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Abstract
In a prequential approach to algorithmic randomness,
probabilities for the next outcome can be forecast ‘on
the fly’ without the need for fully specifying a probab-
ility measure on all possible sequences of outcomes, as
is the case in the more standard approach. We take the
first steps in allowing for probability intervals instead of
precise probabilities in this prequential approach, based
on ideas from our earlier imprecise-probabilistic and
martingale-theoretic account of algorithmic random-
ness. We define what it means for an infinite sequence
(𝐼1, 𝑥1, 𝐼2, 𝑥2, . . . ) of successive interval forecasts 𝐼𝑘
and subsequent binary outcomes 𝑥𝑘 to be random. We
compare the resulting prequential randomness notion
with the more standard one, and investigate where both
randomness notions coincide, as well as where their
properties correspond.
Keywords: superfarthingales, algorithmic randomness,
prequential probability forecasting, imprecise probab-
ilities, computability, probability intervals

1. Introduction
Consider an infinite sequence 𝑋1, 𝑋2, 𝑋3, . . . of binary vari-
ables 𝑋𝑘 ∈ {0, 1}. In classical probability theory, uncer-
tainty about the possible outcomes 𝑋𝑘 , with 𝑘 ∈ ℕ,1 is
typically represented by a probability measure on the ele-
ments of the Borel algebra over the set {0, 1}ℕ generated
by binary strings. This is equivalent to specifying, for every
possible binary string 𝑤 ∈ {0, 1}𝑛, for any 𝑛 ∈ ℕ0, the
probability 𝑝𝑤 ∈ [0, 1] that the variable 𝑋𝑛+1 equals 1,
given the observation of the binary string 𝑤; we will call
this a standard approach to (im)precise probability theory.
This system of (conditional) probabilities is also called a
forecasting system. In a number of papers [3, 4], Dawid
and Vovk question whether it is always natural or even
possible for a subject to specify such a probability measure.
Consider for example a weather forecaster who provides a
daily probability for rain in the next 24 hours. His forecasts
are based on the rain history he has actually observed (as
well as other information), and he isn’t required to provide

1ℕ denotes the set of natural numbers, and ℕ0 B ℕ ∪ {0} the set of
non-negative integers.2

2A real 𝑥 ∈ ℝ is called positive if 𝑥 > 0 and non-negative if 𝑥 ≥ 0.

forecasts for all rain histories that might have been and
might be. Dawid and Vovk provide a practical way out of
this conundrum by putting forward the so-called prequential
forecasting framework.

In Refs. [1, 14], the prequential forecasting idea is ap-
plied to algorithmic randomness. Instead of defining what
it means for an infinite binary sequence of outcomes, such
as (0, 1, 1, 0, 0, 1, 0, . . . ), to be random for a forecasting
system, they come upwith randomness notions that consider
the randomness of an infinite binary sequence of outcomes
only with respect to the probabilities that are forecast along
the sequence, that is, they define what it means for an infin-
ite sequence (𝑝1, 𝑥1, 𝑝2, 𝑥2, . . . , 𝑝𝑘 , 𝑥𝑘 , . . . ) of probability
forecasts 𝑝𝑘 ∈ [0, 1] and subsequent outcomes 𝑥𝑘 ∈ {0, 1}
to be random. They do this using a measure-theoretic as well
as a martingale-theoretic approach; an infinite sequence
is regarded as measure-theoretically random if there is no
computable way to specify a set of measure zero containing
this sequence, whereas an infinite sequence is regarded as
martingale-theoretically random if there is no computable
way to get arbitrary rich by betting on its elements [14].

Here, we build upon the martingale-theoretic prequential
approach to randomness by extending the probability fore-
casts 𝑝𝑘 ∈ [0, 1] to so-called interval forecasts 𝐼𝑘 ⊆ [0, 1],
and in doing so extend the range of applicability of both
their and our own work [5]: we define what it means to
be random for an infinite sequence (𝐼1, 𝑥1, 𝐼2, 𝑥2, . . . ) of
interval forecasts 𝐼𝑘 and subsequent outcomes 𝑥𝑘 , and
compare the resulting prequential imprecise-probabilistic
randomness definition to our previously introduced stand-
ard imprecise-probabilistic generalisation of Martin-Löf
randomness [5].

