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Abstract
Our intuition that rational agents should value the
evidence can be captured by a well-known theorem
due to I. J. Good. However, Good’s theorem fails when
agents have imprecise credences, raising the worry
that agents with imprecise credences don’t value the
evidence. This essay shows a different way to capture
our starting intuition, as the claim that rational agents
defer to their informed selves. I introduce and motivate
two deference principles for imprecise probabilities,
and show that rational imprecise agents defer to their
informed selves according to these principles. This
shows a sense in which imprecise agents value the
evidence. I end by comparing the deference principles
introduced here with an alternative from the literature.
Keywords: imprecise probability, deference principles,
reflection, Good’s theorem

1. Introduction
We like to think that rational agents value the evidence.
Precise Bayesians can capture this intuition in terms of
sequential decision-making by appealing to a theorem due
to I. J. Good [8]. The theorem shows that, if a rational agent
is offered the option to learn some new evidence for free
before facing a decision problem, they are not willing to
pay to turn down this offer. In other words: rational agents
never pay to avoid free evidence.
Good’s theorem fails if we allow agents to have imprecise

credences. Rational imprecise agents are sometimes allowed
to pay in order to avoid free evidence, and depending on
the imprecise decision theory one picks, they may even
be required to do so [2, 10]. This raises the worry that
the coherence and decision-making norms of imprecise
probability are somewhat faulty: agents who follow them
don’t value the evidence, and are therefore not rational.
In this essay I will respond to this worry by showing a

different way to capture our starting intuition that rational
agents value the evidence, which appeals to a deference
principle. Deference principles tell us, given an agent’s
credal state, which credal states they consider as experts. The
intuition that rational agents value evidence can be captured
as the claim that rational agents defer to their informed
selves, treating their informed selves like an epistemic
authority.

I will introduce and defend two deference principles
for imprecise credences, called Strong and Weak Total
Trust. I will then show that imprecise agents defer to their
informed selves according to these principles, thus showing
a way in which imprecise agents can be said to value
the evidence, independently of any theory of sequential
decision-making. I end the essay by comparing Strong and
Weak Total Trust to an alternative deference principle for
imprecise credences that has been proposed in the literature,
called Identity Reflection. Identity Reflection is shown to
be strictly stronger than Strong Total Trust. In particular,
Identity Reflection does not allow an agent to defer to a
modest expert, whereas this is possible under Strong Total
Trust.

2. Some Notation
A finite probability space is a pair (𝛺, 𝑝) where 𝛺 is a finite
possibility space, and 𝑝 : 2𝛺 → ℝ is a probability function.
I will assume throughout that the possibility space 𝛺 is
finite, and will speak of a probability function instead of
a probability space whenever there is no risk of confusion
regarding the function’s domain. I use P𝛺 to describe the
set of all probability functions on a given 𝛺.
We model an agent’s individual probabilistic judgements

as sets of probability functions. For example, let 𝐻 be the
event that a coin lands heads, and 𝑇 the event that it lands
tails. Then the judgement that the coin is fair can be captured
by the set {𝑝 ∈ P𝛺 : 𝑝(𝐻) = 1/2} of probability functions
which assign probability 1/2 to 𝐻. The judgement that the
coin is biased towards heads can be captured by the set
{𝑝 ∈ P𝛺 : 𝑝(𝐻) > 1/2} of all functions which assign
greater probability to 𝐻 than to 𝑇 .
We model an agent’s entire doxastic state by a single

nonempty set 𝑃 ⊆ P𝛺 , known as the agent’s credal set. The
idea is that an agent makes a probabilistic judgement, such
as the judgement that a coin is biased towards heads, iff
every probability in 𝑃 makes that judgment, meaning that
𝑃 ⊆ {𝑝 ∈ P𝛺 : 𝑝(𝐻) > 1/2}. More generally, an agent
makes a probabilistic judgement iff their credal set 𝑃 is
contained in the set of probability functions corresponding
to that judgement.
In this essay I will restrict myself to regular credal sets,

that is, credal sets whose members assign some positive
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probability to each possibility in their domain 𝛺. As pointed
out later on, this assumption considerably simplifies the
relationship between an agent’s credal set and the set of
gambles they find desirable.
When 𝑃 ⊆ P𝛺 is a credal set and 𝐴 ⊆ 𝛺 an event, I write

𝑃(𝐴) to denote the value set {𝑟 ∈ ℝ : (∃𝑝 ∈ 𝑃)𝑝(𝐴) = 𝑟},
and I denote by 𝑃(·|𝐴) the following conditional credal set:

𝑃(·|𝐴) = {𝑝(·|𝐴) : 𝑝 ∈ 𝑃}

which is defined whenever 𝐴 ≠ ∅, under the assumption
that 𝑃 is regular.

3. The Value of Evidence: Sequential Choice
Characterisation

We like to think that rational agents value the evidence. In
this section, I look at one way we may capture this intuition:
by requiring that rational agents never pay to avoid learning
free evidence. A famous theorem due to I.J. Good shows
that agents with precise probabilistic credences obey this
requirement. However, for agents with imprecise credences,
it is sometimes admissible to pay to avoid learning free
evidence.

3.1. Good’s Theorem

Let 𝛺 = {𝜔1, ..., 𝜔𝑛} be a finite possibility space. Consider
an agent facing a decision problem A = {𝑎1, ..., 𝑎𝑚}. Let
𝑈 : A×𝛺 → ℝ be the agent’s utility function, so the utility
for option 𝑎 𝑗 when 𝜔𝑖 is the case is given by𝑈 (𝑎 𝑗 , 𝜔𝑖). Let
E = {𝐸1, ..., 𝐸𝑘 } be an arbitrary partition of events, such
that learning which 𝐸𝑖 is true does not affect the agent’s
utility assignment overA.1 Imagine that, at 𝑡 = 0, the agent
is offered the following choice: she can either pick some
option from A now (at 𝑡 = 0), or learn which 𝐸𝑠 ∈ E
is true, and then pick some option from A (at 𝑡 = 1). I
call a scenario of this kind a sequential learning problem
𝐷 (E,A).
Intuitively, if an agent values the evidence, she won’t be

willing to pay to avoid free evidence in a sequential learning
problem of the kind described above. This suggests the
following characterisation of what it means for an agent to
value the evidence:2

• Value of Evidence - Sequential Choice (VE-SC):
An agent values the evidence when for any sequential
learning problem 𝐷 (E,A), she is not willing to pay to
avoid learning which 𝐸𝑖 is true before choosing from
A.

1If learning the evidence alters the agent’s utility function, then the
evidence is not “free”. For an in-depth discussion of this assumption, and
of Good’s theorem more generally, see [10].

2A similar characterisation is given in Dorst [4], where it is generalised
to allow for cases where E is not a partition.

Good’s theorem [8] shows that for any sequential learning
problem 𝐷 (E,A), if the agent facing the problem has
precise probabilistic credences, her expected utility for
choosing from A after learning which 𝐸𝑖 is true is at least
as great as her expected utility for choosing fromA without
learning. Therefore, if she makes choices by maximising
her expected utility, such an agent will not be disposed to
pay to avoid learning. Hence, rational agents with precise
probabilistic credences value the evidence according to
(VE-SC).

