Appendix A. Technical Lemmas and Proofs

Lemma 18 For any non-degenerate prequential situation $v=(i, w) \in\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*}$ and any non-negative superfarthingale $F \in \overline{\mathbb{F}}, F(v) \leq \prod_{k=1}^{|w|} \frac{1}{\left(\max \iota_{k}\right)^{w_{k}}\left(1-\min \iota_{k}\right)^{1-w_{k}}} F(\square)$.

Proof Consider any non-degenerate prequential situation $v I_{r} x \in\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*}$. If $x=1$ then $0<\max I_{r} \leq 1$, and

$$
\begin{aligned}
& F\left(v I_{r} x\right) \\
& \quad \leq \frac{1}{\max I_{r}}\left[\max I_{r} F\left(v I_{r} 1\right)+\left(1-\max I_{r}\right) F\left(v I_{r} 0\right)\right] \\
& \quad \leq \frac{1}{\max I_{r}} \bar{E}_{I_{r}}\left(F\left(v I_{r} \cdot\right)\right) \leq \frac{1}{\max I_{r}} F(v) .
\end{aligned}
$$

If $x=0$ then $0 \leq \min I_{r}<1$, and

$$
\begin{aligned}
& F\left(v I_{r} x\right) \\
& \leq \frac{1}{1-\min I_{r}}\left[\min I_{r} F\left(v I_{r} 1\right)+\left(1-\min I_{r}\right) F\left(v I_{r} 0\right)\right] \\
& \leq \frac{1}{1-\min I_{r}} \bar{E}_{I_{r}}\left(F\left(v I_{r} \cdot\right)\right) \leq \frac{1}{1-\min I_{r}} F(v) .
\end{aligned}
$$

Above, the first, second and third inequalities follow from the non-negativity of F, Equation (1) and the superfarthingale property, respectively. Hence, $F\left(v I_{r} x\right) \leq$ $\frac{1}{\left(\max I_{r}\right)^{x}\left(1-\min I_{r}\right)^{1-x}} F(v)$. A simple induction argument now leads to the desired result.

Lemma 19 For every non-degenerate computable forecasting system $\varphi \in \Phi$ there's a recursive natural map $C: X^{*} \rightarrow$ \mathbb{N} such that for every test supermartingale $T \in \overline{\mathbb{T}}(\varphi)$ it holds that $T(w) \leq C(w)$ for all $w \in X^{*}$.

Proof Define the map $C^{\prime}: X^{*} \rightarrow \mathbb{R}$ by letting $C^{\prime}(w):=$ $\prod_{k=1}^{|w|} \frac{1}{\bar{\varphi}\left(w_{1: k-1}\right)^{w_{k}}\left(1-\underline{\varphi}\left(w_{1: k-1}\right)\right)^{1-w_{k}}}$ for all $w \in \mathscr{X}^{*}$. This map is real-valued, since $\overline{0}<\bar{\varphi}$ and $\varphi<1$ by the non-degeneracy of φ. Since φ is computable, C^{\top} is computable as well. Let's now prove that $T(w) \leq C^{\prime}(w)$ for all $w \in \mathscr{X}^{*}$. Fix any situation $w \in \mathscr{X}^{*}$ and any $x \in \mathscr{X}$. If $x=1$, then

$$
\begin{aligned}
T(w x) & \leq \frac{1}{\bar{\varphi}(w)}[\bar{\varphi}(w) T(w 1)+(1-\bar{\varphi}(w)) T(w 0)] \\
& \leq \frac{1}{\bar{\varphi}(w)} \bar{E}_{\varphi(w)}(T(w \cdot)) \leq \frac{1}{\bar{\varphi}(w)} T(w)
\end{aligned}
$$

If $x=0$, then

$$
\begin{aligned}
T(w x) & \leq \frac{1}{1-\underline{\varphi}(w)}[\underline{\varphi}(w) T(w 1)+(1-\underline{\varphi}(w)) T(w 0)] \\
& \leq \frac{1}{1-\underline{\varphi}(w)} \bar{E}_{\varphi(w)}(T(w \cdot)) \leq \frac{1}{1-\underline{\varphi}(w)} T(w)
\end{aligned}
$$

Above, the first, second and third inequalities follow from the non-negativity of T, Equation (1) and the supermartingale property, respectively. Hence,

$$
T(w x) \leq \frac{1}{\bar{\varphi}(w)^{x}(1-\underline{\varphi}(w))^{1-x}} T(w) .
$$

A simple induction argument now shows that indeed $T(w) \leq$ $C^{\prime}(w)$ for all $w \in X^{*}$.

