Appendix A. Technical Lemmas and Proofs

Lemma 18 For any non-degenerate prequential situation $v = (i, w) \in (\mathcal{F}_r \times \mathcal{X})^*$ and any non-negative superfarthingale $F \in \overline{\mathbb{F}}, F(v) \leq \prod_{k=1}^{|w|} \frac{1}{(\max \iota_k)^{w_k} (1-\min \iota_k)^{1-w_k}} F(\Box).$

Proof Consider any non-degenerate prequential situation $vI_r x \in (\mathscr{I}_r \times \mathscr{X})^*$. If x = 1 then $0 < \max I_r \le 1$, and

$$F(vI_rx)$$

$$\leq \frac{1}{\max I_r} \left[\max I_r F(vI_r1) + (1 - \max I_r)F(vI_r0) \right]$$

$$\leq \frac{1}{\max I_r} \overline{E}_{I_r}(F(vI_r \cdot)) \leq \frac{1}{\max I_r}F(v).$$

If x = 0 then $0 \le \min I_r < 1$, and

$$\begin{split} F(vI_rx) \\ &\leq \frac{1}{1-\min I_r} \Big[\min I_r F(vI_r1) + (1-\min I_r) F(vI_r0)\Big] \\ &\leq \frac{1}{1-\min I_r} \overline{E}_{I_r} (F(vI_r \cdot)) \leq \frac{1}{1-\min I_r} F(v). \end{split}$$

Above, the first, second and third inequalities follow from the non-negativity of *F*, Equation (1) and the superfarthingale property, respectively. Hence, $F(vI_rx) \leq \frac{1}{(\max I_r)^x (1-\min I_r)^{1-x}} F(v)$. A simple induction argument now leads to the desired result.

Lemma 19 For every non-degenerate computable forecasting system $\varphi \in \Phi$ there's a recursive natural map $C: \mathcal{X}^* \to \mathbb{N}$ such that for every test supermartingale $T \in \overline{\mathbb{T}}(\varphi)$ it holds that $T(w) \leq C(w)$ for all $w \in \mathcal{X}^*$.

Proof Define the map $C': \mathscr{X}^* \to \mathbb{R}$ by letting $C'(w) \coloneqq \prod_{k=1}^{|w|} \frac{1}{\overline{\varphi}(w_{1:k-1})^{w_k}(1-\underline{\varphi}(w_{1:k-1}))^{1-w_k}}$ for all $w \in \mathscr{X}^*$. This map is real-valued, since $0 < \overline{\varphi}$ and $\varphi < 1$ by the non-degeneracy of φ . Since φ is computable, C' is computable as well. Let's now prove that $T(w) \leq C'(w)$ for all $w \in \mathscr{X}^*$. Fix any situation $w \in \mathscr{X}^*$ and any $x \in \mathscr{X}$. If x = 1, then

$$T(wx) \leq \frac{1}{\overline{\varphi}(w)} \left[\overline{\varphi}(w) T(w1) + (1 - \overline{\varphi}(w)) T(w0) \right]$$
$$\leq \frac{1}{\overline{\varphi}(w)} \overline{E}_{\varphi(w)} (T(w \cdot)) \leq \frac{1}{\overline{\varphi}(w)} T(w).$$

If x = 0, then

$$\begin{split} T(wx) &\leq \frac{1}{1 - \underline{\varphi}(w)} \Big[\underline{\varphi}(w) T(w1) + (1 - \underline{\varphi}(w)) T(w0) \Big] \\ &\leq \frac{1}{1 - \underline{\varphi}(w)} \overline{E}_{\varphi(w)}(T(w \cdot)) \leq \frac{1}{1 - \underline{\varphi}(w)} T(w). \end{split}$$

Above, the first, second and third inequalities follow from the non-negativity of T, Equation (1) and the supermartingale property, respectively. Hence,

$$T(wx) \leq \frac{1}{\overline{\varphi}(w)^{x} (1 - \varphi(w))^{1 - x}} T(w).$$

A simple induction argument now shows that indeed $T(w) \le C'(w)$ for all $w \in \mathcal{X}^*$.