3.2. Imprecision and Sequential Choice

Trying to show that agents with imprecise credences value
the evidence as described by (VE-SC), one is faced with
a number of difficulties. First of all, while it’s commonly
assumed that precise Bayesian agents make choices by
maximising expected utility, a number of different decision
rules exist for imprecise agents [17]. Furthermore, while it’s
straightforward to extend expected utility maximisation to
sequential problems, not all IP decision rules are so easily
extended. Consider the following example:3

Example 1 (Coin Toss Puzzle) Jack has a coin which you
know is fair. You know that Jack knows whether 𝐴 is true.
You know nothing about 𝐴, but judge that whether 𝐴 is true
is independent of the result of the coin toss. Jack paints the
two sides of the coin so you can’t tell which one is heads. If
𝐴 is true, he writes "𝐴" on the heads side, and "¬𝐴" on the
tails side. If 𝐴 is false, he writes “¬𝐴” on the heads side,
and “𝐴” on the tails side.

Let 𝐻 be the event that the painted coin lands with the
heads face up. Since you know the coin is fair, your starting
credence in 𝐻 should be 1/2. That is, your credal set 𝑃
should be such that for every 𝑝 ∈ 𝑃, 𝑝(𝐻) = 1/2, i.e.
𝑃(𝐻) = {1/2}. Since you know nothing about 𝐴, you can
(and perhaps should) have maximally imprecise credence
in 𝐴. That is, 𝑃(𝐴) = (0, 1). Furthermore, you judge the
coin toss to be independent of 𝐴. That is, if we let 𝐸𝐴 be
the event that the coin lands with the face on which “𝐴”
is painted facing up, then for every 𝑝 ∈ 𝑃 it should be
𝑝(𝐸𝐴 |𝐴) = 𝑝(𝐸𝐴) = 1/2.4
Consider what happens after observing the painted coin

toss. If the coin were to land with the "𝐴" side up, then

3As we shall see in Section 5, this example was originally given by
White [21] to illustrate a conflict between deference and credal dilation. A
similar example is given by Walley [20, pp. 298-299].

4Here I’m using 𝑃 (𝐴) = (0, 1) instead of 𝑃 (𝐴) = [0, 1] to ensure
the resulting credal set is regular. This also allows me to express the
judgement that the coin toss is independent of 𝐴 as the fact that every
𝑝 ∈ 𝑃 has 𝑝 (𝐸𝐴 |𝐴) = 𝑝 (𝐸𝐴) . If we had 𝑃 (𝐴) = [0, 1] there would
be some 𝑝 ∈ 𝑃 that assigns probability 0 to 𝐴, for which the conditional
probability 𝑝 (𝐸𝐴 |𝐴) is not defined. The example can be adapted to work
for any starting credal set with 𝑃 (𝐴) = [𝑥1, 𝑥2 ], where 𝑥1, 𝑥2 ∈ (0, 1)
and 𝑥1 < 𝑥2.
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each 𝑝 ∈ 𝑃 would take this as either evidence in favour of,
or as evidence against, the fact that the coin landed heads,
depending on 𝑝(𝐴). For each 𝑝 ∈ 𝑃 we have that:

𝑝(𝐻 |𝐸𝐴) =
𝑝(𝐻 ∩ 𝐸𝐴)
𝑝(𝐸𝐴)

(1)

=
𝑝(𝐻 ∩ 𝐸𝐴 |𝐴)𝑝(𝐴) + 𝑝(𝐻 ∩ 𝐸𝐴 |¬𝐴)𝑝(¬𝐴)

𝑝(𝐸𝐴)
(2)

=
𝑝(𝐸𝐴 |𝐴)𝑝(𝐴)

𝑝(𝐸𝐴)
= 𝑝(𝐴) (3)

since conditional on 𝐴, the events 𝐸𝐴 and 𝐻 are equivalent.
Thus after observing 𝐸𝐴, your updated credal set would be
maximally imprecise about 𝐻, in the sense that for every
𝑟 ∈ (0, 1), there is some 𝑝 ∈ 𝑃(·|𝐸𝐴) with 𝑝(𝐻) = 𝑟 . Thus
we say that your credence in 𝐻 dilates after observing 𝐸𝐴.
The key feature of this example is that the two possible

outcomes of the coin toss, landing with the "𝐴" side up or
with the "¬𝐴" side up, are symmetrical. Your starting credal
set is also maximally imprecise about ¬𝐴, meaning that for
each 𝑟 ∈ (0, 1) there is some 𝑝 ∈ 𝑃 with 𝑝(¬𝐴) = 𝑟. And
if the coin lands with the "¬𝐴" side up, we would have:

𝑝(𝐻 |¬𝐸𝐴) =
𝑝(¬𝐸𝐴 |¬𝐴)𝑝(¬𝐴)

𝑝(¬𝐸𝐴)
= 𝑝(¬𝐴). (4)

So in this case too, your credence in 𝐻 will dilate.
We can use this fact to construct a sequential decision

problem where the intuition that evidence is valuable seems
to fail.

Example 1 (continued, sequential decision problem)
Let 𝑎𝐻 be the option of making a bet on the next coin toss
which gains 100$ if the painted coin comes up heads, and
loses 90$ otherwise. Let 𝑎0 be the option of making no bet.
Consider the following sequential decision problem: you
can either learn nothing, and choose from A = {𝑎0, 𝑎𝐻 }
now (at 𝑡 = 0); or you can observe the painted coin toss,
see whether it lands with the “𝐴” or “¬𝐴” face up, and
then choose from A = {𝑎0, 𝑎𝐻 } afterwards (at 𝑡 = 1). The
situation is represented in Figure 1.

A popular decision rule for agents with imprecise cre-
dences is Maximality.

Definition 1 (Maximality) Let A be a decision problem
and 𝑃 a credal set. Then 𝑎 𝑗 is admissible for 𝑃 from A iff
there is no 𝑎𝑖 ∈ A such that:

(∀𝑝 ∈ 𝑃)𝐸𝑈𝑝 (𝑎𝑖) > 𝐸𝑈𝑝 (𝑎 𝑗 ).