Since C^{\prime} is a computable real map, there's a recursive rational map $q: X^{*} \times \mathbb{N}_{0} \rightarrow \mathbb{Q}$ such that $\left|C^{\prime}(w)-q(w, n)\right| \leq$ 2^{-n} for all $w \in \mathscr{X}^{*}$ and $n \in \mathbb{N}_{0}$. Let $C: X^{*} \rightarrow \mathbb{N}$ be defined as $C(w):=\max \{1,\lceil q(w, 1)+1\rceil\}$ for all $w \in \mathscr{X}^{*}$, with $\lceil\cdot\rceil: \mathbb{R} \rightarrow \mathbb{Z}$ the ceiling function and \mathbb{Z} the set of integer numbers. It's easy to see that C is natural-valued, positive and recursive. Furthermore, we have that $T(w) \leq C^{\prime}(w) \leq$ $q(w, 1)+1 / 2 \leq C(w)$ for all $w \in X^{*}$.

Lemma 20 There's a single algorithm that, upon the input of a code for a lower semicomputable map $F:\left(\mathscr{J}_{r} \times \mathcal{X}\right)^{*} \rightarrow$ $[0,+\infty]$, outputs a code for a lower semicomputable test superfarthingale $F^{\prime} \in \overline{\mathbb{F}}$ such that
(i) $F^{\prime}(v)=0$ for all degenerate prequential situations $v \in\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*}$;
(ii) for any rational forecasting system $\varphi_{r} \in \Phi_{r}$, $F^{\prime}\left(\varphi_{r}[w], w\right)=F\left(\varphi_{r}[w], w\right)$ for all $w \in X^{*}$ for which $\left(\varphi_{r}[w], w\right)$ is non-degenerate, provided that the map $F\left(\varphi_{r}[\bullet], \bullet\right): X^{*} \rightarrow \mathbb{R}$ is a positive test supermartingale for φ_{r}.

Proof Start from a code for the map $F:\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*} \rightarrow$ $[0,+\infty]$ that is lower semicomputable. By Corollary 6, we can invoke a single algorithm that outputs a code $q:\left(\mathscr{J}_{r} \times\right.$ $\mathscr{X})^{*} \times \mathbb{N}_{0} \rightarrow \mathbb{Q}$ for F such that $q(v, \bullet) \nearrow F(v)$ and $q(v, n)<q(v, n+1)$ for all $v \in\left(\mathscr{F}_{r} \times \mathscr{X}\right)^{*}$ and $n \in \mathbb{N}_{0}$. We'll now use the code q to construct a code q^{\prime} for a lower semicomputable test superfarthingale $F^{\prime} \in \overline{\mathbb{F}}$ that satisfies the requirements of the lemma.

Let $q^{\prime}:\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*} \times \mathbb{N}_{0} \rightarrow \mathbb{Q}$ be defined by $q^{\prime}(\square, n):=1$ and

$$
\begin{aligned}
& q^{\prime}\left(v I_{r} x, n\right):= \\
& \begin{cases}\max \left(A\left(v, I_{r}, x, n\right) \cup\{0\}\right) & \text { if } v I_{r} x \text { is non-degenerate } \\
0 & \text { if } v I_{r} x \text { is degenerate }\end{cases}
\end{aligned}
$$

for all $v=(i, w) \in\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*}, I_{r} \in \mathscr{F}_{r}, x \in \mathscr{X}$ and $n \in \mathbb{N}_{0}$, where $A:\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*} \times \mathscr{I}_{r} \times \mathscr{X} \times \mathbb{N}_{0} \rightarrow\{Q \subseteq \mathbb{Q}:|Q|<\infty\}$ is defined by

$$
\begin{gathered}
A\left(v, I_{r}, x, n\right):=\left\{q\left(v I_{r} x, m\right) \in \mathbb{Q}: 0 \leq m \leq n,\right. \\
0 \leq q\left(v I_{r} \cdot m\right) \text { and }
\end{gathered}
$$

$$
\begin{equation*}
\left.\bar{E}_{I_{r}}\left(q\left(v I_{r} \cdot, m\right)\right) \leq q^{\prime}(v, n)\right\} . \tag{6}
\end{equation*}
$$

By construction, since the map A outputs finite sequences of rationals, the map q^{\prime} is well-defined, non-negative and rational. It's not too difficult to see that the map A, and therefore also the map q^{\prime}, is recursive.