Since *C'* is a computable real map, there's a recursive rational map $q: \mathcal{X}^* \times \mathbb{N}_0 \to \mathbb{Q}$ such that $|C'(w) - q(w, n)| \leq 2^{-n}$ for all $w \in \mathcal{X}^*$ and $n \in \mathbb{N}_0$. Let $C: \mathcal{X}^* \to \mathbb{N}$ be defined as $C(w) := \max\{1, \lceil q(w, 1) + 1 \rceil\}$ for all $w \in \mathcal{X}^*$, with $[\bullet]: \mathbb{R} \to \mathbb{Z}$ the ceiling function and \mathbb{Z} the set of integer numbers. It's easy to see that *C* is natural-valued, positive and recursive. Furthermore, we have that $T(w) \leq C'(w) \leq q(w, 1) + 1/2 \leq C(w)$ for all $w \in \mathcal{X}^*$.

Lemma 20 There's a single algorithm that, upon the input of a code for a lower semicomputable map $F: (\mathcal{F}_r \times \mathcal{X})^* \rightarrow [0, +\infty]$, outputs a code for a lower semicomputable test superfarthingale $F' \in \overline{\mathbb{F}}$ such that

- (i) F'(v) = 0 for all degenerate prequential situations
 v ∈ (𝔅_r × 𝔅)^{*};
- (ii) for any rational forecasting system φ_r ∈ Φ_r, F'(φ_r[w], w) = F(φ_r[w], w) for all w ∈ X* for which (φ_r[w], w) is non-degenerate, provided that the map F(φ_r[•], •): X* → ℝ is a positive test supermartingale for φ_r.

Proof Start from a code for the map $F: (\mathscr{F}_r \times \mathscr{X})^* \to [0, +\infty]$ that is lower semicomputable. By Corollary 6, we can invoke a single algorithm that outputs a code $q: (\mathscr{F}_r \times \mathscr{X})^* \times \mathbb{N}_0 \to \mathbb{Q}$ for F such that $q(v, \bullet) \nearrow F(v)$ and q(v, n) < q(v, n + 1) for all $v \in (\mathscr{F}_r \times \mathscr{X})^*$ and $n \in \mathbb{N}_0$. We'll now use the code q to construct a code q' for a lower semicomputable test superfarthingale $F' \in \overline{\mathbb{F}}$ that satisfies the requirements of the lemma.

Let $q' : (\mathscr{I}_r \times \mathscr{X})^* \times \mathbb{N}_0 \to \mathbb{Q}$ be defined by $q'(\Box, n) \coloneqq 1$ and

$$q'(vI_rx, n) := \begin{cases} \max(A(v, I_r, x, n) \cup \{0\}) & \text{if } vI_rx \text{ is non-degenerate} \\ 0 & \text{if } vI_rx \text{ is degenerate,} \end{cases}$$

for all $v = (i, w) \in (\mathcal{F}_r \times \mathcal{X})^*$, $I_r \in \mathcal{F}_r$, $x \in \mathcal{X}$ and $n \in \mathbb{N}_0$, where $A: (\mathcal{F}_r \times \mathcal{X})^* \times \mathcal{F}_r \times \mathcal{X} \times \mathbb{N}_0 \to \{Q \subseteq \mathbb{Q}: |Q| < \infty\}$ is defined by

$$A(v, I_r, x, n) \coloneqq \left\{ q(vI_r x, m) \in \mathbb{Q} \colon 0 \le m \le n, \\ 0 \le q(vI_r, m) \text{ and} \right.$$

$$\overline{E}_{I_r}(q(vI_r\cdot,m)) \le q'(v,n) \Big\}.$$
 (6)

By construction, since the map A outputs finite sequences of rationals, the map q' is well-defined, non-negative and rational. It's not too difficult to see that the map A, and therefore also the map q', is recursive.

