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Abstract
Neighbourhood or distortion models are particular im-
precise probability models that appear by creating a
neighbourhood around a probability measure given a
distorting function and a distortion parameter. This
paper investigates the distortion models obtained when
considering the Euclidean distance or the Kullback-
Leibler divergence as distorting function. We analyse
the main properties of the credal sets induced by these
two distorting functions as well as the main properties
of the associated coherent lower previsions. To con-
clude the paper, we compare these two models with
other well-known distortion models: the pari-mutuel,
linear vacuous, constant odds ratio and total variation
models.
Keywords: Euclidean distance, Kullback-Leibler di-
vergence, distortion model, lower prevision, credal
set

1. Introduction
An important goal in statistical or probabilistic inferences is
that of being robust, meaning that small changes in the data
do not produce big changes in the results. To achieve the goal
of robustifying the probabilistic model some alternatives are
to transform a probabilitymeasure bymeans of an increasing
function [5, 6], to consider almost linear transformations of
the probability measure [9], or more generally to consider
distortion or neighbourhoood models, as suggested in [17].
These models create a neighbourhood around a probability
measure and for this aim two tools are needed: a distorting
function to compare probability measures and a distortion
parameter measuring the amount of imprecision to be added
to the model.
In our previous papers [12, 22, 23] we performed a

detailed analysis of distortion or neighbourhood models.
More in detail, (i) we showed that these models include
as particular cases direct transformations of a probability
measure by means of an increasing function, as was done
for example by Bronevich [5, 6] (see [22, Prop.2]); (ii) we
proved that some well-known models within the impre-
cise probability theory can be seen as neighbourhood or
distortion models. This is the case of the linear vacuous
[17, 34], pari-mutuel [21, 29, 34] or constant odds ratio

models [34] (see [22, Secs.4-6]); (iii) we investigated the
distortion models induced by some well-known distances
such as the total variation, Kolmogorov or 𝐿1 distances (see
[23, Secs.2-4]); (iv) we performed a comparative analysis
between the six models mentioned above (see [23, Sec.5]);
and finally (v) we analysed the behaviour of these six models
under processing [12]. Furthermore, in our last paper [1]
we explained how to use distortion models as an alternative
approach to that in [24, 25, 26, 27] to estimate human error
probabilities.
A crucial point in the use of distortion or neighbourhood

models is the choice of the distorting function. Apart from
the distortion models studied in our previous papers, it may
be intriguing to consider the use of the Euclidean distance
or the Kullback-Leibler divergence as distorting functions.
Their use is more than reasonable: on the one hand, when
speaking about distances the Euclidean distance is of utmost
relevance, and on the other hand it is unquestionable that
the Kullback-Leibler divergence possesses very appropriate
properties for comparing probability measures, and it has
been widely used in statistics [13], information theory [4] or
machine learning [14], amongmany other fields. Evenmore,
the Kullback-Leibler divergence has already been used to
create a distortion of a credal set under the terminology
discounting credal sets [28, Sec.4]. This approach consists
in distorting any probability measure in the credal set with
the same factor and later taking the convex hull of the union
of all the models. This approach is slightly different than
ours, because we aim at distorting a probability measure
creating a credal set and investigating the properties of the
obtained model, instead of directly distorting a credal set.
Therefore, the goal of this paper is to perform a detailed

analysis of the neighbourhood or distortion models induced
by the Euclidean distance and Kullback-Leibler divergence.
For this aim, after introducing some basic notions in Sec-
tion 2, in Sections 3 and 4 we analyse the properties of the
closed and convex sets of probability measures determined
by both models. We also analyse the sets of extreme points
and try to obtain an expression of the associated coherent
lower previsions. Moreover, we study if these models are
closed under conditioning with respect to the regular exten-
sion. Later, in Section 5 we compare the models induced
by the Euclidean distance and Kullback-Leibler divergence
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with the linear vacuous, pari-mutuel and constant odds ratio
models and the neighbourhood model induced by the total
variation distance. This comparison is done in terms of
the amount of imprecision and the properties satisfied by
the associated coherent lower previsions. We conclude the
paper with some final comments in Section 6. Due to space
limitations, proofs have been omitted.

2. Preliminaries
In this paper we consider a finite possibility space X =

{𝑥1, . . . , 𝑥𝑛}. We denote by ℙ(X) the set of probability
measures defined on P(X) and by ℙ∗ (X) the subset of
probability measures assigning strictly positive probability
to the non-empty events.

2.1. Credal Sets and (Coherent) Lower Previsions

In this subsection we take a quick look at credal sets and
(coherent) lower previsions, even if we assume the reader
to be familiar with these basic notions. We refer to [2, 34]
for a detailed introduction.
A function 𝑓 : X → ℝ is called a gamble, and the set of

all the gambles inX is denoted by L(X). A lower prevision
is a function 𝑃 : L(X) → ℝ and its conjugate upper
prevision follows from the duality relation 𝑃( 𝑓 ) = −𝑃(− 𝑓 )
for any 𝑓 ∈ L(X).
A lower prevision determines a closed and convex set of

probability measures, usually called credal set, given by:

M(𝑃) = {𝑃 ∈ ℙ(X) | 𝑃( 𝑓 ) ≥ 𝑃( 𝑓 ) ∀ 𝑓 ∈ L(X)}, (1)

where 𝑃( 𝑓 ) denotes the prevision or expectation of 𝑓 with
respect to the probability measure 𝑃. The lower prevision
𝑃 is called coherent when

𝑃( 𝑓 ) = min{𝑃( 𝑓 ) | 𝑃 ∈ M(𝑃)} ∀ 𝑓 ∈ L(X).

Credal sets (i.e., closed and convex sets of probability
measures) and coherent lower previsions are in one-to-one
correspondence: a credal set determines a coherent lower
prevision by taking lower envelopes, and the initial credal
set can be retrieved by using Equation (1).
Moreover, since the credal set is a closed and convex set,

it is characterised by its extreme points. 𝑃 ∈ M(𝑃) is an
extreme point if given 𝑃1, 𝑃2 ∈ M(𝑃) and 𝛼 ∈ (0, 1) such
that 𝑃 = 𝛼𝑃1 + (1 − 𝛼)𝑃2, then 𝑃 = 𝑃1 = 𝑃2. The set of
extreme points ofM(𝑃) is denoted by ext

(
M(𝑃)

)
, and it

follows thatM(𝑃) is the convex hull of ext
(
M(𝑃)

)
.

Whenwe restrict a coherent lower prevision to the domain
{𝐼𝐴 | 𝐴 ⊆ X} we obtain a coherent lower probability. In
this case we use the notation 𝑃(𝐴) instead of 𝑃(𝐼𝐴) for any
𝐴 ⊆ X. That is, we identify the lower probability of an
event with the lower prevision of its indicator. In a similar

manner, we define the coherent upper probability by means
of the conjugacy relation 𝑃(𝐴) = 1−𝑃(𝐴𝑐) for any 𝐴 ⊆ X.
In general, the set of probability measures compatible with
the coherent lower probability is greater than the initial
credal set:

{𝑃 ∈ ℙ(X) | 𝑃(𝐴) ≥ 𝑃(𝐴) ∀𝐴 ⊆ X} ⊇
{𝑃 ∈ ℙ(X) | 𝑃( 𝑓 ) ≥ 𝑃( 𝑓 ) ∀ 𝑓 ∈ L(X)} = M(𝑃).