It’s not obvious how we should apply Maximality to sequen-
tial decision problems. Consider the example in Figure 1.
The agent knows that at decision node 1, she would choose
𝑎𝐻 , so at node 0 she can identify the option ∼𝐿𝑒𝑎𝑟𝑛 with
𝑎𝐻 . But at decision nodes 2 and 3, both 𝑎𝐻 and 𝑎0 are

0𝑃(𝐻) = {1/2}

1
𝑃(𝐻) = {1/2}

{𝑎0, 𝑎𝐻 }

2
𝑃(𝐻) = (0, 1)

{𝑎0, 𝑎𝐻 }

3
𝑃(𝐻) = (0, 1)

{𝑎0, 𝑎𝐻 }

∼𝐿𝑒𝑎𝑟𝑛

𝐿𝑒𝑎𝑟𝑛 𝐸𝐴

¬𝐸𝐴

Figure 1: Representation of the Coin Puzzle as a sequential
decision problem.

admissible to her. So at node 0, option 𝐿𝑒𝑎𝑟𝑛 is not straight-
forwardly equivalent to one of the terminal options, and
hence it’s not obvious how it should be compared against
∼𝐿𝑒𝑎𝑟𝑛. One way to tackle this would be to identify 𝐿𝑒𝑎𝑟𝑛
with the option set {𝑎0, 𝑎𝐻 }, and adapt the definition of
Maximality to accommodate choices among option sets:

Definition 2 (Set-Maximality) Let 𝛩 = {A1, ...,A𝑛} be
a set of option sets and 𝑃 a credal set. Then A 𝑗 is admissible
for 𝑃 from 𝛩 iff there is no A𝑖 ∈ 𝛩 such that the following
two conditions hold:

1. (∀𝑥 ∈ A 𝑗 ) (∃𝑦 ∈ A𝑖) (∀𝑝 ∈ 𝑃)𝐸𝑈𝑝 (𝑦) > 𝐸𝑈𝑝 (𝑥),

2. (∀𝑦 ∈ A𝑖) (∃𝑥 ∈ A 𝑗 ) (∀𝑝 ∈ 𝑃)𝐸𝑈𝑝 (𝑦) > 𝐸𝑈𝑝 (𝑥).

Using this rule, when the agent is choosing between∼𝐿𝑒𝑎𝑟𝑛
and 𝐿𝑒𝑎𝑟𝑛 at node 0, she is choosing between option sets
{𝑎𝐻 } and {𝑎𝐻 , 𝑎0}. Clearly, when 𝑃(𝐻) = (0, 1), both
{𝑎𝐻 , 𝑎0} and {𝑎𝐻 } are admissible option sets, and thus
both ∼𝐿𝑒𝑎𝑟𝑛 and 𝐿𝑒𝑎𝑟𝑛 are admissible options at node
0. The same holds if we attach a small enough price 𝜖 to
∼𝐿𝑒𝑎𝑟𝑛. Hence, although paying to avoid free evidence is
not mandatory, it is admissible.
There have been different proposals for extending various

IP decision rules to sequential decision problems [2, 10]. Yet
they all show that it is sometimes admissible for imprecise
agents to pay to avoid learning free evidence. That is, we can
find a sequential learning problem 𝐷 (E,A) and a credal set
𝑃 such that, letting 𝐿𝑒𝑎𝑟𝑛 and ∼𝐿𝑒𝑎𝑟𝑛 be options defined
as above, paying some small price 𝜖 > 0 to choose ∼𝐿𝑒𝑎𝑟𝑛
rather than 𝐿𝑒𝑎𝑟𝑛 is admissible for an agent with imprecise
credence 𝑃. In this sense, imprecise probability and decision
theory fail t o capture our starting intuition that rational
agents value the evidence, as expressed by (VE-SC).
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Bradley and Steele [2] have sought to soften the blow to
IP by showing that, for a sequential version of Maximality,
although learning free evidence (as opposed to paying not to
learn) is not mandated, it is always admissible. This shows a
weaker sense in which imprecise agents value the evidence:
it is always admissible for them to pursue it when it’s free,
even though paying to avoid it might be also admissible.
Hence, although imprecise agents do not value the evidence
in the same way as precise ones, they still value it in this
weaker sense.
In this essay I will follow a similar response strategy. I

will present a different characterisation of our intuition that
rational agent value the evidence, not in terms of sequential
decision behaviour, but rather in terms of deference. Namely,
that an agent values the evidence when she defers to it, treat-
ing it like an epistemic expert. In the precise case, both
characterisations of the value of evidence are equivalent, in
the sense that precise agents value the evidence according
to both. But in the imprecise case, the deference characteri-
sation is weaker than the one based on sequential choice.
In fact, I will show that agents with imprecise credences
always defer to the evidence, even though, as we have seen
in this section, they are sometimes allowed to pay to avoid
free evidence in sequential learning problems. Thus agents
with imprecise credences value the evidence in this weaker
sense.

4. The Value of Evidence: Deference
Characterisation

Our beliefs are sometimes rationally required to align with
those of an expert. If your doctor believes a certain drug
will treat your condition, you should also believe this, and
if a trusted meteorologist predicts a hurricane is likely to
hit your town tomorrow, you should also find this likely. To
make this more precise, we need to specify what it means
for an agent to match someone’s beliefs, and also what kind
of beliefs can serve as experts for a given agent. We can do
this by specifying a deference principle.
It will help here to introduce some more notation. I will

denote by 𝛱 the credal set of a deferring agent, writing 𝜋 as
shorthand to denote a singleton credal set 𝛱 = {𝜋}. I will
assume throughout that 𝛱 is regular. I use 𝑅 as a definite
description of the expert’s credal set. This means that 𝑅
may denote a different credal set 𝑅𝑖 depending on which
𝜔𝑖 ∈ 𝛺 is the case (you can think of 𝑅 as a function from
𝛺 to 2P𝛺 ). For example, let 𝛺 = {𝜔1, 𝜔2}, where 𝜔1 is
the possibility that the killer was Mr. Green and 𝜔2 is the
possibility that the killer was Mr. White. Then we could
denote by 𝑅 the killer’s credal set, so that 𝑅1 and 𝑅2 denote
the credal sets of Mr. Green and Mr. White, respectively.
I will write 𝑝 as shorthand for the definite description of
a singleton credal set 𝑅 = {𝑝}. For any random variable

𝑋 : 𝛺 → ℝ and subset 𝑆 ⊆ ℝ, I will write [𝑅(𝑋) = 𝑆] for
the event {𝜔𝑖 ∈ 𝛺 : 𝑅𝑖 (𝑋) = 𝑆}.
A deference principle specifies the relationship that must

hold between 𝛱 and 𝑅 in order for the former to treat the
latter as an expert. We can read such a principle in two
ways: if we assume a certain 𝑅 is worthy of deference, then
the principle imposes rationality constraints on the agent’s
credence 𝛱 ; on the other hand, given the agent’s credence
𝛱 , we can use the principle to determine whether the agent
regards a certain 𝑅 as an expert. Deference principles have
been used to express how rational agents ought to defer to
the objective chances [11, 9], to the evidential probabilities
(that is, the probabilities that are rational in light of one’s
total evidence) [3, 7], to their future selves [18, 19], and to
other agents [6, 13].
For example, the following is a classical deference prin-

ciple for precise credences:

• Reflection Principle (RP):5 Let 𝜋 be an agent’s precise
credence function, and let 𝑝 be the definite description
of a precise credence function defined on the same
domain. Then 𝜋 defers to 𝑝 iff, for every event 𝐴 ⊆ 𝛺:

𝜋(𝐴| [𝑝(𝐴) = 𝑠]) = 𝑠 (5)

whenever this conditional probability is defined. If this
is the case, we say that 𝜋 Reflects 𝑝.