We structure our exposition as follows. In Section 2, we
formally introduce interval forecasts and equip them with
an interpretation in terms of betting games. This allows us
to discuss, in Section 3, the basic ideas behind our standard
imprecise-probabilistic martingale-theoretic approach to
randomness [5]. After summarising some computability
principles and properties in Section 4, we have enoughmath-
ematical equipment to formally introduce our prequential
imprecise-probabilistic notion of randomness in Section 5;
our terminology will follow Refs. [4, 14]. We compare the

© 2023 F. Persiau & G. de Cooman.



Imprecision in Martingale-Theoretic Prequential Randomness

definitions and properties of our standard and prequential
randomness notions in Section 6.
To adhere to the page limit, we have gathered more

technical results and proofs in Appendix A of an extended
on-line version [16].

2. Imprecise Uncertainty Models
Consider the binary sample space 𝒳 B {0, 1} and a vari-
able 𝑋 that may assume values in𝒳. To describe a subject’s
uncertainty about the unknown value of 𝑋 , we’ll not only
allow for precise probabilities 𝑝 ∈ [0, 1], but also for more
general closed interval forecasts 𝐼 ⊆ [0, 1]; the set of all
closed interval forecasts is denoted by ℐ. Every interval
forecast 𝐼 ∈ ℐ could be interpreted as a set of probabilities
𝑝 ∈ 𝐼 that a subject finds plausible for describing his prob-
ability that 𝑋 = 1. To obtain a different interpretation in
terms of bets—which is the one we use here—we associate
with every interval forecast 𝐼 ∈ ℐ the upper and lower
expectation operators 𝐸 𝐼 , 𝐸 𝐼 : ℝ

𝒳 → ℝ that associate with
every so-called gamble 𝑓 ∈ ℝ𝒳 an upper expectation

𝐸 𝐼 ( 𝑓 ) B max
𝑝∈𝐼

[
𝑝 𝑓 (1) + (1 − 𝑝) 𝑓 (0)

]
(1)

and a lower expectation
𝐸 𝐼 ( 𝑓 ) B min

𝑝∈𝐼

[
𝑝 𝑓 (1) + (1 − 𝑝) 𝑓 (0)

]
= −𝐸 𝐼 (− 𝑓 ). (2)

These numbers are interpreted as a subject’s lowest ac-
ceptable selling price and largest acceptable buying price,
respectively, for the uncertain pay-off 𝑓 (𝑋). This implies
that our subject is willing to accept the uncertain pay-off
𝑓 (𝑋) − 𝑝 for any buying price 𝑝 ≤ 𝐸 𝐼 ( 𝑓 ), and is willing
to accept the uncertain pay-off 𝑞 − 𝑓 (𝑋) for any selling
price 𝑞 ≥ 𝐸 𝐼 ( 𝑓 ); the collection of our subject’s accepted
gambles corresponds to those gambles 𝑓 ∈ ℝ𝒳 for which
𝐸 𝐼 ( 𝑓 ) ≥ 0, that is, all gambles for which he expects a non-
negative gain with respect to every probability 𝑝 ∈ 𝐼. Vice
versa, from the perspective of an opponent, our subject is
willing to give away those gambles 𝑓 for which 𝐸 𝐼 ( 𝑓 ) ≤ 0,
that is, all gambles for which he expects a non-negative
loss for every probability 𝑝 ∈ 𝐼. Our subject is indeterm-
inate about accepting or giving away a gamble 𝑓 when
𝐸 𝐼 ( 𝑓 ) < 0 < 𝐸 𝐼 ( 𝑓 ); this is illustrated in Figure 1. In what
follows, we’ll make extensive use of the upper expectation
operator 𝐸 𝐼 and a number of its properties [15]:

Proposition 1 Consider any interval forecast 𝐼 ∈ ℐ. Then
for all gambles 𝑓 , 𝑔 ∈ ℝ𝒳, all sequences of gambles 𝑓𝑛,
𝑛 ∈ ℕ0 and all 𝜇, 𝜆 ∈ ℝ with 𝜆 ≥ 0:

C1. min 𝑓 ≤ 𝐸 𝐼 ( 𝑓 ) ≤ max 𝑓 ; [boundedness]
C2. 𝐸 𝐼 (𝜆 𝑓 ) = 𝜆𝐸 𝐼 ( 𝑓 ); [non-negative homogeneity]
C3. 𝐸 𝐼 ( 𝑓 + 𝑔) ≤ 𝐸 𝐼 ( 𝑓 ) + 𝐸 𝐼 (𝑔); [subadditivity]

C4. 𝐸 𝐼 ( 𝑓 + 𝜇) = 𝐸 𝐼 ( 𝑓 ) + 𝜇; [constant additivity]
C5. if 𝑓 ≤ 𝑔 then 𝐸 𝐼 ( 𝑓 ) ≤ 𝐸 𝐼 (𝑔); [monotonicity]
C6. if lim𝑛→∞ 𝑓𝑛 = 𝑓 then lim𝑛→∞ 𝐸 𝐼 ( 𝑓𝑛) = 𝐸 𝐼 ( 𝑓 ).