Both sets of probability measures coincide when the co-
herent lower prevision satisfies in addition the property of
2-monotonicity, meaning that:

𝑃( 𝑓 ∧ 𝑔) + 𝑃( 𝑓 ∨ 𝑔) ≥ 𝑃( 𝑓 ) + 𝑃(𝑔) ∀ 𝑓 , 𝑔 ∈ L(X),

where ∧ and ∨ denote the pointwise minimum and maxi-
mum, respectively. This inequality restricted to indicators
of events becomes:

𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∪ 𝐵) ≥ 𝑃(𝐴) + 𝑃(𝐵) ∀𝐴, 𝐵 ⊆ X,

and when the coherent lower probability satisfies it, 𝑃 is
called 2-monotone on events.
When the coherent lower prevision satisfies the property

of 2-monotonicity, the restriction to events (i.e., the coherent
lower probability) determines the coherent lower prevision
by using the Choquet integral [8]:

𝑃( 𝑓 ) = min 𝑓 +
∫ max 𝑓

min 𝑓
𝑃({𝑥 ∈ X | 𝑓 (𝑥) ≥ 𝑡})d𝑡. (2)

An additional property of 2-monotone lower previsions is
that their credal set has at most 𝑛! extreme points and that
they can be easily computed [7, 30].

2.2. Updating a Coherent Lower Prevision

In the imprecise probability framework there is not a unique
way of defining a conditional coherent lower prevision
[19, 20]. One of these possibilities is to use the regular
extension [34], defined by:

𝑃( 𝑓 | 𝐵) = inf
{
𝑃( 𝑓 |𝐵) | 𝑃 ∈ M(𝑃), 𝑃(𝐵) > 0

}
whenever 𝑃(𝐵) > 0, and 𝑃( 𝑓 | 𝐵) = min𝑥∈X 𝑓 (𝑥) when
𝑃(𝐵) = 0. Here, 𝑃( 𝑓 | 𝐵) denotes the prevision or expecta-
tion of 𝑓 with respect to the probability measure 𝑃(· | 𝐵)
given by 𝑃(𝐴 | 𝐵) = 𝑃 (𝐴∩𝐵)

𝑃 (𝐵) for any 𝐴 ⊆ X. When more-
over 𝑃 is 2-monotone, there is a simple expression for the
restriction of 𝑃(· | 𝐵) to events whenever 𝑃(𝐵) > 0, given
by [33, Thm.7.2]:

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴𝑐 ∩ 𝐵)
(3)

whenever 𝑃(𝐴𝑐 ∩ 𝐵) > 0, and 𝑃(𝐴 | 𝐵) = 1 otherwise.
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2.3. Distortion Models

Distortion or neighbourhood models [22, 23] are obtained
by doing a distortion of a probability measure or by creating
a neighbourhood around a probability measure. Formally,
given a probability measure 𝑃0, a distortion factor 𝛿 > 0
and a distorting function 𝑑 : ℙ(X) × ℙ(X) → ℝ+, we
define the closed ball:

𝐵𝛿𝑑 (𝑃0) = {𝑃 ∈ ℙ(X) | 𝑑 (𝑃, 𝑃0) ≤ 𝛿}

as well as its associated coherent lower prevision given by:

𝑃𝑑 ( 𝑓 ) = inf
{
𝑃( 𝑓 ) | 𝑃 ∈ 𝐵𝛿𝑑 (𝑃0)

}
.

The distorting function 𝑑may, or not, satisfy some properties
such as ([22, Sec.3]):

Ax.1 Positive definiteness: 𝑑 (𝑃1, 𝑃2) = 0 if and only if
𝑃1 = 𝑃2.

Ax.2 Triangle inequality: 𝑑 (𝑃1, 𝑃3) ≤ 𝑑 (𝑃1, 𝑃2) +
𝑑 (𝑃2, 𝑃3) for every 𝑃1, 𝑃2, 𝑃3 ∈ ℙ(X).

Ax.3 Symmetry: 𝑑 (𝑃1, 𝑃2) = 𝑑 (𝑃2, 𝑃1) for every 𝑃1, 𝑃2 ∈
ℙ(X).

Ax.4 Convexity: 𝑑 (𝛼𝑃1 + (1 − 𝛼)𝑃2, 𝑃3) ≤
max{𝑑 (𝑃1, 𝑃3), 𝑑 (𝑃2, 𝑃3)} for every 𝛼 ∈ [0, 1]
and 𝑃1, 𝑃2, 𝑃3 ∈ ℙ(X).

Ax.5 Continuity: for every 𝑃, 𝑃1, 𝑃2 ∈ ℙ(X) and every
Y > 0, there exists 𝛿 > 0 such that max𝐴⊆X |𝑃1 (𝐴) −
𝑃2 (𝐴) | < 𝛿 implies |𝑑 (𝑃1, 𝑃) − 𝑑 (𝑃2, 𝑃) | < Y.

Even if none of these properties is imposed to the distorting
function, satisfying (some of) themwould guarantee that the
ball 𝐵𝛿

𝑑
(𝑃0) satisfies good topological or analytical proper-

ties. As an excellent example, we may mention that in gen-
eral the probabilistic information given by 𝑃𝑑 and 𝐵

𝛿
𝑑
(𝑃0)

may be different in the sense that 𝐵𝛿
𝑑
(𝑃0) ≠ M(𝑃𝑑); nev-

ertheless, whenever the distorting function is continuous
(Ax.5) and convex (Ax.4) both sets of probability measures
coincide: 𝐵𝛿

𝑑
(𝑃0) = M(𝑃𝑑) [22, Prop.3.1].

In our previous papers [22, 23] we analysed some well-
known examples of distortion models such as:

• The Linear Vacuous (LV) model [17, 34], given by:

𝑃𝐿𝑉 (𝐴) = (1 − 𝛿)𝑃0 (𝐴) ∀𝐴 ⊂ X

and 𝑃𝐿𝑉 (X) = 1.

• The Pari Mutuel (PMM) model [21, 29, 34], given by:

𝑃𝑃𝑀𝑀 (𝐴) = max{(1 + 𝛿)𝑃0 (𝐴) − 𝛿, 0} ∀𝐴 ⊆ X.

• The Constant Odds Ratio (COR) [3, 31, 34], given by
the coherent lower prevision 𝑃𝐶𝑂𝑅 defined by means
of the implicit equation:

(1 − 𝛿)𝑃0
(
( 𝑓 − 𝑃( 𝑓 ))+

)
= 𝑃0

(
( 𝑓 − 𝑃( 𝑓 ))−

)
for any 𝑓 ∈ L(X), where 𝑔+ = max{𝑔, 0} and 𝑔− =

max{−𝑔, 0}.

• The Total Variation (TV) model [16], given by:

𝑃𝑇𝑉 (𝐴) = max{𝑃0 (𝐴) − 𝛿, 0} ∀𝐴 ⊂ X

and 𝑃𝑇𝑉 (X) = 1.