Reflection says that, conditional on the expert assigning
a certain probability to an event, the agent must match
them by assigning the same (conditional) probability to that
event. This is in line with our intuitions about deference:
you defer to someone when, conditional on them having
certain credences, you also have those credences.
In the previous section I have looked at a way to capture

our intuition that rational agents value the evidence in terms
of sequential decision-making (VE-SC). Here I want to
propose a different characterisation in terms of deference.
The idea is simple: an agent values the evidence when she
defers to it. More precisely, since deference is a relationship
between credences, we have:6

• Value of Evidence - Deference (VE-D) A an agent
with credal set 𝑃 values the evidence when, for any
partition E = {𝐸1, ..., 𝐸𝑘 }, she defers to the credal set
obtained by updating 𝑃 on whichever 𝐸𝑠 ∈ E is true.

If we take Reflection as our deference principle, and focus
on agents with precise credences, then it’s easy to show that
rational agents value the evidence as specified by (VE-D).

Proposition 1 Let 𝜋 be a regular probability function over
𝛺 and E = {𝐸1, ..., 𝐸𝑘 } a partition. Let 𝑝 be the probability
function obtained by updating 𝜋 on whichever 𝐸𝑠 ∈ E is
true. Then 𝜋 Reflects 𝑝.

5This principle was introduced by Van Fraassen [18].
6See Dorst [4] for some variants of this view.
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Hence agents with precise credences value the evidence
both in terms of sequential choice (VE-SC) and terms of
deference (VE-D).
The main advantage of (VE-D) is that it does not depend

on our theory of sequential action and decision-making.
In the imprecise case, this allows us to study the value of
evidencewithout having toworry about extending imprecise
decision theory to sequential decision problems. The main
obstacle will be to specify what it means for a credal set
𝛱 to defer to (the definite description of) a credal set 𝑅.
Indeed, some authors have argued that imprecise probability
clashes with rational deference principles, as I will discuss
in the next section. So my aim will be to specify a notion
of deference that does not clash with imprecise probability,
and use it to show that imprecise agents value the evidence
in the sense of (VE-D).

5. Imprecision and Deference
Imprecise analogues of the Reflection Principle have been
shown to clash with the phenomenon of credal dilation,
which we observed in the Coin Puzzle example. This has
led some to argue against the rationality of imprecise prob-
abilities [16, 21].
Here is a natural generalisation of the precise Reflection

Principle to the imprecise setting:

• Value Reflection: Let 𝛱 be an agent’s credal set and
𝑅 the definite description of a credal set defined on the
same domain. Then 𝛱 defers to 𝑅 iff for every event
𝐴 ⊆ 𝛺 and value set 𝑆 ⊆ ℝ:

𝛱 (𝐴| [𝑅(𝐴) = 𝑆]) = 𝑆 (6)

whenever this conditional credal set is defined.

White [21] has shown that this principle clashes with dila-
tion. To show this, he gives the Coin Toss Puzzle introduced
earlier (Example 1). Recall that in this example, you start
with 𝛱 (𝐻) = {1/2} and 𝛱 (𝐴) = (0, 1). Furthermore, you
judge the coin toss to be independent of 𝐴. So letting 𝐸𝐴

be the event that the painted coin lands with the “𝐴” face
up, for every 𝑝 ∈ 𝛱 it should be 𝑝(𝐸𝐴 |𝐴) = 𝑝(𝐸𝐴).
Instead of building a sequential decision problem from

this scenario, suppose that Jack is about to toss the coin in
front of you. As shown above, regardless of whether you
learn 𝐸𝐴 or ¬𝐸𝐴, your updated credal set after observing
the coin toss will be maximally imprecise about 𝐻. This
conflicts with Value Reflection. Before the coin toss, you
know your credence in 𝐻 will dilate, because it will do
so whether you observe 𝐸𝐴 or ¬𝐸𝐴. Denoting your future
credal set by 𝑅, this means that [𝑅(𝐻) = (0, 1)] is just 𝛺.
So assuming you should defer to your updated credal set 𝑅,
Value Reflection requires:

𝛱 (𝐻) = 𝛱 (𝐻 | [𝑅(𝐻) = (0, 1)]) = (0, 1). (7)

This means you should not have 𝛱 (𝐻) = {1/2} before the
coin toss, even though you know that the coin is fair.
To sum things up, the following four conditions are jointly

inconsistent:

(i) Your starting credal set for the Coin Toss Puzzle has
𝛱 (𝐻) = {1/2}.

(ii) After observing the coin toss, regardless of how
it lands, your updated credal set 𝑅 will have
𝑅(𝐻) = (0, 1) (Dilation).

(iii) You should defer to your updated credal set.

(iv) 𝛱 defers to 𝑅 iff for every 𝐴 ⊆ 𝛺 and 𝑆 ⊆ ℝ,
𝛱 (𝐴| [𝑅(𝐴) = 𝑆]) = 𝑆 (Value Reflection).

Most supporters of imprecise probability agree with (i)
and (ii), so they must reject either (iii) or (iv).7 In fact,
(iii) and (iv) are deeply connected. As discussed earlier, by
specifying a deference principle we specify, for any given
credal set, which credal sets it defers to. Therefore, whether
it’s true that (iii) one should defer to one’s informed self
(either generally or in this specific example) will depend
on the deference principle (iv) we endorse. Note also that
claim (iii), that one should defer to one’s informed self, is
what I presented in the previous section as a way to show
that evidence is valuable for imprecise agents. Hence in
this essay I will reject (iv) Value Reflection, and my aim
will be to specify, and justify as best I can, an IP deference
principle that is consistent with (i) - (iii).

6. Justifying a Deference Principle
Before presenting a deference principle for agents with
imprecise credences, I should say a bit more about how
such a principle can be justified. One way to do so is to
list desiderata which the principle should satisfy, and then
check whether and to what extent a candidate principle
satisfies them.
The first desideratum is that the principle should capture

some intuitions about what it means to defer to someone.

• (D1) Captures deference intuitions: the principle
should capture some of our intuitions about what it
means to defer to someone. For example, it’s natural to
think that, if one defers to an expert, then conditional
on the expert having a certain opinion one should also
have the same opinion.

The second desideratum is related to our discussion in
Section 5: the candidate deference principle should establish
that imprecise agents defer to their updated selves. After
all, if anyone is worthy of being considered an expert, then

7Although see [1] for a discussion of update rules which avoid dilation.
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surely someone who started from the same prior beliefs as
you but has updated these beliefs on more evidence should
be considered such.8

• (D2) Defer to informed self: Let 𝛱 be a regular credal
set defined over 𝛺, E = {𝐸1, ..., 𝐸𝑘 } be a partition
of events, and denote by 𝑅 the credal set obtained by
updating 𝛱 on whichever 𝐸𝑠 ∈ E is true. Then 𝛱

should defer to 𝑅.

If our deference principle satisfies (D2), then this shows
evidence is valuable for imprecise agents in the sense of
(VE-D). It also shows that the principle can accommodate
credal dilation in cases like the Coin Toss Puzzle, unlike
Value Reflection. Since the dilated credal set is obtained by
updating the initial credal set, if (D2) is satisfied, then the
initial credal set will defer to the updated one.
The third and final desideratum requires that, when only

precise credences are involved, our imprecise deference
principle should collapse to a reasonable precise deference
principle. Often the precise case is easier to study, and if
we have good reasons to reject a deference principle in the
precise case, these may overpower the reasons we have for
supporting it in its more general, imprecise form.