[pointwise convergence]

𝑓 (1)

𝑓 (0)

−2 −1 1 2

−2

−1

1

2

0

𝐸 𝐼 ( 𝑓 ) ≥ 0

𝐸 𝐼 ( 𝑓 ) ≤ 0

Figure 1: Let 𝐼 = [1/4, 3/4]. The light grey, dark grey and
white regions depict the gambles 𝑓 ∈ ℝ𝒳 for
which 𝐸 𝐼 ( 𝑓 ) ≤ 0, 𝐸 𝐼 ( 𝑓 ) ≥ 0 and 𝐸 𝐼 ( 𝑓 ) < 0 <
𝐸 𝐼 ( 𝑓 ), respectively.

3. Sequential and Prequential Games
To put interval forecasts into practice, consider Frank
Deboosere—a famous Belgian weatherman—whose
daily job consists in making good forecasts about
whether the sun will or won’t shine on the next day. This
corresponds to a binary option space; we write 1 for a
sunny day and 0 for a non-sunny day. We formalise his
forecasting task in the following forecasting protocol:

FOR 𝑛 = 1, 2, 3, . . . :
Forecaster Frank announces 𝐼𝑛 ∈ ℐ.
Reality announces 𝑥𝑛 ∈ 𝒳.

Intuitively, at each step 𝑛 ∈ ℕ in the protocol, 𝐼𝑛 expresses
Frank’s beliefs about 𝑋𝑛 = 1 after observing the outcomes
(𝑥1, . . . , 𝑥𝑛−1). Clearly, Frank can do a good or a bad
forecasting job. For example, if he forecasts 1 at every time
step, but it rains every day, then we might be inclined to say
he’s doing a bad job. But if he forecasts 1/2 at every time
step and it rains half of the time, then we could say he’s
doing a good job. This brings us to the central question
in this paper: when will we say that Frank makes good
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predictions, or more technically speaking, that his forecasts
(𝐼1, . . . , 𝐼𝑛, . . . ) are well-calibrated with the outcomes
(𝑥1, . . . , 𝑥𝑛, . . . )? The field of algorithmic randomness
tries to answer this question by defining what it means for
an infinite sequence (𝐼1, 𝑥1, . . . , 𝐼𝑛, 𝑥𝑛, . . . ) of forecasts 𝐼𝑛
and subsequent outcomes 𝑥𝑛 to be ‘random’.

3.1. The Standard Approach

Before giving a first (standard) answer to this randomness
question, we need some notation. An infinite sequence of
outcomes (𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .) ∈ 𝒳

ℕ is called a path and is
generically denoted by 𝜔. A finite sequence of outcomes
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝒳

∗ B
⋃

𝑘∈ℕ0 𝒳
𝑘 is called a situation, is

generically denoted by 𝑤, and has length |𝑤 | = 𝑛. For any
𝑘 ∈ ℕ0, we use the notations 𝜔1:𝑘 = (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) and
𝜔𝑘 = 𝑥𝑘 , and similarly for situations 𝑤 ∈ 𝒳

∗ with 𝑘 ≤ |𝑤 |.
The empty situation 𝑤1:0 = () is also denoted by �.
On the standard approach, it’s assumed that Forecaster

Frank’s forecasts in the above protocol can be derived from
a so-called forecasting system: Frank not only has to specify
forecasts 𝐼𝑛 B 𝐼 (𝑥1 ,...,𝑥𝑛−1) to express his beliefs about
𝑋𝑛 = 1 after observing the actual outcomes (𝑥1, . . . , 𝑥𝑛−1),
but he also has to specify forecasts 𝐼𝑤 ∈ ℐ for all possible
situations 𝑤 ∈ 𝒳

∗ that can in principle occur.