The LV, PMM and TV models are 2-monotone, hence
their extension to gambles are obtained by applying the
Choquet integral as in Equation (2).Moreover, the TVmodel
considers as distorting function the TV-distance, hence it
immediately satisfies axioms Ax.1–Ax.3, besides continuity
and convexity. The five properties are also satisfied by the
distorting function associated with the COR model. The
distorting function associated with the LV do not satisfy
symmetry, while that associated with the PMM satisfies
neither symmetry nor the triangle inequality. We refer to
[23, Sec.5.2] for a survey about these properties.
In our former studies we assumed that 𝑃0 ∈ ℙ∗ (X)

and that the distortion parameter is small enough so that
𝐵𝛿
𝑑
(𝑃0) ⊆ ℙ∗ (X), even if some general results were given

in [23, Appendix B]. In what follows, we perform a detailed
study of the distortion models induced by the Euclidean
distance and the Kullback-Leibler divergence, and we make
throughout this same technical assumption.

3. Distortion Model Induced by the Euclidean
Distance

The Euclidean distance between two probability measures
𝑃1, 𝑃2 is given by:

𝑑𝐸 (𝑃1, 𝑃2) =

√√
𝑛∑︁
𝑖=1

(
𝑃1 ({𝑥𝑖}) − 𝑃2 ({𝑥𝑖})

)2
.

Being a distance it satisfies positive definiteness (Ax.1), the
triangle inequality (Ax.2) and symmetry (Ax.3), but it is
continuous (Ax.5) and convex (Ax.4) too, so

𝐵𝛿𝐸 (𝑃0) =
{
𝑃 ∈ ℙ(X) | 𝑑𝐸 (𝑃, 𝑃0) ≤ 𝛿

}
is a closed and convex set of probability measures (i.e, a
credal set) [22, Prop.3.1] whose associated coherent lower
prevision 𝑃𝐸 is given by:

𝑃𝐸 ( 𝑓 ) = min
𝑃∈𝐵𝛿

𝐸
(𝑃0)

𝑃( 𝑓 ) ∀ 𝑓 ∈ L(X). (4)
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Moreover, the ball 𝐵𝛿
𝐸
(𝑃0) can be expressed as:

𝐵𝛿𝐸 (𝑃0) =
{
𝑃 ∈ ℙ(X) | 𝑃( 𝑓 ) ≥ 𝑃𝐸 ( 𝑓 ) ∀ 𝑓 ∈ L(X)

}
.

Next, we perform a detailed analysis of this model.

3.1. Expression of the Lower Prevision 𝑃𝐸

We start proving that the minimum value in Equation (4) is
attained in the probability measures at distance 𝛿 from 𝑃0.

Proposition 1 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such
that 𝐵𝛿

𝐸
(𝑃0) ⊆ ℙ∗ (X). Given a non-constant gamble 𝑓 , if

𝑃𝐸 ( 𝑓 ) = 𝑃( 𝑓 ) or 𝑃𝐸 ( 𝑓 ) = 𝑃( 𝑓 ) for some 𝑃 ∈ 𝐵𝛿
𝐸
(𝑃0),

then 𝑑𝐸 (𝑃, 𝑃0) = 𝛿.

This result helps us to find an explicit form of 𝑃𝐸 ( 𝑓 ), that
can be obtained by solving an optimisation problem. For
this aim, denote the probability measure 𝑃 ∈ 𝐵𝛿

𝐸
(𝑃0) as

𝑃({𝑥𝑖}) = 𝑃0 ({𝑥𝑖}) + 𝛼𝑖 ∀𝑖 = 1, . . . , 𝑛, (5)

where the values 𝛼1, . . . , 𝛼𝑛 satisfy
∑𝑛
𝑖=1 𝛼𝑖 = 0. Moreover,

since 𝑃 ∈ 𝐵𝛿
𝐸
(𝑃0), it holds that:

𝑑𝐸 (𝑃, 𝑃0)2 =
𝑛∑︁
𝑖=1

(
𝑃({𝑥𝑖}) − 𝑃0 ({𝑥𝑖})

)2
=

𝑛∑︁
𝑖=1

𝛼2𝑖 ≤ 𝛿2.

Finally, if we express a gamble 𝑓 as 𝑓 =
∑𝑛
𝑖=1 𝑎𝑖 𝐼{𝑥𝑖 }, its

prevision is given by:

𝑃( 𝑓 ) =
𝑛∑︁
𝑖=1

𝑎𝑖
(
𝑃0 ({𝑥𝑖}) + 𝛼𝑖

)
= 𝑃0 ( 𝑓 ) +

𝑛∑︁
𝑖=1

𝑎𝑖𝛼𝑖 .

Hence, in order to obtain 𝑃𝐸 and 𝑃𝐸 we set up the optimi-
sation problem:

min
𝛼1 ,...,𝛼𝑛

/ max
𝛼1 ,...,𝛼𝑛

𝑃0 ( 𝑓 ) +
𝑛∑︁
𝑖=1

𝑎𝑖𝛼𝑖

subject to:
𝑛∑︁
𝑖=1

𝛼𝑖 = 0
𝑛∑︁
𝑖=1

𝛼2𝑖 = 𝛿2. (6)

The former condition in Equation (6) guarantees that we
obtain a probability measure 𝑃 as in Equation (5), while
the latter guarantees that 𝑑𝐸 (𝑃, 𝑃0) = 𝛿.

Theorem 2 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐸
(𝑃0) ⊆ ℙ∗ (X). For any gamble 𝑓 ∈ L(X) given by

𝑓 =
∑𝑛
𝑖=1 𝑎𝑖 𝐼{𝑥𝑖 }, it holds that:

𝑃𝐸 ( 𝑓 ) = 𝑃0 ( 𝑓 ) − 𝛿
√
𝑛𝑆 𝑓 , 𝑃𝐸 ( 𝑓 ) = 𝑃0 ( 𝑓 ) + 𝛿

√
𝑛𝑆 𝑓

where 𝑓 = 1
𝑛

∑𝑛
𝑖=1 𝑎𝑖 and 𝑆2

𝑓
= 1
𝑛

∑𝑛
𝑖=1

(
𝑎𝑖 − 𝑓

)2.

Also, by considering indicator of events we obtain the
associated coherent lower and upper probabilities.

Corollary 3 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐸
(𝑃0) ⊆ ℙ∗ (X). For any 𝐴 ⊆ X, it holds that:

𝑃𝐸 (𝐴) = 𝑃0 (𝐴) − 𝛿

√︂
|𝐴| (𝑛 − |𝐴|)

𝑛
. (7)

𝑃𝐸 (𝐴) = 𝑃0 (𝐴) + 𝛿

√︂
|𝐴| (𝑛 − |𝐴|)

𝑛
. (8)

3.2. Properties of 𝐵𝛿
𝐸
(𝑃0) and 𝑃𝐸 , 𝑃𝐸

In this subsection we investigate some properties of the
ball 𝐵𝛿

𝐸
(𝑃0) and its associated coherent lower and upper

prevision. We start characterising the set of extreme points
of 𝐵𝛿

𝐸
(𝑃0). We already know from Proposition 1 that the

extreme points are in the boundary of 𝐵𝛿
𝐸
(𝑃0). We next

prove the converse: all the probability measures on the
boundary are extreme points.

Proposition 4 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐸
(𝑃0) ⊆ ℙ∗ (X). It holds that:

ext
(
𝐵𝛿𝐸 (𝑃0)

)
=
{
𝑃 ∈ ℙ∗ (X) | 𝑑𝐸 (𝑃, 𝑃0) = 𝛿

}
.

From this result we deduce that 𝐵𝛿
𝐸
(𝑃0) has infinitely many

extreme points. Following our comments at the end of
Section 2.1, this means that 𝑃𝐸 is not 2-monotone because
2-monotone lower previsions have at most 𝑛! different
extreme points. In spite of these comments, 𝑃𝐸 satisfies the
property of 2-monotonicity on events.