The map q^{\prime} is non-decreasing in its second argument, as we now show by induction on its first argument. We start by observing that $q^{\prime}(\square, n) \leq q^{\prime}(\square, n+1)$ for all $n \in \mathbb{N}_{0}$. For the induction step, fix any $v=(i, w) \in$ $\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*}, I_{r} \in \mathscr{F}_{r}, x \in \mathscr{X}$ and $n \in \mathbb{N}_{0}$, and assume that $q^{\prime}(v, n) \leq q^{\prime}(v, n+1)$. We then have to show that also $q^{\prime}\left(v I_{r} x, n\right) \leq q^{\prime}\left(v I_{r} x, n+1\right)$. This is trivial when $v I_{r} x$ is degenerate; when $v I_{r} x$ is non-degenerate, it follows readily from the inequality $A\left(v, I_{r}, x, n\right) \subseteq A\left(v, I_{r}, x, n+1\right)$, which is itself immediate from Equation (6).

For any $n \in \mathbb{N}_{0}$, the map $q^{\prime}(\bullet, n):\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*} \rightarrow \mathbb{R}$ is a test superfarthingale. To prove this, we may clearly concentrate on the superfarthingale condition. Fix any $v \in\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*}, I_{r} \in \mathscr{F}_{r}$ and $n \in \mathbb{N}_{0}$, and infer from Equation (6) that $A\left(v, I_{r}, 1, n\right)=\emptyset \Leftrightarrow A\left(v, I_{r}, 0, n\right)=\emptyset$, so we only need to consider two cases. If $A\left(v, I_{r}, 1, n\right)=$ $A\left(v, I_{r}, 0, n\right)=\emptyset$, then $q^{\prime}\left(v I_{r} \cdot, n\right)=0$, and therefore trivially $\bar{E}_{I_{r}}\left(q^{\prime}\left(v I_{r} \cdot, n\right)\right)=\bar{E}_{I_{r}}(0)=0 \leq q^{\prime}(v, n)$, where the second equality follows from C 1 . Otherwise, because the map q is increasing in its second argument, there's an $m \in\{0, \ldots, n\}$ such that $\bar{E}_{I_{r}}\left(q\left(v I_{r} \cdot, m\right)\right) \leq q^{\prime}(v, n)$, with $q\left(v I_{r} \cdot, m\right)=\max \left(A\left(v, I_{r}, \cdot, n\right) \cup\{0\}\right) \geq q^{\prime}\left(v I_{r} \cdot, n\right)$, where the last inequality takes into account that there may be some $x \in \mathscr{X}$ such that $v I_{r} x$ is degenerate. Hence, indeed, in this case also

$$
\bar{E}_{I_{r}}\left(q^{\prime}\left(v I_{r} \cdot, n\right)\right) \stackrel{\mathrm{C} 5}{\leq} \bar{E}_{I_{r}}\left(q\left(v I_{r} \cdot, m\right)\right) \leq q^{\prime}(v, n)
$$

As a final preliminary step, we infer from Lemma 18 that for every (non-degenerate) prequential situation $v \in$ $\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*}$ there's some real $B_{v} \in \mathbb{R}$ such that $q^{\prime}(v, n) \leq B_{v}$ for all $n \in \mathbb{N}_{0}$.

With this set-up phase completed, let F^{\prime} be defined as $q^{\prime}(v, \bullet) \nearrow F^{\prime}(v)$ for all $v \in\left(\mathscr{\mathscr { F }}_{r} \times \mathscr{X}\right)^{*} ;$ note that $F^{\prime}(\square)=1$. This map is well-defined, real-valued, non-negative and lower semicomputable due to the non-decreasingness, boundedness, non-negativity and recursiveness of q^{\prime} respectively, so we only need to check the superfarthingale property explicitly in order to conclude that F^{\prime} is a lower semicomputable test superfarthingale. To this end, fix any $v \in\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*}$ and $I_{r} \in \mathscr{J}_{r}$. If we recall that the map $q(\bullet, n):\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*} \rightarrow \mathbb{R}$ is a test superfarthingale for every $n \in \mathbb{N}_{0}$, we immediately infer from C 6 and the real-valuedness of F^{\prime} that $\bar{E}_{I_{r}}\left(F^{\prime}\left(v I_{r} \cdot\right)\right)=$ $\lim _{n \rightarrow \infty} \bar{E}_{I_{r}}\left(q^{\prime}\left(v I_{r} \cdot, n\right)\right) \leq \lim _{n \rightarrow \infty} q^{\prime}(v, n)=F^{\prime}(v)$.