Definition 2 A forecasting system is a map 𝜑 : 𝒳∗ → ℐ

that associates an interval forecast 𝜑(𝑤) ∈ ℐ with every
situation 𝑤 in the event tree 𝒳

∗. With any forecast-
ing system 𝜑 we can associate two real maps 𝜑 and 𝜑,
defined by 𝜑(𝑤) B min 𝜑(𝑤) and 𝜑(𝑤) B max 𝜑(𝑤) for
all 𝑤 ∈ 𝒳

∗. We denote the set of all forecasting systems
by𝛷. A forecasting system 𝜑 ∈ 𝛷 is called non-degenerate
if 𝜑(𝑤) < 1 and 0 < 𝜑(𝑤) for all 𝑤 ∈ 𝒳

∗. A forecasting
system 𝜑 ∈ 𝛷 is called more conservative than a forecasting
system 𝜑′ ∈ 𝛷 if 𝜑′(𝑤) ⊆ 𝜑(𝑤) for all 𝑤 ∈ 𝒳

∗.

We see that, in this context, it’s more natural to talk about
the randomness of a path 𝜔 ∈ 𝒳

ℕ for a forecasting system
𝜑, rather than for a sequence of forecasts (𝐼1, . . . , 𝐼𝑛, . . . ).
To answer the randomness question, Frank’s colleague

Sabine Hagedoren—who is a famous Belgian weatherwo-
man and whom we’ll also call Sceptic, because that will
be her role—tests the correspondence between Frank’s
forecasting system 𝜑 and Reality’s outcomes. She does
so by engaging in a betting game. We’ll assume that she
starts with unit capital. In every situation 𝑤 ∈ 𝒳

∗, she then
selects a gamble 𝑓𝑤 ∈ ℝ𝒳 that’s made available to her
by Forecaster Frank’s specification of the interval forecast
𝜑(𝑤), that is, she selects an uncertain change of capital
𝑓𝑤 ∈ ℝ𝒳 for which 𝐸 𝜑 (𝑤) ( 𝑓𝑤 ) ≤ 0. Furthermore, we’ll
prohibit Sabine from borrowing money, which means that
her capital can’t become negative. If Frank does a good
forecasting job, Sabine shouldn’t be able to tremendously

increase her capital in the long run. We’ll then call a path
𝜔 ∈ 𝒳

ℕ random for a forecasting system 𝜑 ∈ 𝛷 if Sabine
can’t come up with a(n effectively implementable) betting
strategy that makes her rich without bounds along 𝜔; her
betting strategies are formalised in the following defini-
tion, where ‘ ·’ functions as a placeholder for the possible
outcomes 𝑥 ∈ 𝒳.

Definition 3 A real-valued map 𝑀 : 𝒳∗ → ℝ is called
a supermartingale for 𝜑 if 𝐸 𝜑 (𝑤) (𝑀 (𝑤 ·)) ≤ 𝑀 (𝑤) for
all 𝑤 ∈ 𝒳

∗, and we collect these maps in the set 𝕄(𝜑).
We call a non-negative supermartingale 𝑇 for 𝜑 such
that 𝑇 (�) = 1 a test supermartingale for 𝜑, and we collect
these in the set 𝕋 (𝜑).

Readers familiar with the field of algorithmic random-
ness know that we mustn’t allow Sabine to select just any
allowable betting strategy—or test supermartingale. Oth-
erwise, the corresponding notion of randomness wouldn’t
make much sense because, for one thing, no path 𝜔 ∈ 𝒳

ℕ

would be random for the constant forecast 1/2. This issue’s
typically resolved by restricting Sabine’s betting strategies
to a countable class of ‘effectively implementable’ ones. In
Section 4 we’ll explain what ‘effectively implementable’
means, but let’s first have a look at how to devise a notion of
randomness for an infinite sequence (𝐼1, 𝑥1, . . . , 𝐼𝑛, 𝑥𝑛, . . . )
of forecasts 𝐼𝑛 and subsequent outcomes 𝑥𝑛 when adopting
a prequential perspective.