• (D3) Non-revisionist: The principle should collapse
to a reasonable precise deference principle when both
the agent and the expert credal sets are singletons.

7. Two IP Deference Principles
I will define imprecise deference principles in terms of
gambles which an agent finds desirable. So it will be useful
to introduce some notation to talk about these gambles. A
gamble is a function 𝑋 : 𝛺 → ℝ, where 𝑋 (𝜔𝑖) denotes
the value paid by the gamble when 𝜔𝑖 is the case. Given
an option 𝑎 𝑗 and a utility function 𝑈, we can define a
corresponding gamble 𝑋 𝑗 = 𝑈 (𝑎 𝑗 , ·) whose payout at 𝜔𝑖 is
just the utility of option 𝑎 𝑗 if𝜔𝑖 is the case. I denote byL(𝛺)
the set of all gambles on 𝛺. When 𝑋 ∈ L(𝛺) is a gamble,
𝐴 ⊆ 𝛺 is an event, and 𝑝 ∈ P𝛺 is a probability function,
I write 𝑝(𝑋) as shorthand for Exp𝑝 (𝑋) and 𝑝(𝑋 |𝐴) as
shorthand for Exp𝑝 ( · |𝐴) (𝑋).
If 𝑃 is an agent’s credal set, denote by 𝐷𝑃 ⊆ L(𝛺) the

agent’s set of (strictly) desirable gambles, defined by:

𝐷𝑃 = {𝑋 : for every 𝑝 ∈ 𝑃, 𝑝(𝑋) > 0} (8)

Intuitively, these are just the gambles that a rational agent
with credal set 𝑃 would be disposed to accept. Every set

8At least this is the case when the evidence forms a partition, and one
learns whichever element of the partition is true, as in the setup of Good’s
theorem. Here I will restrict myself to these cases.

of desirable gambles generated in this way from a regular
credal set respects the following coherence constraints:

0 ∉ 𝐷 (C1)
𝑋 ≥ 0, 𝑋 ≠ 0 =⇒ 𝑋 ∈ 𝐷 (C2)
𝑋 ∈ 𝐷, _ > 0 =⇒ _𝑋 ∈ 𝐷 (C3)
𝑋,𝑌 ∈ 𝐷 =⇒ (𝑋 + 𝑌 ) ∈ 𝐷 (C4)

A set of desirable gambles that respects the above constraints
is said to be coherent.9
We are finally ready to state the two IP deference princi-

ples I want to put forward:10

• Strong Total Trust (STT): Let 𝛱 be a regular credal
set, and 𝑅 be the definite description of a credal set
defined on the same domain. 𝛱 defers to 𝑅 iff for every
gamble 𝑋 : 𝛺 → ℝ, we have:

𝑋 ∈ 𝐷𝛱 ( · | [𝑋 ∈𝐷𝑅 ]) (9)

whenever this conditional credal set is defined, and
where [𝑋 ∈ 𝐷𝑅] = {𝜔𝑖 ∈ 𝛺 : 𝑋 ∈ 𝐷𝑅𝑖

}. If this is the
case, we say that 𝛱 S-Trusts 𝑅.

• Weak Total Trust (WTT): Let 𝛱 be a regular credal
set, and 𝑅 be the definite description of a credal set
defined on the same domain. 𝛱 defers to 𝑅 iff for every
gamble 𝑋 : 𝛺 → ℝ:

− 𝑋 ∉ 𝐷𝛱 ( · | [𝑋 ∈𝐷𝑅 ]) (10)

whenever this conditional credal set is defined. If this
is the case, we say that 𝛱 W-Trusts 𝑅.

Note that, if 𝛱 S-Trusts 𝑅, then 𝛱 also W-Trusts 𝑅. This is
because, if 𝑋 ∈ 𝐷, then −𝑋 ∉ 𝐷, whenever 𝐷 is coherent.
It’s also worth nothing that, since 𝛱 is assumed to be
regular on 𝛺, we can rewrite both principles as pointwise
constraints on the elements of 𝛱 . For example, (STT) is
equivalent to the requirement that for every 𝑋 such that
[𝑋 ∈ 𝐷𝑅] ≠ ∅:

𝜋(𝑋 | [𝑋 ∈ 𝐷𝑅]) > 0 for all 𝜋 ∈ 𝛱 (11)

9If 𝑃 is not regular, then defining 𝐷𝑃 as above does not guarantee
that the coherence axiom (C2) is respected. A common way to address this
is to define 𝐷𝑃 = {𝑋 : for every 𝑝 ∈ 𝑃, 𝑝 (𝑋 ) > 0} ∪ {𝑋 ∈ L(𝛺) :
𝑋 ≥ 0, 𝑋 ≠ 0}. However, this definition complicates the relationship
between the set 𝐷𝑃 (·|𝐴) of desirable gambles according to the conditional
credal set 𝑃 ( · |𝐴) , and the set {𝑋 : 𝑋𝐴 ∈ 𝐷𝑃 } of gambles which are
desirable for 𝛱 conditional on 𝐴. This relationship is central to the results
presented in this essay. I will leave the problem of extending these results
to accommodate non-regular credal sets to another time.

10The form and name of these principles were inspired by Dorst et al.
[5]. Later we will see that, when all credences involved are precise, both
STT and WTT are equivalent to the principle given by Dorst et al., called
“Total Trust”.
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If we then write [𝑟 (𝑋) > 0 for all 𝑟 ∈ 𝑅] to denote the
event {𝜔𝑖 : 𝑟 (𝑋) > 0 for all 𝑟 ∈ 𝑅𝑖}, we can further
rewrite condition (11) so that the conditioning event is also
expressed in pointwise terms:

𝜋(𝑋 | [𝑟 (𝑋) > 0 for all 𝑟 ∈ 𝑅]) > 0 for all 𝜋 ∈ 𝛱 (12)

The weaker principle (WTT) can be similarly rewritten as a
pointwise constraint.
Let’s see how these principles fare against the desiderata

(D1-D3) listed above.

7.1. D1: Capture Deference Intuitions

Starting from (D1), the intuition behind both STT andWTT
is similar to that behind Value Reflection. In both cases,
conditional on the expert’s imprecise credence having a
certain property, the agent’s imprecise credence should
match it in some way. In the case of Value Reflection the
property in question is the set of prevision values assigned
to a random variable, whereas in the case of STT it is
the disposition to accept a gamble corresponding to that
variable. So we can give the following informal definition
of STT: an agent defers to an expert when, conditional on
the expert finding a gamble desirable, the agent finds that
gamble desirable. WTT requires the agent to match the
expert in a weaker sense: an agent defers to an expert when,
conditional on the expert finding a gamble desirable, the
agent does not find it desirable to sell that gamble.
Both STT and WTT have an interesting alternative for-

mulation. Before introducing it, it is useful to define the
notion of strict preference between options.