We are done if we can show that F^{\prime} satisfies the conditions (i) and (ii). For (i), fix any degenerate prequential
situation $v \in\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*}$ and note that then $q^{\prime}(v, n)=0$ for all $n \in \mathbb{N}_{0}$ by construction. Hence, indeed, $F^{\prime}(v)=0$.

For (ii), fix any rational forecasting system $\varphi_{r} \in \Phi_{r}$, consider the map $T: X^{*} \rightarrow \mathbb{R}$ defined by $T(w):=$ $F\left(\varphi_{r}[w], w\right)$ for all $w \in X^{*}$, and assume that T is a positive test supermartingale. We must now show that $F^{\prime}\left(\varphi_{r}[w], w\right)=T(w)$ for all $w \in \mathscr{X}^{*}$ for which the prequential situation $\left(\varphi_{r}[w], w\right)$ is non-degenerate.

By construction, $F^{\prime}\left(\varphi_{r}[w], w\right) \leq F\left(\varphi_{r}[w], w\right)=T(w)$ for all $w \in \mathscr{X}^{*}$. Assume towards contradiction that there's some $\bar{w} \in \mathscr{X}^{*}$ for which $\left(\varphi_{r}[\bar{w}], \bar{w}\right)$ is non-degenerate and $F^{\prime}\left(\varphi_{r}[\bar{w}], \bar{w}\right)<T(\bar{w})$, implying that there's some $\epsilon>0$ such that $q^{\prime}\left(\left(\varphi_{r}[\bar{w}], \bar{w}\right), n\right)+\epsilon<T(\bar{w})$ for all $n \in \mathbb{N}_{0}$. We'll use an induction argument to show that this is impossible.

Since by assumption $q\left(\left(\varphi_{r}[\bar{w}], \bar{w}\right), \bullet\right) \nearrow T(\bar{w})>0$ and $q\left(\left(\varphi_{r}[\bar{w}], \bar{w}\right), n\right)<q\left(\left(\varphi_{r}[\bar{w}], \bar{w}\right), n+1\right)$ for all $n \in \mathbb{N}_{0}$, there are $\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{|\bar{w}|} \in \mathbb{R}$ and $n_{0}, n_{1}, \ldots, n_{|\bar{w}|} \in \mathbb{N}_{0}$ such that

$$
\begin{array}{r}
0<\epsilon_{0}<\epsilon_{1}<\cdots<\epsilon_{|\bar{w}|}<\epsilon \quad(7) \\
T\left(\bar{w}_{1: \ell}\right)<q\left(\left(\varphi_{r}\left[\bar{w}_{1: \ell}\right], \bar{w}_{1: \ell}\right), n_{\ell}\right)+\epsilon_{\ell} \\
0 \leq q\left(\left(\varphi_{r}\left[\bar{w}_{1: k}\right] \varphi_{r}\left(\bar{w}_{1: k}\right), \bar{w}_{1: k} \cdot\right), n_{k+1}\right) \\
q\left(\left(\varphi_{r}\left[\bar{w}_{1: k}\right] \varphi_{r}\left(\bar{w}_{1: k}\right), \bar{w}_{1: k} \cdot\right), n_{k+1}\right)+\epsilon_{k}<T\left(\bar{w}_{1: k} \cdot\right) \tag{10}
\end{array}
$$

for all $k \in\{0,1, \ldots,|\bar{w}|-1\}$ and $\ell \in\{0,1, \ldots,|\bar{w}|\}$. The argument starts with $\ell:=|\bar{w}|$ and $k:=|\bar{w}|-1$, finding ϵ_{ℓ} such that (7) is satisfied, and finding n_{k+1} such that (8) and (9) are satisfied. We then move to $\ell:=|\bar{w}|-1$ and $k:=|\bar{w}|-2$, find ϵ_{ℓ} such that (7) and (10) are satisfied, and find n_{k+1} such that (8) and (9) are satisfied. And so on ...; these conditions are depicted below for a situation $\bar{w} \in X^{*}$ for which $|\bar{w}|=5$.