Proposition 5 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐸
(𝑃0) ⊆ ℙ∗ (X). Then, 𝑃𝐸 is 2-monotone on events.

We conclude this subsection showing an example of an
Euclidean model.

Example 1 Consider the probability measure 𝑃0 =

(0.5, 0.3, 0.2) and 𝛿 = 0.1. The graphical representation
of the credal set 𝐵𝛿

𝐸
(𝑃0), given in Figure 1, shows that the

ball is a circle around 𝑃0. There, we can also see the credal
set determined by the restriction to events, given by:{

𝑃 ∈ ℙ∗ (X) | 𝑃(𝐴) ≥ 𝑃𝐸 (𝐴) ∀𝐴 ⊆ X
}
,

where the values 𝑃𝐸 (𝐴) are given in Equations (7-8),
respectively. Since 𝑃 is 2-monotone on events but not on
gambles, both credal sets do not coincide. �

3.3. Conditioning 𝑃𝐸

We now want to update an Euclidean model 𝐵𝛿
𝐸
(𝑃0), and

we wonder whether the updated model 𝑃𝐸 (· | 𝐵) obtained
by applying regular extension corresponds to an Euclidean
model with respect to 𝑃0 (· | 𝐵) and a distortion parameter
𝛿∗. We show in the next example that the answer is negative.
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𝑃({𝑥1})

𝑃({𝑥2})

𝑃({𝑥3})

𝑃0

𝐵𝛿
𝐸
(𝑃0)

Figure 1: Graphical representation of the probability mea-
sure 𝑃0 (in red), the credal set 𝐵𝛿𝐸 (𝑃0) (filled in
light gray) and the credal set determined by the
restriction to events (filled in dark gray).

Example 2 Consider a four element possibility space
X = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and the probability measure 𝑃0 given
by 𝑃0 ({𝑥𝑖}) = 1/4 for 𝑖 = 1, . . . , 4. Taking 𝛿 = 1

5
√
3
, we

obtain the following values of 𝑃𝐸 on events:

|𝐴| 1 2 3 4
𝑃𝐸 (𝐴) 0.15 0.5 − 𝛿 0.65 1
𝑃𝐸 (𝐴) 0.35 0.5 + 𝛿 0.85 1

Since 𝑃𝐸 is 2-monotone on events, we compute 𝑃𝐸 (𝐴 | 𝐵)
(for 𝐵 ≠ ∅ and 𝐴 ⊆ 𝐵) by applying Equation (3):

𝑃𝐸 (𝐴 | 𝐵) =

𝑃0 (𝐴 ∩ 𝐵) − 𝛿

√︃
|𝐴∩𝐵 | (4−|𝐴∩𝐵 |)

4

𝑃0 (𝐵) − 𝛿

√︃
|𝐴∩𝐵 | (4−|𝐴∩𝐵 |)

4 + 𝛿

√︃
|𝐴𝑐∩𝐵 | (4−|𝐴𝑐∩𝐵 |)

4

. (9)

Taking 𝐵 = {𝑥1, 𝑥2, 𝑥3}, if 𝑃𝐸 was an Euclidean model
determined by 𝑃∗

0 ∈ ℙ(𝐵) and 𝛿∗ we would have:

𝑃𝐸 (𝐴 | 𝐵) = 𝑃∗
0 (𝐴) − 𝛿∗

√︂
|𝐴| (3 − |𝐴|)

3
∀𝐴 ⊆ 𝐵. (10)

Moreover, since 𝑃0 is uniform, 𝑃∗
0 would be uniform too

because 𝑃𝐸 ({𝑥1}|𝐵) = 𝑃𝐸 ({𝑥2}|𝐵) = 𝑃𝐸 ({𝑥3}|𝐵). From
Equations (9) and (10), given 𝐴 ⊆ 𝐵 we obtain:

|𝐴| = 1⇒
1
4 − 𝛿

√
3
2

3
4 − 𝛿

√
3
2 + 𝛿

=
1
3
− 𝛿∗

√︂
2
3
,

|𝐴| = 2⇒
1
2 − 𝛿

3
4 − 𝛿 + 𝛿

√
3
2

=
2
3
− 𝛿∗

√︂
2
3
,

but 𝛿∗ cannot satisfy both equalities simultaneously. This
contradicts our initial assumption, hence 𝑃𝐸 (· | 𝐵) is not
an Euclidean model. �

4. Distortion Model Induced by the
Kullback-Leibler Divergence

We consider now the Kullback-Leibler divergence between
two probability measures 𝑃1, 𝑃2, given by:

𝐷𝐾𝐿 (𝑃1, 𝑃2) =
𝑛∑︁
𝑖=1

𝑃1 ({𝑥𝑖}) log
(
𝑃1 ({𝑥𝑖})
𝑃2 ({𝑥𝑖})

)
,

assuming that if 𝑃2 ({𝑥𝑖}) = 0 then 𝑃1 ({𝑥𝑖}) = 0 and that
0 ·∞ = 0. The Kullback-Leibler divergence satisfies positive
definiteness (Ax.1), but it does not satisfy the triangle
inequality (Ax.2) and symmetry (Ax.3). Nevertheless, it is
convex (Ax.4) and continuous (Ax.5), hence

𝐵𝛿𝐾𝐿 (𝑃0) =
{
𝑃 ∈ ℙ(X) | 𝐷𝐾𝐿 (𝑃, 𝑃0) ≤ 𝛿

}
is closed and convex. Its associated lower prevision 𝑃𝐾𝐿 is
given by:

𝑃𝐾𝐿 ( 𝑓 ) = min
𝑃∈𝐵𝛿

𝐾𝐿
(𝑃0)

𝑃0 ( 𝑓 ) ∀ 𝑓 ∈ L(X), (11)

and the ball can be equivalently expressed as:

𝐵𝛿𝐾𝐿 (𝑃0) =
{
𝑃 ∈ ℙ(X) | 𝑃( 𝑓 ) ≥ 𝑃𝐾𝐿 ( 𝑓 ) ∀ 𝑓 ∈ L(X)

}
.

Our goal now is to investigate the properties of the KL-
distortion model. We follow the same steps as for the
Euclidean model: we look for an expression for the co-
herent lower prevision in Equation (11), we investigate
the main properties of the model and its behaviour under
conditioning.

4.1. Expression of the Lower Prevision

First of all, we show that theminimumvalue in Equation (11)
is attained in the probability measures at a divergence 𝛿
from 𝑃0.

Proposition 6 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such
that 𝐵𝛿

𝐾𝐿
(𝑃0) ⊆ ℙ∗ (X). Given a non-constant gamble

𝑓 , if 𝑃𝐾𝐿 ( 𝑓 ) = 𝑃( 𝑓 ) or 𝑃𝐾𝐿 ( 𝑓 ) = 𝑃( 𝑓 ) for some 𝑃 ∈
𝐵𝛿
𝐾𝐿

(𝑃0), then 𝐷𝐾𝐿 (𝑃, 𝑃0) = 𝛿.

Next we try to obtain an expression for 𝑃𝐾𝐿 . For this
aim, again we express the gamble 𝑓 as 𝑓 =

∑𝑛
𝑖=1 𝑎𝑖 𝐼{𝑥𝑖 }.