Definition 2 (Strict preference) Let 𝑃 be a credal set, 𝑈
be a utility function, and 𝑎1, 𝑎2 be two options. We say that
𝑃 strictly prefers 𝑎1 to 𝑎2 under 𝑈, when:

(𝑋1 − 𝑋2) ∈ 𝐷𝑃 (13)

where 𝑋1 = 𝑈 (𝑎1, ·) is the gamble corresponding to option
𝑎1, and 𝑋2 = 𝑈 (𝑎2, ·) is the gamble corresponding to option
𝑎2.

Let 𝛱 be an agent’s credal set, and𝑈 the agent’s utility
function, and let 𝑅 be the definite description of another
credal set. Assume as usual that 𝑃 is regular. Consider a
binary decision problem A = {𝑎1, 𝑎2}, and assume that
learning 𝑅’s preferences (under 𝑈) on A does not affect
the agent’s utility function on A. Define a new option 𝑠1
which is equal to 𝑎2 whenever 𝑅 strictly prefers 𝑎2 to 𝑎1
under𝑈, and equal to 𝑎1 otherwise. Define 𝑠2 analogously.

𝑠1 =

{
𝑎2 if 𝑅 strictly prefers 𝑎2 to 𝑎1 under𝑈
𝑎1 otherwise.

(14)

𝑠2 =

{
𝑎1 if 𝑅 strictly prefers 𝑎1 to 𝑎2 under𝑈
𝑎2 otherwise.

(15)

You can think of 𝑠1 as a “black box” option which, if 𝑅 has
a definite preference in A, contains 𝑅’s preferred option,
and otherwise contains 𝑎1. Denote by [𝑠1 ≠ 𝑎1] the event
{𝜔𝑖 ∈ 𝛺 : 𝑅𝑖 strictly prefers 𝑎2 to 𝑎1}, and similarly for
[𝑠2 ≠ 𝑎2]. We can characterise STT in terms of these black
box options as follows:

Proposition 3 𝛱 S-Trusts 𝑅 iff for every binary decision
problem A = {𝑎1, 𝑎2}, the following hold:

1. If [𝑠1 ≠ 𝑎1] ≠ ∅, then 𝛱 strictly prefers 𝑠1 to 𝑎1,

2. if [𝑠2 ≠ 𝑎2] ≠ ∅, then 𝛱 strictly prefers 𝑠2 to 𝑎2.

Proof Assuming the utility of the options in A is not
affected by learning facts about the expert’s preferences,
we can treat options as gambles. That is, to each option 𝑎 𝑗

corresponds a gamble 𝑋 𝑗 which pays 𝑈 (𝑎 𝑗 , 𝑤𝑖) when 𝑤𝑖

is the case. Similarly, write 𝑆 𝑗 for the gamble which pays
𝑈 (𝑠 𝑗 , 𝑤𝑖) when 𝑤𝑖 is the case, where 𝑠 𝑗 is defined as above.
Then we have:

𝑆1 − 𝑋1 =

= 𝑋1 [(𝑋2 − 𝑋1) ∉ 𝐷𝑅] + 𝑋2 [(𝑋2 − 𝑋1) ∈ 𝐷𝑅] − 𝑋1

= 𝑋2 [(𝑋2 − 𝑋1) ∈ 𝐷𝑅] − 𝑋1 [(𝑋2 − 𝑋1) ∈ 𝐷𝑅]
= (𝑋2 − 𝑋1) [(𝑋2 − 𝑋1) ∈ 𝐷𝑅]

We say that 𝛱 strictly prefers 𝑠1 to 𝑎1 iff (𝑆1 − 𝑋1) ∈ 𝐷𝛱 ,
and by the above this is the case iff:

(𝑋2 − 𝑋1) [(𝑋2 − 𝑋1) ∈ 𝐷𝑅] ∈ 𝐷𝛱 (16)

which in turn holds iff, for every 𝜋 ∈ 𝛱 :

𝜋((𝑋2 − 𝑋1) [(𝑋2 − 𝑋1) ∈ 𝐷𝑅]) > 0 (17)

If [(𝑋2 − 𝑋1) ∈ 𝐷𝑅] ≠ ∅, then condition (17) is equivalent
to:

𝜋((𝑋2 − 𝑋1) | [(𝑋2 − 𝑋1) ∈ 𝐷𝑅]) > 0 (18)

Condition (18) holds for all 𝜋 ∈ 𝛱 iff, for all
𝜋 ∈ 𝛱 (·| [(𝑋2 − 𝑋1) ∈ 𝐷𝑅]):

𝜋(𝑋2 − 𝑋1) > 0 (19)

Clearly 𝛱 S-Trusts 𝑅 iff condition (19) holds for every pair
of gambles such that [(𝑋2 − 𝑋1) ∈ 𝐷𝑅] ≠ ∅. And since by
definition [𝑠1 ≠ 𝑎1] = [(𝑋2 − 𝑋1) ∈ 𝐷𝑅], this gives the
result.

A similar characterisation can be given for W-Trust:

Proposition 4 𝛱 W-Trusts 𝑅 iff for every binary problem
A = {𝑎1, 𝑎2}, the following hold:

362



Trust the Evidence

1. 𝛱 does not strictly prefer 𝑎1 to 𝑠1,

2. 𝛱 does not strictly prefer 𝑎2 to 𝑠2.

Proof Analogous to Proposition 3.

This gives us another intuitive way to think about deference.
𝛱 defers to 𝑅 when it values 𝑅’s preferences. For STT, this
means that a black box containing 𝑅’s preferred optionwhen
𝑅 has a definite preference, and containing 𝑎 𝑗 otherwise, is
at least as good as 𝑎 𝑗 according to 𝛱 . For WTT, it means
that this black box is not definitely worse than 𝑎 𝑗 according
to 𝛱 .

7.2. D2: Defer to Informed Self

To capture the intuition that evidence is valuable, we want
to show that a rational agent should defer to their updated
credences, both in the case of STT and in the case of WTT.
This will also ensure that both principles are consistent with
credal dilation in cases like the Coin Toss Puzzle (Example
1).
Since STT is the stronger constraint, it suffices to show

that agents S-Trust their updated credences.

Proposition 5 Let 𝛱 be a regular credal set, E =

{𝐸1, ..., 𝐸𝑘 } be a partition such that 𝛱 (·|𝐸𝑠) is defined
for every 𝐸𝑠 ∈ E, and denote by 𝑅 the credal set obtained
by updating 𝛱 on whichever 𝐸𝑠 ∈ E is true. Then 𝛱

S-Trusts 𝑅.