Now, let $N:=\max \left\{n_{0}, n_{1}, \ldots, n_{|\bar{w}|}\right\}$. To start the induction argument, observe that, trivially, $q^{\prime}(\square, N)=1>T(\square)-\epsilon_{0}$. For the induction step, we fix any $k \in\{0,1, \ldots,|\bar{w}|-1\}$ and assume that $q^{\prime}\left(\left(\varphi_{r}\left[\bar{w}_{1: k}\right], \bar{w}_{1: k}\right), N\right)>T\left(\bar{w}_{1: k}\right)-\epsilon_{k}$. It then follows that

$$
\bar{E}_{\varphi_{r}\left(\bar{w}_{1: k}\right)}\left(q\left(\left(\varphi_{r}\left[\bar{w}_{1: k}\right] \varphi_{r}\left(\bar{w}_{1: k}\right), \bar{w}_{1: k} \cdot\right), n_{k+1}\right)\right)
$$

$$
\begin{aligned}
& \stackrel{(10), \mathrm{C} 5}{\leq} \bar{E}_{\varphi_{r}\left(\bar{w}_{1: k}\right)}\left(T\left(\bar{w}_{1: k} \cdot\right)-\epsilon_{k}\right) \\
& \stackrel{\mathrm{C4}}{=} \bar{E}_{\varphi_{r}\left(\bar{w}_{1: k}\right)}\left(T\left(\bar{w}_{1: k} \cdot\right)\right)-\epsilon_{k} \\
& \leq T\left(\bar{w}_{1: k}\right)-\epsilon_{k} \\
& \leq q^{\prime}\left(\left(\varphi_{r}\left[\bar{w}_{1: k}\right], \bar{w}_{1: k}\right), N\right),
\end{aligned}
$$

where the penultimate inequality follows form the assumption that T is a supermartingale, and the last inequality from the induction hypothesis. Hence, by Equations (6) and (9),

$$
\begin{aligned}
& q\left(\left(\varphi_{r}\left[\bar{w}_{1: k+1}\right], \bar{w}_{1: k+1}\right), n_{k+1}\right) \in \\
& \quad A\left(\left(\varphi_{r}\left[\bar{w}_{1: k}\right], \bar{w}_{1: k}\right), \varphi_{r}\left(\bar{w}_{1: k}\right), \bar{w}_{k+1}, N\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& q^{\prime}\left(\left(\varphi_{r}\right.\right. {\left.\left.\left[\bar{w}_{1: k+1}\right], \bar{w}_{1: k+1}\right), N\right) } \\
& \geq \max A\left(\left(\varphi_{r}\left[\bar{w}_{1: k}\right], \bar{w}_{1: k}\right), \varphi_{r}\left(\bar{w}_{1: k}\right), \bar{w}_{k+1}, N\right) \\
& \quad \geq q\left(\left(\varphi_{r}\left[\bar{w}_{1: k+1}\right], \bar{w}_{1: k+1}\right), n_{k+1}\right) \\
& \quad \stackrel{(8)}{>} T\left(\bar{w}_{1: k+1}\right)-\epsilon_{k+1} .
\end{aligned}
$$

Repeating this argument until we reach $k=|\bar{w}|-1$, we eventually find that $q^{\prime}\left(\left(\varphi_{r}[\bar{w}], \bar{w}\right), N\right)>T(\bar{w})-\epsilon_{|\bar{w}|}>$ $T(\bar{w})-\epsilon$, which is the desired contradiction.

The following result is now immediate.
Corollary 21 There's a single algorithm that, upon the input of a code for a lower semicomputable map F : $\left(\mathscr{F}_{r} \times\right.$ $X)^{*} \rightarrow[0,+\infty]$, outputs a code for a lower semicomputable test superfarthingale $F^{\prime} \in \overline{\mathbb{F}}$ such that, for all prequential situations $v \in\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*}$,
(i) $F^{\prime}(v)=0$ if v is degenerate;
(ii) $F^{\prime}(v)=F(v)$ if v is non-degenerate and F is a positive test superfarthingale.

Proof of Theorem 17. We'll give a proof for the first inequality, the proof for the second one is similar. Assume towards contradiction that there's some real number ϵ, with $0<\epsilon<1$, such that

$$
\liminf _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} S\left(v_{1: k}, \iota_{k+1}\right)\left[\omega_{k+1}-\min \iota_{k+1}\right]}{\sum_{k=0}^{n-1} S\left(v_{1: k}, \iota_{k+1}\right)}<-\epsilon
$$

Let the map $F:=\left(\mathscr{J}_{r} \times \mathscr{X}\right)^{*} \rightarrow \mathbb{R}$ be defined by

$$
\begin{array}{r}
F(v):=\prod_{k=0}^{|v|-1}\left[1-\frac{\epsilon}{3} S\left(v_{1: k}, i_{k+1}\right)\left[w_{k+1}-\min i_{k+1}\right]\right] \\
\text { for all } v=(i, w) \in\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*} .
\end{array}
$$

We'll now show in a number of steps that F is a lower semicomputable test superfarthingale for which
$\lim \sup _{n \rightarrow \infty} F\left(v_{1: n}\right)=\infty$, implying that v can't be gamerandom.