The map q' is non-decreasing in its second argument, as we now show by induction on its first argument. We start by observing that $q'(\Box, n) \leq q'(\Box, n + 1)$ for all $n \in \mathbb{N}_0$. For the induction step, fix any $v = (i, w) \in$ $(\mathscr{I}_r \times \mathscr{X})^*, I_r \in \mathscr{I}_r, x \in \mathscr{X}$ and $n \in \mathbb{N}_0$, and assume that $q'(v, n) \leq q'(v, n + 1)$. We then have to show that also $q'(vI_rx, n) \leq q'(vI_rx, n + 1)$. This is trivial when vI_rx is degenerate; when vI_rx is non-degenerate, it follows readily from the inequality $A(v, I_r, x, n) \subseteq A(v, I_r, x, n+1)$, which is itself immediate from Equation (6).

For any $n \in \mathbb{N}_0$, the map $q'(\bullet, n) : (\mathcal{I}_r \times \mathcal{X})^* \to \mathbb{R}$ is a test superfarthingale. To prove this, we may clearly concentrate on the superfarthingale condition. Fix any $v \in (\mathcal{I}_r \times \mathcal{X})^*$, $I_r \in \mathcal{I}_r$ and $n \in \mathbb{N}_0$, and infer from Equation (6) that $A(v, I_r, 1, n) = \emptyset \Leftrightarrow A(v, I_r, 0, n) = \emptyset$, so we only need to consider two cases. If $A(v, I_r, 1, n) =$ $A(v, I_r, 0, n) = \emptyset$, then $q'(vI_r \cdot n) = 0$, and therefore trivially $\overline{E}_{I_r}(q'(vI_r \cdot n)) = \overline{E}_{I_r}(0) = 0 \le q'(v, n)$, where the second equality follows from C1. Otherwise, because the map q is increasing in its second argument, there's an $m \in \{0, ..., n\}$ such that $\overline{E}_{I_r}(q(vI_r \cdot m)) \le q'(v, n)$, with $q(vI_r \cdot m) = \max(A(v, I_r, \cdot, n) \cup \{0\}) \ge q'(vI_r \cdot n)$, where the last inequality takes into account that there may be some $x \in \mathcal{X}$ such that $vI_r x$ is degenerate. Hence, indeed, in this case also

$$\overline{E}_{I_r}(q'(vI_r\,\cdot,n)) \stackrel{\mathrm{C5}}{\leq} \overline{E}_{I_r}(q(vI_r\,\cdot,m)) \leq q'(v,n).$$

As a final preliminary step, we infer from Lemma 18 that for every (non-degenerate) prequential situation $v \in (\mathcal{I}_r \times \mathcal{X})^*$ there's some real $B_v \in \mathbb{R}$ such that $q'(v, n) \leq B_v$ for all $n \in \mathbb{N}_0$.

With this set-up phase completed, let F' be defined as $q'(v, \bullet) \nearrow F'(v)$ for all $v \in (\mathscr{F}_r \times \mathscr{X})^*$; note that $F'(\Box) = 1$. This map is well-defined, real-valued, non-negative and lower semicomputable due to the non-decreasingness, boundedness, non-negativity and recursiveness of q' respectively, so we only need to check the superfarthingale property explicitly in order to conclude that F' is a lower semicomputable test superfarthingale. To this end, fix any $v \in (\mathscr{F}_r \times \mathscr{X})^*$ and $I_r \in \mathscr{F}_r$. If we recall that the map $q(\bullet, n) : (\mathscr{F}_r \times \mathscr{X})^* \to \mathbb{R}$ is a test superfarthingale for every $n \in \mathbb{N}_0$, we immediately infer from C6 and the real-valuedness of F' that $\overline{E}_{I_r}(F'(vI_r \cdot)) = \lim_{n\to\infty} \overline{E}_{I_r}(q'(vI_r \cdot, n)) \leq \lim_{n\to\infty} q'(v, n) = F'(v)$.

We are done if we can show that F' satisfies the conditions (i) and (ii). For (i), fix any degenerate prequential

situation $v \in (\mathscr{I}_r \times \mathscr{X})^*$ and note that then q'(v, n) = 0 for all $n \in \mathbb{N}_0$ by construction. Hence, indeed, F'(v) = 0.