Proof Assume by way of contradiction that 𝛱 does
not S-Trust 𝑅. Then there is some gamble 𝑋 such that
𝑋 ∉ 𝐷𝛱 ( · | [𝑋 ∈𝐷𝑅 ]) , where [𝑋 ∈ 𝐷𝑅] ≠ ∅. Under the as-
sumption that 𝛱 is regular, this is equivalent to:

𝜋(𝑋) ≤ 0 for some 𝜋 ∈ 𝛱 (·| [𝑋 ∈ 𝐷𝑅]) (20)
⇔ 𝜋(𝑋 | [𝑋 ∈ 𝐷𝑅]) ≤ 0 for some 𝜋 ∈ 𝛱 (21)
⇔ 𝜋(𝑋 [𝑋 ∈ 𝐷𝑅]) ≤ 0 for some 𝜋 ∈ 𝛱 (22)
⇔ 𝑋 [𝑋 ∈ 𝐷𝑅] ∉ 𝐷𝛱 (23)

We know 𝑅 is obtained by updating 𝛱 on whichever 𝐸𝑠 ∈ E
is true, so we can rewrite this as:

𝑋
⋃

𝑠:𝑋 ∈𝐷𝛱 (·|𝐸𝑠 )

𝐸𝑠 ∉ 𝐷𝛱 (24)

And because the members of E are mutually exclusive, this
is the same as: ∑︁

𝑠:𝑋 ∈𝐷𝛱 (·|𝐸𝑠 )

𝑋𝐸𝑠 ∉ 𝐷𝛱 (25)

So there must be some 𝐸𝑠 such that 𝑋𝐸𝑠 ∉ 𝐷𝛱 , while also
𝑋 ∈ 𝐷𝛱 ( · |𝐸𝑠) . But as above, 𝑋 ∈ 𝐷𝛱 ( · |𝐸𝑠) is equivalent to
𝑋𝐸𝑠 ∈ 𝐷𝛱 , contradiction.

The fact that imprecise agents defer to their informed
selves shows that they value the evidence in the sense of
(VE-D). Yet Good’s theorem fails for these agents when we
extend imprecise decision theory to sequential problems,
and so imprecise agents do not value the evidence in the
sense of (VE-SC). Thus it’s easier to value the evidence in
the sense of (VE-D) than (VE-SC) for agents with imprecise
credences. In fact, note how the above result does not require
us to settle on a specific decision rule for imprecise agents,
nor does it require to exend this rule to the sequential case.
All that is needed to define our deference principles and to
prove Proposition 5 is the notion of desirability of gambles,
which is fairly uncontroversial.11
The above result also ensures that STT and WTT do

not clash with credal dilation in the same way as Value
Reflection did. In the Coin Toss Puzzle, as discussed in
Section 5, 𝑅 is your credal set updated onwhichever element
of the partition {𝐸𝐴,¬𝐸𝐴} is true. So by Proposition 5 your
initial credal set S-Trusts and W-Trusts 𝑅.

7.3. D3: Non-Revisionist

If both 𝛱 and all candidate experts 𝑅𝑖 are singleton sets
containing a single regular probability function (call their
elements 𝜋 and 𝑝𝑖), then both STT and WTT are equivalent
to the following deference principle, introduced by Dorst
et al. [5].

• Total Trust 𝜋 defers to 𝑝 iff for every gamble 𝑋:

𝜋(𝑋 | [𝑝(𝑋) ≥ 0]) ≥ 0 (26)

whenever this conditional prevision is defined. If this
is the case, we say that 𝜋 Totally Trusts 𝑝.

A thorough defense of this principle can be found in Dorst
et al. [5]. Here I will just mention one reason to prefer Total
Trust to Precise Reflection, since it will be relevant for the
comparison of imprecise deference principles in the next
section. The reason is that Precise Reflection is known to
be problematic in cases where modest, i.e. where some
candidate expert credence 𝑝𝑖 , is such that 𝑝𝑖 ( [𝑝 = 𝑝𝑖]) < 1.
Here is an example:

Example 2 You are in a room with three scientists, who
have precise credences 𝑝1, 𝑝2, and 𝑝3 defined over the same
finite possibility space 𝛺 = {𝑤1, 𝑤2, 𝑤3}. Their credences

11This notion of desirability arguably does impose some constraints
on the decision rule. For example, an imprecise agent with credal set 𝛱
who uses the 𝛤-maximin decision rule may choose the constant gamble 0
over some other gamble 𝑋 , even though 𝑋 ∈ 𝐷𝛱 . Hence supporters of
𝛤-maximin may find our notion of desirability inadequate. But there are
independent reasons to reject 𝛤-maximin [15], and the two most popular
IP decision rules, E-admissibility and Maximality, coincide on binary
decision problems, and are consistent with our notion of desirability [17].
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are defined as follows:

𝑝𝑖 ({𝜔 𝑗 }) =
{
0.8 if 𝑖 = 𝑗 ;
0.1 otherwise.

(27)

so that 𝑝 is a definite description of the credence of the most
accurate scientist in the room.

The key feature of this example is that the candidate experts
are modest: if {𝜔𝑖} is the case, the most accurate scientist
in the room, who has credence 𝑝𝑖 , is not certain that
they are the most accurate scientist in the room, since
𝑝𝑖 ( [𝑝 = 𝑝𝑖]) = 𝑝𝑖 ({𝜔𝑖}) = 0.8. We also have that {𝜔1} ≡
[𝑝({𝜔1}) = 0.8], because from the fact that the most
accurate scientist assigns probability 0.8 to 𝜔1 we can infer
that their credence is 𝑝1. So Precise Reflection imposes the
following constraint on your credence 𝜋:

𝜋({𝜔1}|{𝜔1}) = 𝜋({𝜔1}| [𝑝({𝜔1}) = 0.8])
= 0.8 (by Reflection)
< 1

which violates the ratio formula. Hence, if you are coherent,
you cannot defer to the most accurate scientist in Example
2 according to Reflection. On the other hand, it can be
shown that 𝜋 Totally Trusts (and therefore also S/W-Trust)
𝑝 in Example 2 iff 𝜋 is a convex combination of 𝑝1, 𝑝2,
and 𝑝3.12 If we think that it should be possible to defer to
modest experts in cases like Example 2, then Total Trust
does better than Reflection as a precise deference principle.

8. An Alternative IP Deference Principle
This final section compares STT/WTT with an alternative
IP deference principle given in the literature, which I will
call Identity Reflection.13

• Identity Reflection: Let 𝛱 be an agent’s credal set
and 𝑅 the definite description of a credal set defined
on the same domain. Then 𝛱 defers to 𝑅 iff for any
credal set 𝑀:

𝛱 (·| [𝑅 = 𝑀]) = 𝑀 (28)

whenever this conditional credal set is defined. If this
is the case, we say 𝛱 I-Reflects 𝑅.

Much like Value Reflection, this principle is intuitively
appealing. If you defer to 𝑅 then, given a full specification
𝑀 of a credal set, your credal set conditional on 𝑅 = 𝑀

should be 𝑀. So Identity Reflection satisfies desideratum
(D1).

12This follows from Theorem B.14 in Dorst et al. [5]
13Similar principles are mentioned in [16, 14]. The name and formula-

tion given here is due to Moss [12].