Let us express the probability measure 𝑃 ∈ 𝐵𝛿
𝐾𝐿

(𝑃0) as

𝑃({𝑥𝑖}) = 𝛼𝑖𝑃0 ({𝑥𝑖}) ∀𝑖 = 1, . . . , 𝑛, (12)
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where the values 𝛼1, . . . , 𝛼𝑛 satisfy
∑𝑛
𝑖=1 𝑃0 ({𝑥𝑖})𝛼𝑖 = 1

and 𝛼𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛. Hence:

𝑃( 𝑓 ) =
𝑛∑︁
𝑖=1

𝑎𝑖𝑃({𝑥𝑖}) =
𝑛∑︁
𝑖=1

𝑎𝑖𝛼𝑖𝑃0 ({𝑥𝑖})

and

𝐷𝐾𝐿 (𝑃, 𝑃0) =
𝑛∑︁
𝑖=1

𝛼𝑖𝑃0 ({𝑥𝑖}) log (𝛼𝑖) .

In this way, for obtaining 𝑃𝐾𝐿 ( 𝑓 ) and 𝑃𝐾𝐿 ( 𝑓 ) we need to
solve the optimisation problem

min
𝛼1 ,...,𝛼𝑛

/ max
𝛼1 ,...,𝛼𝑛

𝑛∑︁
𝑖=1

𝑎𝑖𝛼𝑖𝑃0 ({𝑥𝑖})

subject to
𝑛∑︁
𝑖=1

𝛼𝑖𝑃0 ({𝑥𝑖}) = 1,
𝑛∑︁
𝑖=1

𝛼𝑖𝑃0 ({𝑥𝑖}) log(𝛼𝑖) = 𝛿.

The former condition guarantees that we obtain a probability
measure 𝑃 while the latter guarantees that 𝐷𝐾𝐿 (𝑃, 𝑃0) = 𝛿.
This is a convex optimisation problem, where the feasible
region is closed, convex and bounded, hence there exists
a unique solution. However, giving an explicit formula for
𝑃𝐾𝐿 ( 𝑓 ) seems a challenging problem.
In spite of the complexity of the problem, we can give

an easier expression for 𝑃𝐾𝐿 in indicators of events (i.e.,
for the restriction to events).

Theorem 7 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐾𝐿

(𝑃0) ⊆ ℙ∗ (X). Let 𝐴 ⊆ X and 𝑃 ∈ 𝐵𝛿
𝐾𝐿

(𝑃0) such
that 𝑃𝐾𝐿 (𝐴) = 𝑃(𝐴). If we express 𝑃 as in Equation (12),
then it holds that:

1. there exists 𝛼 < 1 such that 𝛼𝑖 = 𝛼 for any 𝑥𝑖 ∈ 𝐴;

2. there exists 𝛽 > 1 such that 𝛼𝑖 = 𝛽 for any 𝑥𝑖 ∉ 𝐴;

3. 𝛼 and 𝛽 satisfy the relation:

𝛽
(
1 − 𝑃0 (𝐴)

)
= 1 − 𝛼𝑃0 (𝐴); (13)

4. letting 𝑝 = 𝑃0 (𝐴), the value 𝛼 is the solution in the
interval [0, 1] of the implicit equation

𝛼𝑝 log(𝛼) +
(
1 − 𝛼𝑝

)
log

(
1 − 𝛼𝑝

1 − 𝑝

)
= 𝛿; (14)

5. 𝑃𝐾𝐿 (𝐴) = 𝛼𝑃0 (𝐴), where 𝛼 is given in the previous
item;

6. there exists a convex function 𝑔 such that 𝑃𝐾𝐿 (𝐴) =
𝑔
(
𝑃0 (𝐴)

)
for any 𝐴 ⊆ X.

This results helps in computing the restriction to events of
𝑃𝐾𝐿 . In particular, we deduce that for computing 𝑃𝐾𝐿 (𝐴) it
suffices with finding the value 𝛼 < 1 solving Equation (14).

4.2. Properties of 𝐵𝛿
𝐾𝐿

(𝑃0), 𝑃𝐾𝐿 and 𝑃𝐾𝐿

We now investigate the main properties of the distortion
model induced by the Kullback-Leibler divergence. We
start proving that the extreme points are all the probability
measures in the boundary of the ball.

Proposition 8 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐾𝐿

(𝑃0) ⊆ ℙ∗ (X). It holds that

ext
(
𝐵𝛿𝐾𝐿 (𝑃0)

)
= {𝑃 ∈ ℙ∗ (X) | 𝐷𝐾𝐿 (𝑃, 𝑃0) = 𝛿}.

Following the same argument as for the Euclidean model,
this result allows us to deduce that 𝐵𝛿

𝐾𝐿
(𝑃0) has infinitely

many extreme points meaning that 𝑃𝐾𝐿 is not 2-monotone.
Nevertheless, even if 𝑃𝐾𝐿 is not 2-monotone, its restriction
to events is a 2-monotone lower probability.

Proposition 9 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐾𝐿

(𝑃0) ⊆ ℙ∗ (X). Then, 𝑃𝐾𝐿 is 2-monotone on events.

We next show an example to see the shape of 𝐵𝛿
𝐾𝐿

(𝑃0).

Example 3 Let us continue with Example 1 considering the
probability measure 𝑃0 = (0.5, 0.3, 0.2) and the distortion
parameter 𝛿 = 0.1. As it can be seen in Figure 2, the shape
of 𝐵𝛿

𝐾𝐿
(𝑃0) is different than the shape of the Euclidean

model, which is a circle. This figure also shows the credal
set determined by the restriction to events. Since 𝑃𝐾𝐿 is
2-monotone on events but not on gambles, both credal sets
do not coincide. �

The last result of this subsection shows a useful property
of the Kullback-Leibler model that will be used in the next
subsection.

Lemma 10 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such that
𝐵𝛿
𝐾𝐿

(𝑃0) ⊆ ℙ∗ (X). If there are two different 𝑥𝑖 , 𝑥 𝑗 ∈
X such that 𝑃𝐾𝐿 ({𝑥𝑖}) = 𝑃𝐾𝐿 ({𝑥 𝑗 }), then 𝑃0 ({𝑥𝑖}) =

𝑃0 ({𝑥 𝑗 }).

4.3. Conditioning a Kullback-Leibler Model

We now investigate if conditioning a Kullback-Leibler
model by means of regular extension we obtain again a
Kullback-Leibler model. According to Proposition 9, 𝑃𝐾𝐿
is 2-monotone on events, meaning that the regular extension
on events can be computed using Equation (3). Nevertheless,
the next example shows that the Kullback-Leibler model is
not preserved under conditioning.

Example 4 Consider a four element possibility space
X = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, the uniform probability distribution
𝑃0 = (0.25, 0.25, 0.25, 0.25) and the distortion factor 𝛿 =

0.1. The values of 𝑃𝐾𝐿 on events are given by:

|𝐴| 1 2 3
𝑃𝐾𝐿 (𝐴) 0.077 0.2802 0.5434
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𝑃({𝑥1})

𝑃({𝑥2})

𝑃({𝑥3})

𝑃0

𝐵𝛿
𝐾𝐿

(𝑃0)

Figure 2: Graphical representation of the credal set
𝐵𝛿
𝐾𝐿

(𝑃0) (filled in light gray) in Example 3
and the credal set determined by the restriction
to events (filled in dark gray), together with the
probability measure 𝑃0 (in red).