For (ii), fix any rational forecasting system $\varphi_r \in \Phi_r$, consider the map $T: \mathcal{X}^* \to \mathbb{R}$ defined by T(w) := $F(\varphi_r[w], w)$ for all $w \in \mathcal{X}^*$, and assume that T is a positive test supermartingale. We must now show that $F'(\varphi_r[w], w) = T(w)$ for all $w \in \mathcal{X}^*$ for which the prequential situation $(\varphi_r[w], w)$ is non-degenerate.

By construction, $F'(\varphi_r[w], w) \leq F(\varphi_r[w], w) = T(w)$ for all $w \in \mathcal{X}^*$. Assume towards contradiction that there's some $\overline{w} \in \mathcal{X}^*$ for which $(\varphi_r[\overline{w}], \overline{w})$ is non-degenerate and $F'(\varphi_r[\overline{w}], \overline{w}) < T(\overline{w})$, implying that there's some $\epsilon > 0$ such that $q'((\varphi_r[\overline{w}], \overline{w}), n) + \epsilon < T(\overline{w})$ for all $n \in \mathbb{N}_0$. We'll use an induction argument to show that this is impossible.

Since by assumption $q((\varphi_r[\overline{w}], \overline{w}), \bullet) \nearrow T(\overline{w}) > 0$ and $q((\varphi_r[\overline{w}], \overline{w}), n) < q((\varphi_r[\overline{w}], \overline{w}), n + 1)$ for all $n \in \mathbb{N}_0$, there are $\epsilon_0, \epsilon_1, \ldots, \epsilon_{|\overline{w}|} \in \mathbb{R}$ and $n_0, n_1, \ldots, n_{|\overline{w}|} \in \mathbb{N}_0$ such that

$$0 < \epsilon_0 < \epsilon_1 < \dots < \epsilon_{|\overline{w}|} < \epsilon$$
(7)

$$T(\overline{w}_{1:\ell}) < q((\varphi_r[\overline{w}_{1:\ell}], \overline{w}_{1:\ell}), n_\ell) + \epsilon_\ell$$
(8)

$$0 \le q((\varphi_r[\overline{w}_{1:k}]\varphi_r(\overline{w}_{1:k}), \overline{w}_{1:k} \cdot), n_{k+1})$$
(9)

$$q((\varphi_r[\overline{w}_{1:k}]\varphi_r(\overline{w}_{1:k}), \overline{w}_{1:k} \cdot), n_{k+1}) + \epsilon_k < T(\overline{w}_{1:k} \cdot)$$
(10)

for all $k \in \{0, 1, ..., |\overline{w}| - 1\}$ and $\ell \in \{0, 1, ..., |\overline{w}|\}$. The argument starts with $\ell := |\overline{w}|$ and $k := |\overline{w}| - 1$, finding ϵ_{ℓ} such that (7) is satisfied, and finding n_{k+1} such that (8) and (9) are satisfied. We then move to $\ell := |\overline{w}| - 1$ and $k := |\overline{w}| - 2$, find ϵ_{ℓ} such that (7) and (10) are satisfied, and find n_{k+1} such that (8) and (9) are satisfied. And so on ...; these conditions are depicted below for a situation $\overline{w} \in \mathcal{X}^*$ for which $|\overline{w}| = 5$.