Identity Reflection also addresses the clash with credal
dilation discussed in Section 5. Indeed, it’s easy to show that
the following analogue of Proposition 5 holds for Identity
Reflection:

Proposition 6 Let 𝛱 be a regular credal set, E =

{𝐸1, ..., 𝐸𝑘 } be a partition such that 𝛱 (·|𝐸𝑠) is defined
for every 𝐸𝑠 ∈ E, and denote by 𝑅 the credal set obtained
by updating 𝛱 on whichever 𝐸𝑠 ∈ E is true. Then 𝛱

I-Reflects 𝑅.

So coherent credal sets always defer to their updated selves
according to Identity Reflection, showing that Identity
Reflection satisfies desideratum (D2). This implies that
imprecise agents value the evidence in the sense of (VE-D),
and also that Identity Reflection is consistent with credal
dilation in the Coin Toss Puzzle example.
A potential problem for Identity Reflection is that it

constrains the agent’s opinions conditional on a full specifi-
cation of the expert’s credal set 𝑅. It is natural to wonder
whether and how this principle constrains the agent’s opin-
ions conditional on hypotheses about more local features
of the expert’s credal set. Moss has expressed this worry as
follows (focusing on the case where 𝑅 is your future credal
set):

Fans of imprecise credences should value Re-
flection principles that are easy to operationalize.
Identity Reflection constrains your credences in
light of your opinions about extremely strong
hypotheses. A more valuable Reflection principle
would constrain your current credences in light
of more targeted opinions about your future cre-
dences —for instance, constraining your current
imprecise credence in 𝑝 in light of your estimates
of your future imprecise credence in that same
proposition. [12][p. 633]

The next result responds to this worry by showing that
Identity Reflection does constrain your opinions about a
proposition (or more generally, about a random variable)
conditional on hypotheses detailing 𝑅’s opinions about that
proposition (random variable). In particular, in order to
I-Reflect 𝑅 you must S-Trust 𝑅.

Proposition 7 Let 𝛱 be a regular credal set, and 𝑅 the
definite description of a credal set defined on the same
domain. If 𝛱 I-Reflects 𝑅, then 𝛱 S-Trusts 𝑅.

Proof Assume 𝛱 I-Reflects 𝑅. Then let 𝑋 : 𝛺 → ℝ such
that [𝑋 ∈ 𝐷𝑅] ≠ ∅. Then we have:

𝑋 [𝑋 ∈ 𝐷𝑅] = 𝑋
⋃

𝑅𝑖 :𝑋 ∈𝐷𝑅𝑖

[𝑅 = 𝑅𝑖] (29)

=
∑︁

𝑅𝑖 :𝑋 ∈𝐷𝑅𝑖

𝑋 [𝑅 = 𝑅𝑖] . (30)
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But for every 𝑅𝑖 such that 𝑋 ∈ 𝐷𝑅𝑖
, we know by Iden-

tity Reflection that 𝛱 (·| [𝑅 = 𝑅𝑖]) = 𝑅𝑖 , and therefore
𝑋 ∈ 𝐷𝛱 ( · | [𝑅=𝑅𝑖 ]) . Since 𝛱 is regular, this in turn implies
𝑋 [𝑅 = 𝑅𝑖] ∈ 𝐷𝛱 . So each gamble in the sum above be-
longs to 𝐷𝛱 , and by coherence their sum belongs to 𝐷𝛱 .
Thus we have:

𝑋 [𝑋 ∈ 𝐷𝑅] ∈ 𝐷𝛱 (31)

which, since [𝑋 ∈ 𝐷𝑅] ≠ ∅ and 𝛱 is regular, implies
𝑋 ∈ 𝐷𝛱 ( · | [𝑋 ∈𝐷𝑅 ]) .

Hence, despite its formulation, Identity Reflection does
manage to impose substantive constraints on the agent’s
credences conditional on hypotheses about local features
of the expert’s credence. It requires that, conditional on the
expert finding a gamble desirable, the agent must find that
gamble desirable.
Proposition 7 shows that Identity Reflection is no weaker

than STT. In fact, we can show Identity Reflection is strictly
stronger than STT. That is, we can find 𝛱 and 𝑅 such that 𝛱
S-Trusts 𝑅, but 𝛱 does not I-Reflect 𝑅. To see this, note that
in the setup of Example 2, Identity Reflection fails in the
same way as Precise Reflection does, since conditioning on
[𝑝1 ({𝜔1}) = 0.8] is the same as conditioning on [𝑝 = 𝑝1].
Hence, in Example 2, no coherent 𝜋 I-Reflects 𝑝. Indeed,
we can prove the following more general result:

Proposition 8 Let 𝛱 be a regular credal set and 𝑅 the
rigid designator of a credal set. If there is some 𝜔𝑖 ∈ 𝛺

such that 𝑅𝑖 ( [𝑅 = 𝑅𝑖]) ≠ {1}, then 𝛱 does not I-Reflect 𝑅.

This shows that, according to Identity Reflection, an agent
cannot defer to an expert if it is possible that this expert is
modest.
But we have seen that many coherent credences Totally

Trust 𝑝 in Example 2. And because STT/WTT are both
equivalent to Total Trust in the precise case, these credences
also S/W-Trust 𝑝. So if we think it should be possible to
defer to modest experts, this gives us a reason to prefer
STT/WTT over Identity Reflection as a deference principle
for imprecise credences.

9. Conclusion
Rational agents value the evidence. This intuition can be
captured in terms of sequential decision-making, as the
claim that rational agents never pay to avoid free evidence
(VE-SC). Good’s theorem shows agents with precise cre-
dences value the evidence in this sense. But the theorem
fails for agents with imprecise credences, raising a worry
that imprecise probabilities are inadequate for a theory of
rationality.
This essay looks at a differentway to capture our intuitions

about the value of evidence, which does not rely on a theory

of sequential decision-making, according to which an agent
values the evidence when they defer to their informed selves
(VE-D). According to popular notions of deference for
precise probabilities, agents with precise credences also
value the evidence in this sense. To extend this result to
imprecise probabilities, I introduce two imprecise deference
principles, STT and WTT. These principles have a natural
characterisation in terms of the desirability of black-box
options, they are consistent with credal dilation, and collapse
to a reasonable deference principle in the precise case. Using
these deference principles, I show that coherent imprecise
agents defer to their informed selves, and thus value the
evidence according to (VE-D). Finally, I show that Identity
Reflection, an alternative IP deference principle discussed
in the literature, is strictly stronger than STT and WTT. In
particular, it’s impossible for an agent to defer to a modest
experts under Identity Reflection, whereas modest experts
can be deferred to under STT/WTT.
An open question is whether STT/WTT can be modified

to produce interesting constraints, of the kind expressed by
Propositions 3 and 4, for arbitrary decision problems, instead
of being limited to cases where the option set is binary. This
limitation is related to the fact that whether 𝛱 defers to 𝑅
under STT/WTT depends only on the corresponding sets
of desirable gambles 𝐷𝛱 and 𝐷𝑅. But different credal sets
may produce the same set of desirable gambles even when
they make importantly different probabilistic judgements.
In particular, the E-admissible choices for a credal set in a
decision problem are not generally determined by the set
of desirable gambles associated to that credal set, which
only captures binary preference. A future goal would be to
define an IP deference principle that is sensitive to these
differences.
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