ({l}),

whence ’
l2⌫

b⇢ ({l}) = (1 � XB)(1 � X⌫)
’
l2⌫

%0 ({l}) = (1 � XB)(1 � X⌫)%0 (⌫),

while b⇢ (⌫) = q⇢ (I⌫) = (1 � XB)%B (⌫).

Thus, Eq. (3) is not satisfied and therefore b⇢ 8 CLV, since X⌫ and XB belong to the open interval (0, 1).

Proof of Proposition 14
Assume ex absurdo that there is some such PMM %, and let (%, X) be its associated parameters. Consider a gamble 5 on ⌫
given by 5 =

Õ=
8=1 G8I�8 for G1 = 1 > G2 > · · · > G= = 0 and for a partition {�1, . . . , �=} of ⌫, and let us characterise under

which conditions we have that %(%( 5 |⌫) � ⌫ 5 ) = 0. Also, by coherence we get that

%(�) � %B (%(�|B)) > 0 (7)

for any event �.
First of all, taking into account that for any G > G= it holds that

%({ 5  G}) � %(�=) >
X

1 + X ,

since (1 + X)%(�=) � X = %(�= |⌫) > 0 by assumption, we deduce that if we apply Eq. (4) to compute %( 5 |⌫) we obtain

%( 5 |⌫) = G= + (1 + X)%⌫ (( 5 � G=)+) = (1 + X)%⌫ ( 5 ),

whence %( 5 |⌫) � ⌫ 5 = (1 + X)%⌫ ( 5 ) � ⌫ 5 .
On the other hand, it follows from Eq. (7) that %({l}) > 0 for everyl 2 ⌫. As a consequence, defining 6 B %( 5 |⌫)�⌫ 5 ,

for any value G > min 6 = %( 5 |⌫) � G1 = %( 5 |⌫) � 1 it holds that

%({6  G}) � %(�1) >
X

1 + X ,

since (1 + X)%(�1) � X = %(�1) > 0 by Eq. (7). Thus, Eq. (4) gives

⇢ (6) = %( 5 |⌫) � 1 + (1 + X)%((⌧ ( 5 |⌫) � min⌧ ( 5 |⌫))+) = (1 + X)%⌫ ( 5 ) � 1 + (1 + X)%(⌫(1 � 5 )).

Therefore,

⇢ (6) = 0 , (1 + X)%⌫ ( 5 ) � 1 + (1 + X)%(⌫(1 � 5 )) = 0 , %( 5 ) = %⌫ ( 5 ) + %0 (⌫) �
1

1 + X .

17
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Applying this to 5 = I{l} for some l 2 ⌫, we obtain that % should satisfy

%({l}) = %⌫ ({l}) + %0 (⌫) �
1

1 + X . (8)

This means that
’
l2⌫

%({l}) = 1 + |⌫ |%0 (⌫) �
|⌫ |

1 + X = %0 (⌫)

, %0 (⌫) =
|⌫ | � 1 � X

( |⌫ | � 1) (1 + X) ,

and this for every ⌫ 2 B. If we consider ⌫ with more than two elements and take both l1,l2 2 ⌫ with l1 < l2, then
⇢ (%(I{l1 ,l2 } |⌫) � ⌫I{l1 ,l2 }) = 0 if and only if

%({l1,l2}) = %⌫ ({l1,l2}) + %0 (⌫) �
1

1 + X ;

but by Eq. (8) it is
%({l1,l2}) = %⌫ ({l1,l2}) + 2%0 (⌫) � 2

1
1 + X ;

and this can only be if %0 (⌫) = 1
1+X . Since 1

1+X < |⌫ |�1�X
( |⌫ |�1) (1+X ) , we obtain a contradiction.

Finally, if |⌫ | = 2 for all ⌫ then it must be |B| = =
2 . We get on the one hand %0 (⌫) = 1�X

1+X for all ⌫, and the equality
1 =

Õ
⌫ %0 (⌫) = =

2 %0 (⌫) implies that X = =�2
=+2 ; but on the other hand for %(⌫) > 0 we should have then = < 4; this means

that = = 2 and that B has only one element.
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