Now, let $N := \max\{n_0, n_1, \dots, n_{|\overline{w}|}\}$. To start the induction argument, observe that, trivially, $q'(\Box, N) = 1 > T(\Box) - \epsilon_0$. For the induction step, we fix any $k \in \{0, 1, \dots, |\overline{w}| - 1\}$ and assume that $q'((\varphi_r[\overline{w}_{1:k}], \overline{w}_{1:k}), N) > T(\overline{w}_{1:k}) - \epsilon_k$. It then follows that

$$\overline{E}_{\varphi_r(\overline{w}_{1:k})} \left(q((\varphi_r[\overline{w}_{1:k}]\varphi_r(\overline{w}_{1:k}), \overline{w}_{1:k} \cdot), n_{k+1}) \right)$$

$$\stackrel{(10),C5}{\leq} \overline{E}_{\varphi_r(\overline{w}_{1:k})} (T(\overline{w}_{1:k} \cdot) - \epsilon_k) \stackrel{C4}{=} \overline{E}_{\varphi_r(\overline{w}_{1:k})} (T(\overline{w}_{1:k} \cdot)) - \epsilon_k \leq T(\overline{w}_{1:k}) - \epsilon_k \leq q'((\varphi_r[\overline{w}_{1:k}], \overline{w}_{1:k}), N),$$

where the penultimate inequality follows form the assumption that T is a supermartingale, and the last inequality from the induction hypothesis. Hence, by Equations (6) and (9),

$$q((\varphi_r[\overline{w}_{1:k+1}], \overline{w}_{1:k+1}), n_{k+1}) \in A((\varphi_r[\overline{w}_{1:k}], \overline{w}_{1:k}), \varphi_r(\overline{w}_{1:k}), \overline{w}_{k+1}, N),$$

which implies that

$$q'((\varphi_r[\overline{w}_{1:k+1}], \overline{w}_{1:k+1}), N)$$

$$\geq \max A((\varphi_r[\overline{w}_{1:k}], \overline{w}_{1:k}), \varphi_r(\overline{w}_{1:k}), \overline{w}_{k+1}, N)$$

$$\geq q((\varphi_r[\overline{w}_{1:k+1}], \overline{w}_{1:k+1}), n_{k+1})$$

$$\stackrel{(8)}{>} T(\overline{w}_{1:k+1}) - \epsilon_{k+1}.$$

Repeating this argument until we reach $k = |\overline{w}| - 1$, we eventually find that $q'((\varphi_r[\overline{w}], \overline{w}), N) > T(\overline{w}) - \epsilon_{|\overline{w}|} > T(\overline{w}) - \epsilon$, which is the desired contradiction.

The following result is now immediate.

Corollary 21 There's a single algorithm that, upon the input of a code for a lower semicomputable map $F : (\mathcal{F}_r \times \mathcal{X})^* \to [0, +\infty]$, outputs a code for a lower semicomputable test superfarthingale $F' \in \overline{\mathbb{F}}$ such that, for all prequential situations $v \in (\mathcal{F}_r \times \mathcal{X})^*$,

- (i) F'(v) = 0 if v is degenerate;
- (ii) F'(v) = F(v) if v is non-degenerate and F is a positive test superfarthingale.

Proof of Theorem 17. We'll give a proof for the first inequality, the proof for the second one is similar. Assume towards contradiction that there's some real number ϵ , with $0 < \epsilon < 1$, such that

$$\liminf_{n \to \infty} \frac{\sum_{k=0}^{n-1} S(\upsilon_{1:k}, \iota_{k+1}) [\omega_{k+1} - \min \iota_{k+1}]}{\sum_{k=0}^{n-1} S(\upsilon_{1:k}, \iota_{k+1})} < -\epsilon$$

Let the map $F := (\mathscr{I}_r \times \mathscr{X})^* \to \mathbb{R}$ be defined by

$$F(v) := \prod_{k=0}^{|v|-1} \left[1 - \frac{\epsilon}{3} S(v_{1:k}, i_{k+1}) [w_{k+1} - \min i_{k+1}] \right]$$

for all $v = (i, w) \in (\mathcal{I}_r \times \mathcal{X})^s$

We'll now show in a number of steps that F is a lower semicomputable test superfarthingale for which

 $\limsup_{n\to\infty} F(v_{1:n}) = \infty$, implying that v can't be game-random.