Taking 𝐵 = {𝑥1, 𝑥2, 𝑥3} and applying the regular extension
to any 𝐴 ⊆ 𝐵, we obtain the updated model:

|𝐴| 1 2
𝑃𝐾𝐿 (𝐴|𝐵) 0.097 0.3802

Let us assume that 𝑃𝐾𝐿 (·|𝐵) is a Kullback-Leibler model
induced by 𝑃∗

0 and 𝛿∗. From Lemma 10 we know that
𝑃∗
0 = (1/3, 1/3, 1/3). Also, Theorem 7 implies that

𝑃𝐾𝐿 (𝐴|𝐵) =
1
3
𝛼1, for |𝐴| = 1,

𝑃𝐾𝐿 (𝐴|𝐵) =
2
3
𝛼2, for |𝐴| = 2,

where 𝛼1 = 0.2899 and 𝛼2 = 0.5704 follow by solving
Equation (14). Also, from Equation (13) we obtain 𝛽1 =
1.355 and 𝛽2 = 1.859.

Then, the probability measures 𝑄1 and 𝑄2 given by

𝑄1 ({𝑥𝑖}) =
{
𝛼1𝑃

∗
0 ({𝑥𝑖}) = 0.0967 if 𝑥𝑖 ∈ 𝐴1.

𝛽1𝑃
∗
0 ({𝑥𝑖}) = 0.4517 if 𝑥𝑖 ∉ 𝐴1.

𝑄2 ({𝑥𝑖}) =
{
𝛼2𝑃

∗
0 ({𝑥𝑖}) = 0.1901 if 𝑥𝑖 ∈ 𝐴2.

𝛽2𝑃
∗
0 ({𝑥𝑖}) = 0.6197 if 𝑥𝑖 ∉ 𝐴2.

for |𝐴1 | = 1 and |𝐴2 | = 2 satisfy 𝑄1 (𝐴1) = 𝑃𝐾𝐿 (𝐴1 | 𝐵)
and 𝑄2 (𝐴2) = 𝑃𝐾𝐿 (𝐴2 | 𝐵). These probability measures
must satisfy

𝐷𝐾𝐿 (𝑄1, 𝑃∗
0) = 𝐷𝐾𝐿 (𝑄2, 𝑃∗

0) = 𝛿∗,

but:

𝐷𝐾𝐿 (𝑄1, 𝑃∗
0) =

𝛼1
3
log(𝛼1) +

2
3
𝛽1 log(𝛽1) = 0.1548.

𝐷𝐾𝐿 (𝑄2, 𝑃∗
0) = 𝛼2

2
3
log(𝛼1) +

𝛽2
3
log(𝛽2) = 0.1708.

We conclude that the updated model 𝑃𝐾𝐿 (· | 𝐵) is not a
Kullback-Leibler model. �

5. Comparison of the Distortion Models
In this section we compare the Euclidean and Kullback-
Leibler models investigated in the previous sections with
other well-known distortion models: the pari mutuel, linear
vacuous, total variation and constant odds ratio models.
The comparison is done with respect to the amount of
imprecision of the models for a fixed 𝛿 and the properties
of the associated coherent lower prevision.

5.1. Amount of Imprecision

We say that a distortion model 𝐵𝛿
𝑑1
(𝑃0) is more imprecise

than other model 𝐵𝛿
𝑑2
(𝑃0) if 𝑑1 induces a greater ball:

𝐵𝛿
𝑑1
(𝑃0) ⊇ 𝐵𝛿

𝑑2
(𝑃0). Among the TV, PMM, LV and COR

models, it is known that the TV is more imprecise than
the other three models and the COR model is the less
imprecise, while the PMM and the LV are not comparable
[23, Sec.5.1].
First of all, we compare the amount of imprecision of

the Euclidean and TV models. In general, they are not
related. The reason is that for 𝑛 > 4, there is not a general
connection between the values (𝑛 − |𝐴|) |𝐴| and 𝑛. Indeed:

(𝑛 − |𝐴|) |𝐴| > 𝑛 if |𝐴| = 3.
(𝑛 − |𝐴|) |𝐴| < 𝑛 if |𝐴| = 1.

For 𝑛 > 4, the events 𝐴 with |𝐴| = 1 satisfy:

𝑃𝑇𝑉 (𝐴) = 𝑃0 (𝐴) − 𝛿 < 𝑃0 (𝐴) − 𝛿

√︂
𝑛 − 1
𝑛

= 𝑃𝐸 (𝐴),

while events 𝐴 with |𝐴| = 3 satisfy:

𝑃𝑇𝑉 (𝐴) = 𝑃0 (𝐴) − 𝛿 > 𝑃0 (𝐴) − 𝛿

√︂
3(𝑛 − 3)

𝑛
= 𝑃𝐸 (𝐴).

Therefore, there is not a connection between 𝐵𝛿
𝐸
(𝑃0) and

𝐵𝛿
𝑇𝑉

(𝑃0).
The next example shows that there is not a connection

between the Euclidean and the PMM and LV models either.

Example 5 Consider a three element possibility space X
and the probability measure 𝑃0 ∈ ℙ∗ (X) given by:

𝑃0 ({𝑥1}) = 𝑃0 ({𝑥2}) = 0.1, 𝑃0 ({𝑥3}) = 0.8.
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Also, take 𝛿 small enough such that 𝐵𝛿
𝐸
(𝑃0), 𝐵𝛿𝐿𝑉 (𝑃0) and

𝐵𝛿
𝑃𝑀𝑀

(𝑃0) are included in ℙ∗ (X). It holds that:

𝑃𝐿𝑉 ({𝑥3}) = 𝑃0 ({𝑥3}) − 𝛿𝑃0 ({𝑥3}) = 𝑃0 ({𝑥3}) − 𝛿0.8

> 𝑃0 ({𝑥3}) − 𝛿

√︂
2
3
= 𝑃𝐸 ({𝑥3}).

𝑃𝐿𝑉 ({𝑥1}) = 𝑃0 ({𝑥1}) − 𝛿𝑃0 ({𝑥1}) = 𝑃0 ({𝑥1}) − 𝛿0.1

< 𝑃0 ({𝑥1}) − 𝛿

√︂
2
3
= 𝑃𝐸 ({𝑥1}).

In a similar manner:

𝑃𝑃𝑀𝑀 ({𝑥3}) = (1 + 𝛿)𝑃0 ({𝑥3}) − 𝛿 = 𝑃0 ({𝑥3}) − 0.2𝛿

> 𝑃0 ({𝑥3}) − 𝛿

√︂
2
3
= 𝑃𝐸 ({𝑥3}).

𝑃𝑃𝑀𝑀 ({𝑥1}) = (1 + 𝛿)𝑃0 ({𝑥1}) − 𝛿 = 𝑃0 ({𝑥1}) − 0.9𝛿

< 𝑃0 ({𝑥1}) − 𝛿

√︂
2
3
= 𝑃𝐸 ({𝑥1}).

We conclude that there is not a connection between the
Euclidean model and the PMM or LV models. �

In contrast, the Euclidean model is always more imprecise
than the COR model.

Proposition 11 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such
that 𝐵𝛿

𝐸
(𝑃0) ⊆ ℙ∗ (X) and 𝐵𝛿

𝐶𝑂𝑅
(𝑃0) ⊆ ℙ∗ (X). Then,

𝐵𝛿
𝐶𝑂𝑅

(𝑃0) ⊆ 𝐵𝛿
𝐸
(𝑃0).