Trivially, $F(\square)=1$, and also $F \geq 0$, since $\epsilon<1,|S| \leq 1$ and $\left|x-\min I_{r}\right| \leq 1$ for all $x \in \mathscr{X}$ and $I_{r} \in \mathscr{I}_{r}$. Moreover, for any $v \in\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*}$ and $I_{r} \in \mathscr{J}_{r}$, we have that

$$
\begin{aligned}
\bar{E}_{I_{r}}\left(F\left(v I_{r} \cdot\right)\right) & \stackrel{\mathrm{C} 2}{=} F(v) \bar{E}_{I_{r}}\left(1+\frac{\epsilon}{3} S\left(v, I_{r}\right)\left[\min I_{r}-X\right]\right) \\
& \stackrel{\mathrm{C} 2, \mathrm{C} 4}{=} F(v)\left[1+\frac{\epsilon}{3} S\left(v, I_{r}\right) \bar{E}_{I_{r}}\left(\min I_{r}-X\right)\right] \\
& \stackrel{\mathrm{C} 4}{=} F(v)\left[1+\frac{\epsilon}{3} S\left(v, I_{r}\right)\left(\min I_{r}+\bar{E}_{I_{r}}(-X)\right)\right] \\
& \stackrel{(2)}{=} F(v),
\end{aligned}
$$

so we find that F is a test superfarthingale. From the recursiveness of S and the rational-valuedness of the forecasts $I_{r} \in \mathscr{J}_{r}$ and outcomes $x \in \mathscr{X}$ it follows that F is recursive, and therefore lower semicomputable as well. We conclude that F is a lower semicomputable test superfarthingale.

By assumption, for any $m, M \in \mathbb{N}_{0}$, there's some $N>m$ such that $\sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right) \geq M$ and

$$
\begin{equation*}
\frac{\sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right)\left[\omega_{k+1}-\min \iota_{k+1}\right]}{\sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right)}<-\epsilon . \tag{11}
\end{equation*}
$$

This will allow us to obtain a lower bound for $F\left(v_{1: N}\right)$. Since $1-\frac{\epsilon}{3} S\left(v, I_{r}\right)\left[x-\min I_{r}\right]>1 / 2$ for all $v \in\left(\mathscr{I}_{r} \times \mathscr{X}\right)^{*}$, $I_{r} \in \mathscr{I}_{r}$ and $x \in \mathscr{X}$, it holds that $F\left(v_{1: N}\right)=\exp (K)$, with

$$
K:=\sum_{k=0}^{N-1} \ln \left(1-\frac{\epsilon}{3} S\left(v_{1: k}, \iota_{k+1}\right)\left[\omega_{k+1}-\min \iota_{k+1}\right]\right)
$$

Since $\ln (1+x) \geq x-x^{2}$ for all $x>-1 / 2$, we infer that

$$
\begin{aligned}
K \geq- & \frac{\epsilon}{3} \sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right)\left[\omega_{k+1}-\min \iota_{k+1}\right] \\
& -\frac{\epsilon^{2}}{9} \sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right)^{2}\left[\omega_{k+1}-\min \iota_{k+1}\right]^{2}
\end{aligned}
$$

and, also taking into account Equation (11), $S^{2}=S$ and $\left[\omega_{k+1}-\min \iota_{k+1}\right]^{2} \leq 1$,

$$
\begin{aligned}
& \geq \frac{\epsilon^{2}}{3} \sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right)-\frac{\epsilon^{2}}{9} \sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right) \\
& =\frac{2 \epsilon^{2}}{9} \sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right) .
\end{aligned}
$$

Hence,

$$
F\left(v_{1: N}\right) \geq \exp \left(\frac{2 \epsilon^{2}}{9} \sum_{k=0}^{N-1} S\left(v_{1: k}, \iota_{k+1}\right)\right) \geq \exp \left(\frac{2 \epsilon^{2}}{9} M\right)
$$

After recalling that the inequality above holds for any $M \in \mathbb{N}_{0}$ and for arbitrarily large well-chosen $N \in \mathbb{N}_{0}$, we conclude that $\lim \sup _{n \rightarrow \infty} F\left(v_{1: n}\right)=\infty$.