Trivially, $F(\Box) = 1$, and also $F \ge 0$, since $\epsilon < 1$, $|S| \le 1$ and $|x - \min I_r| \le 1$ for all $x \in \mathcal{X}$ and $I_r \in \mathcal{I}_r$. Moreover, for any $v \in (\mathcal{I}_r \times \mathcal{X})^*$ and $I_r \in \mathcal{I}_r$, we have that

$$\overline{E}_{I_r}(F(vI_r \cdot)) \stackrel{\text{C2}}{=} F(v)\overline{E}_{I_r}\left(1 + \frac{\epsilon}{3}S(v, I_r)[\min I_r - X]\right)$$

$$\stackrel{\text{C2,C4}}{=} F(v)\left[1 + \frac{\epsilon}{3}S(v, I_r)\overline{E}_{I_r}(\min I_r - X)\right]$$

$$\stackrel{\text{C4}}{=} F(v)\left[1 + \frac{\epsilon}{3}S(v, I_r)(\min I_r + \overline{E}_{I_r}(-X))\right]$$

$$\stackrel{\text{(2)}}{=} F(v),$$

so we find that *F* is a test superfarthingale. From the recursiveness of *S* and the rational-valuedness of the forecasts $I_r \in \mathcal{I}_r$ and outcomes $x \in \mathcal{X}$ it follows that *F* is recursive, and therefore lower semicomputable as well. We conclude that *F* is a lower semicomputable test superfarthingale.

By assumption, for any $m, M \in \mathbb{N}_0$, there's some N > m such that $\sum_{k=0}^{N-1} S(v_{1:k}, \iota_{k+1}) \ge M$ and

$$\frac{\sum_{k=0}^{N-1} S(\upsilon_{1:k}, \iota_{k+1}) [\omega_{k+1} - \min \iota_{k+1}]}{\sum_{k=0}^{N-1} S(\upsilon_{1:k}, \iota_{k+1})} < -\epsilon.$$
(11)

This will allow us to obtain a lower bound for $F(v_{1:N})$. Since $1 - \frac{\epsilon}{3}S(v, I_r)[x - \min I_r] > 1/2$ for all $v \in (\mathcal{I}_r \times \mathcal{X})^*$, $I_r \in \mathcal{I}_r$ and $x \in \mathcal{X}$, it holds that $F(v_{1:N}) = \exp(K)$, with

$$K \coloneqq \sum_{k=0}^{N-1} \ln \left(1 - \frac{\epsilon}{3} S(v_{1:k}, \iota_{k+1}) [\omega_{k+1} - \min \iota_{k+1}] \right).$$

Since $\ln(1 + x) \ge x - x^2$ for all x > -1/2, we infer that

$$K \ge -\frac{\epsilon}{3} \sum_{k=0}^{N-1} S(\upsilon_{1:k}, \iota_{k+1}) [\omega_{k+1} - \min \iota_{k+1}] - \frac{\epsilon^2}{9} \sum_{k=0}^{N-1} S(\upsilon_{1:k}, \iota_{k+1})^2 [\omega_{k+1} - \min \iota_{k+1}]^2$$

and, also taking into account Equation (11), $S^2 = S$ and $[\omega_{k+1} - \min \iota_{k+1}]^2 \le 1$,

$$\geq \frac{\epsilon^2}{3} \sum_{k=0}^{N-1} S(\upsilon_{1:k}, \iota_{k+1}) - \frac{\epsilon^2}{9} \sum_{k=0}^{N-1} S(\upsilon_{1:k}, \iota_{k+1})$$
$$= \frac{2\epsilon^2}{9} \sum_{k=0}^{N-1} S(\upsilon_{1:k}, \iota_{k+1}).$$

Hence,

$$F(\upsilon_{1:N}) \ge \exp\left(\frac{2\epsilon^2}{9}\sum_{k=0}^{N-1}S(\upsilon_{1:k},\iota_{k+1})\right) \ge \exp\left(\frac{2\epsilon^2}{9}M\right).$$

After recalling that the inequality above holds for any $M \in \mathbb{N}_0$ and for arbitrarily large well-chosen $N \in \mathbb{N}_0$, we conclude that $\limsup_{n \to \infty} F(v_{1:n}) = \infty$.