Concerning the Kullback-Leibler model, the next result
shows that this model is always more imprecise than the
PMM and LV models.

Proposition 12 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such
that 𝐵𝛿

𝐾𝐿
(𝑃0) ⊆ ℙ∗ (X), 𝐵𝛿

𝑃𝑀𝑀
(𝑃0) ⊆ ℙ∗ (X) and

𝐵𝛿
𝐿𝑉

(𝑃0) ⊆ ℙ∗ (X). Then, 𝐵𝛿
𝑃𝑀𝑀

(𝑃0) ⊆ 𝐵𝛿
𝐾𝐿

(𝑃0) and
𝐵𝛿
𝐿𝑉

(𝑃0) ⊆ 𝐵𝛿
𝐾𝐿

(𝑃0).

Next, we compare the two models we are analysing in this
paper: the Kullback-Leibler and Euclidean models.

Proposition 13 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such
that 𝐵𝛿

𝐾𝐿
(𝑃0) ⊆ ℙ∗ (X) and 𝐵𝛿

𝐸
(𝑃0) ⊆ ℙ∗ (X). Then

𝐵𝛿
𝐸
(𝑃0) ⊆ 𝐵𝛿

𝐾𝐿
(𝑃0).

Finally, it only remains to see whether there is a connec-
tion between the Kullback-Leibler and the TV models. The
next example shows that, in general, such connection does
not exist.

Example 6 Consider a three element possibility space
X = {𝑥1, 𝑥2, 𝑥3}, the probability measure 𝑃0 given by
the probability mass function 𝑃0 = (0.1, 0.3, 0.6) and the
distortion parameter 𝛿 = 0.099. It follows that:

𝑃𝑇𝑉 ({𝑥1}) = 0.1 − 𝛿 = 0.001 < 0.00114 = 𝑃𝐾𝐿 ({𝑥1}),

𝐵𝛿
𝐸
(𝑃0)

𝐵𝛿
𝐶𝑂𝑅

(𝑃0)

𝐵𝛿
𝐿𝑉

(𝑃0) 𝐵𝛿
𝑃𝑀𝑀

(𝑃0)

𝐵𝛿
𝐾𝐿

(𝑃0)

𝐵𝛿
𝑇𝑉

(𝑃0)

𝛿 ≤ 1
4 min

𝑥∈X 𝑃0 ({𝑥})

Figure 3: Connection between the differentmodels in terms
of imprecision, where the models investigated in
this paper have been drawn with a box around.

𝑃𝑇𝑉 ({𝑥2}) = 0.3 − 𝛿 = 0.201 > 0.1136 = 𝑃𝐾𝐿 ({𝑥2}),

hence there is not a dominance relation between 𝑃𝑇𝑉 and
𝑃𝐾𝐿 , so none of the Kullback-Leibler and TV models is
more imprecise than the other. �

Even if there is not a general connection between these two
models, some connections between the Kullback-Leibler
divergence and the TV distance are known:

2𝑑2𝑇𝑉 (𝑃, 𝑃0) ≤ 𝐷𝐾𝐿 (𝑃, 𝑃0) ≤
4𝑑2
𝑇𝑉

(𝑃, 𝑃0)
min𝑥∈X 𝑃0 (𝑥)

where the former inequality follows from the Pinsker’s
inequality and the latter follows from [15, Lemma 4.1].
Using the second inequality we can prove that, when the
distortion parameter is small enough, the Kullback-Leibler
model is more imprecise than the TV model.

Proposition 14 Consider 𝑃0 ∈ ℙ∗ (X) and 𝛿 > 0 such
that 𝐵𝛿

𝐾𝐿
(𝑃0) ⊆ ℙ∗ (X) and 𝐵𝛿

𝑇𝑉
(𝑃0) ⊆ ℙ∗ (X). If 𝛿 ≤

1
4 min𝑥∈X 𝑃0 ({𝑥}), then 𝐵𝛿

𝑇𝑉
(𝑃0) ⊆ 𝐵𝛿

𝐾𝐿
(𝑃0).

Figure 3 summarises the connections between all the mod-
els. In this figure, a continuous arrow between two nodes
means that the parent is more imprecise than the children
(i.e., an inclusion between the balls) and a missed arrow
means that there is not a general connection between both
models. The connection between the Kullback-Leibler and
the TV models proven in Proposition 14 for small distortion
parameters haven been indicated with a dashed line.
We conclude this subsection showing in Figure 4 the

graphical representation of all the models for the probability
measure 𝑃0 = (0.5, 0.3, 0.2) and the distortion parameter
𝛿 = 0.1 from Examples 1 and 3. For this particular example,
the Kullback-Leibler is the most imprecise model, followed
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𝑃({𝑥1})

𝑃({𝑥2})

𝑃({𝑥3})

𝐵𝛿
𝐾𝐿

(𝑃0)
𝐵𝛿
𝐸
(𝑃0)

𝐵𝛿
𝐿𝑉

(𝑃0)

𝐵𝛿
𝑃𝑀𝑀

(𝑃0)

𝐵𝛿
𝑇𝑉

(𝑃0)

Figure 4: Graphical representation of the PMM, LV, COR
(the smallest credal set), TV and the Euclidean
and Kullback-Leibler models for the data from
Examples 1 and 3.

by the TV and Euclidean models. Indeed, even if 𝛿 does
not satisfy the sufficient condition in Proposition 14, the
Kullback-Leibler model is more imprecise than the TV
model, meaning that the condition in Proposition 14 is
sufficient but not necessary. Also, although there is not a
general connection between the Euclidean model and the
TV, LV and PMM models, in this example the TV model is
more imprecise than the Euclidean model, which is more
imprecise than both the PMM and LV models.

5.2. Practical Properties of the Models

One interesting property a coherent lower prevision may
satisfy is that of 2-monotonicity, as was deeply discussed
for example in [11, Sec.2.3]. We have seen that the coherent
lower prevision of none the Euclidean (𝑃𝐸 ) or Kullback-
Leibler models (𝑃𝐾𝐿) is 2-monotone. Nevertheless, we
have seen in Propositions 5 and 9 that they do satisfy
2-monotonicity on events.
In any case, both the Euclidean and Kullback-Leibler

models are not 2-monotone, in contrast with the PMM, LV
and TV models which do satisfy 2-monotonicity. In partic-
ular, the lack of 2-monotonicity means that the Euclidean
and Kullback-Leibler models are neither determined by
the restriction to singletons (i.e., they are not probability
intervals [10, 35]) nor completely monotone, meaning that
its Möbius inverse given by:

𝑚𝑃 (𝐴) =
∑︁
𝐵⊆𝐴

(−1) |𝐴\𝐵 |𝑃(𝐵)

is non-negative for any 𝐴 ⊆ X. One may wonder whether
the restriction to events of 𝑃𝐸 and 𝑃𝐾𝐿 satisfy these two
properties or not. In the next example, we answer this
question.

Example 7 Consider a four element possibility space
X = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and a uniform probability measure
𝑃0 (𝑃0 ({𝑥𝑖}) = 1

4 for 𝑖 = 1, 2, 3, 4). Taking 𝛿 = 0.1, the
(approximate values of the) lower and upper probabilities
of the Euclidean model are given by:

|𝐴| 1 2 3 4
𝑃𝐸 (𝐴) 0.1634 0.4 0.6634 1
𝑃𝐸 (𝐴) 0.3366 0.6 0.8366 1

If it was a probability interval, according to [10, Prop.6] it
should happen that:

𝑃𝐸 ({𝑥1, 𝑥2}) =
{
𝑃𝐸 ({𝑥1}) + 𝑃𝐸 ({𝑥1}),

1 − 𝑃𝐸 ({𝑥3}) + 𝑃𝐸 ({𝑥4})
}
= 0.3267949,

which does not coincide with the value 𝑃𝐸 ({𝑥1, 𝑥2}) = 0.4.
Moreover, it is neither completely monotone because its
Möbius inverse is negative in some events:

𝑚𝑃𝐸 ({𝑥1, 𝑥2, 𝑥3}) = 𝑃𝐸 ({𝑥1, 𝑥2, 𝑥3}) − 𝑃𝐸 ({𝑥1, 𝑥2})
− 𝑃𝐸 ({𝑥1, 𝑥3}) − 𝑃𝐸 ({𝑥2, 𝑥3})
+ 𝑃𝐸 ({𝑥1}) + 𝑃𝐸 ({𝑥2}) + 𝑃𝐸 ({𝑥3})

= 0.6634 − 3 · 0.4 + 3 · 0.1634 = −0.0464 < 0.

Not surprisingly, the KL model neither satisfies the proper-
ties of complete monotonicity or being a probability interval.
Consider the same example, where we obtain the following
values:

|𝐴| 1 2 3 4
𝑃𝐾𝐿 (𝐴) 0.07765 0.28021 0.54333 1
𝑃𝐾𝐿 (𝐴) 0.45667 0.71979 0.92235 1

If it was a probability interval, it should satisfy the following:

𝑃𝐾𝐿 ({𝑥1, 𝑥2}) = max
{
𝑃𝐾𝐿 ({𝑥1}) + 𝑃𝐾𝐿 ({𝑥1}),

1 − 𝑃𝐾𝐿 ({𝑥3}) + 𝑃𝐾𝐿 ({𝑥4})
}
= 0.155303,

which does not coincide with the value of 𝑃𝐾𝐿 ({𝑥1, 𝑥2})
reported in the table. Moreover, its Möbius inverse may be
negative:

𝑚𝑃𝐾𝐿 ({𝑥1, 𝑥2, 𝑥3}) = 𝑃𝐾𝐿 ({𝑥1, 𝑥2, 𝑥3}) − 𝑃𝐾𝐿 ({𝑥1, 𝑥2})
− 𝑃𝐾𝐿 ({𝑥1, 𝑥3}) − 𝑃𝐾𝐿 ({𝑥2, 𝑥3})
+ 𝑃𝐾𝐿 ({𝑥1}) + 𝑃𝐾𝐿 ({𝑥2}) + 𝑃𝐾𝐿 ({𝑥3})

= 0.54333 − 3 · 0.28021 + 3 · 0.07765
= −0.064337 < 0.�
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With this example we conclude that the restriction to events
of 𝑃𝐸 and 𝑃𝐾𝐿 , in spite of being 2-monotone, are neither
probability intervals nor completely monotone.
Another important feature is the complexity of the credal

set: those credal sets with finitely many extreme points are
easier to handle than those with infinitely many extreme
points. Both the Euclidean and KL-models have infinite
extreme points, in contrast with the other four models which
have a finitely many number of extreme points.
Finally, other important property that some distortion

models satisfy is that of being closed under conditioning.
This is the case of the PMM, LV, TV and COR models.
However, neither the Euclidean nor the Kullback-Leibler
models satisfy this property, as Examples 2 and 4 show,
respectively.
On the whole, it seems that from the practical point of

view, the Euclidean and Kullback-Leibler models do not
satisfy as good properties as the other models. We refer to
[23, Tables 3, 4 and 5] for a summary of the properties of
the other models.

6. Conclusions
This paper aims at analysing the neighbourhood or distortion
models induced by the Euclidean distance and the Kullback-
Leibler divergence. The choice of these models is based on
the following facts (i) the Euclidean distance is a reasonable
choice as a distance between 𝑛-dimensional vectors, as those
determined by probability mass functions in a 𝑛-element
possibility space; and (ii) the Kullback-Leibler divergence
has been argued to be a more adequate function to compare
probability measures than distances between probability
mass functions, and it has already been used in the imprecise
framework [14, 28].
Since both the Euclidean distance and the Kullback-

Leibler divergences are continuous and convex, it follows
from [22, Prop.3.1] that the sets of probability measures
they induce are closed and convex, meaning that they are
equivalent to their associated coherent lower prevision.
In this paper we have explored the main properties of

these two models. On the one hand, for the Euclidean model
we have given an explicit formula for the associated coherent
lower prevision, we have seen that the extreme points of the
ball coincide with its boundary and we have proven that its
coherent lower prevision is 2-monotone on events but not
on gambles. On the other hand, for the Kullback-Leibler
model we have also seen that the extreme points of the ball
are the probability measures on the boundary of the ball and
that its associated coherent lower prevision is 2-monotone
on events but not in gambles. In contrast with the Euclidean
model, it does not seem easy to obtain an explicit expression
of the lower prevision associated with the Kullback-Leibler
model; instead, we can express it as the solution of a convex

optimisation problem. Nevertheless, we were able to give
an expression of its restriction to events.
Finally, we have performed a comparative analysis of

the Euclidean and Kullback-Leibler models with the LV,
PMM, COR and TV models in terms of the amount of
imprecision and the properties of the associated coherent
lower previsions. In light of the obtained results, it seems that
the lack of 2-monotonicity (on gambles) of the Euclidean
and Kullback-Leibler models make them more difficult
to handle than the other models, all of them 2-monotone
except the COR. Also, the Euclidean and Kullback-Leibler
models are not closed under conditioning by means of the
regular extension, in contrast to the LV, PMM, COR and TV
models. Moreover, after the comparative analysis in terms of
imprecision performed in Section 5.1, the Kullback-Leibler
model adds, probably, too imprecision.
Consequently, it seems reasonable to conclude that, from

the practical viewpoint, the Euclidean and Kullback-Leibler
models are less adequate than other models such as the LV,
PMM or TV models, which do satisfy the 2-monotonicity
property (hence they can make use of all the practical ad-
vantages of this property [11]), and that are preserved under
conditioning by means of the regular extension (property
also satisfied by the COR model). Notwithstanding, we do
not aim at concluding that the Euclidean or Kullback-Leibler
models are useless or that they should not be used in the
imprecise setting. The utility of the Euclidean distance and
the Kullback-Leibler divergence in a probability setting is
unquestionable, and even the Kullback-Leibler divergence
has already been used with sets of probability measures
[14, 28]. Instead, we claim that the practical properties of
these twomodels make themmore difficult to use in practice
than other neighbourhood or distortion models.
Besides our comparative analysis given in Section 5, it

would be interesting to complement our study in [12] investi-
gating the behaviour of the Euclidean and Kullback-Leibler
models under different processing operations: aggregation
(intersection, union or convex mixtures), marginalisation or
construction of a joint model from marginal information un-
der some (in)dependence assumption. In this respect, some
preliminary thoughts suggest that their behaviour under
these operations will not be satisfactory either. Moreover,
other distortion models deserve some attention, such as the
one induced by the Wasserstein distance [18, 32].
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