3.2. The Prequential Approach

Again, we start by introducing a bit of notation. An infinite
sequence (𝐼1, 𝑥1, . . . , 𝐼𝑛, 𝑥𝑛, . . . ) ∈ (ℐ𝑟 ×𝒳)ℕ of rational
forecasts 𝐼𝑛 and subsequent outcomes 𝑥𝑛 is called a pre-
quential path and generically denoted by 𝜐.3 An infinite
sequence of rational forecasts (𝐼1, . . . , 𝐼𝑛, . . . ) ∈ ℐ

ℕ
𝑟 is

generically denoted by 𝜄. A finite sequence of rational fore-
casts and outcomes (𝐼1, 𝑥1, . . . , 𝐼𝑛, 𝑥𝑛) ∈ (ℐ𝑟 × 𝒳)∗ B⋃

𝑘∈ℕ0 (ℐ𝑟 ×𝒳)𝑘 is called a prequential situation, is gener-
ically denoted by 𝑣 and has length |𝑣 | = 𝑛. A finite sequence
of rational forecasts (𝐼1, . . . , 𝐼𝑛) ∈ ℐ

∗
𝑟 B

⋃
𝑘∈ℕ0 ℐ𝑟

𝑘 is
generically denoted by 𝑖 and has length |𝑖 | = 𝑛. For any
𝑘 ∈ ℕ0, 𝜐1:𝑘 = (𝐼1, 𝑥1, . . . , 𝐼𝑘 , 𝑥𝑘 ), and similarly for infinite
sequences of rational forecasts 𝜄 ∈ ℐ

ℕ
𝑟 and for prequential

situations 𝑣 ∈ (ℐ𝑟 ×𝒳)∗ with 𝑘 ≤ |𝑣 |. Furthermore, for any
𝑘 ∈ ℕ0, 𝜄𝑘 = 𝐼𝑘 , and similarly for a finite sequence of ra-
tional forecasts 𝑖 ∈ ℐ

∗
𝑟 with 𝑘 ≤ |𝑖 |. The empty prequential

situation 𝑣1:0 = () is denoted also by �.
For ease of notation, we won’t differentiate between

𝜐 ∈ (ℐ𝑟 ×𝒳)ℕ and (𝜄, 𝜔) ∈ ℐ
ℕ
𝑟 ×𝒳

ℕ. In the same spirit,

3We limit ourselves to rational forecasts in this prequential setting
and draw attention to this restriction by using a subscript 𝑟 ; a rational
forecasting system is for example denoted by 𝜑𝑟 , and the set of all rational
interval forecasts byℐ𝑟 . In Section 5, we’ll provide some explanation and
motivation for this restriction.
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we won’t differentiate between 𝑣 ∈ (ℐ𝑟 ×𝒳)∗ and (𝑖, 𝑤) ∈⋃
𝑛∈ℕ0 ℐ𝑟

𝑛 ×𝒳
𝑛. The concatenation of a situation 𝑤 ∈ 𝒳

∗

and an outcome 𝑥 ∈ 𝒳 is denoted by 𝑤𝑥, the concatenation
of a finite sequence of rational forecasts 𝑖 ∈ ℐ

∗
𝑟 and a

rational forecast 𝐼𝑟 ∈ ℐ𝑟 by 𝑖𝐼𝑟 , and the concatenation of
a prequential situation 𝑣 ∈ (ℐ𝑟 ×𝒳)∗, a rational forecast
𝐼𝑟 ∈ ℐ𝑟 and an outcome 𝑥 ∈ 𝒳 by 𝑣𝐼𝑟𝑥. In this way, for
any 𝑣 = (𝑖, 𝑤) = (𝐼1, 𝑥1, . . . , 𝐼𝑛, 𝑥𝑛) ∈ (ℐ𝑟 ×𝒳)∗, 𝐼𝑟 ∈ ℐ𝑟

and 𝑥 ∈ 𝒳, we have that 𝑣𝐼𝑟𝑥 = (𝐼1, 𝑥1, . . . , 𝐼𝑛, 𝑥𝑛, 𝐼𝑟 , 𝑥) =
(𝑖𝐼𝑟 , 𝑤𝑥) ∈ (ℐ𝑟 ×𝒳)∗.
In the prequential setting, it’s not assumed that Frank’s

forecasts are produced by some underlying forecasting
system. Instead, as is (re)presented in the protocol, he’s
allowed to produce forecasts on the fly, so there’s no need for
Frank to provide forecasts in all situations that could occur.
To test whether Frank is doing a good job, Sabine here too
engages in a betting game, only now she has to define a
strategy that specifies an allowed change in capital for all
possible successions of rational forecasts (that could have
been chosen by Frank) and outcomes (that could have been
revealed by Reality), that is, she has to specify a possible
change in capital for all prequential situations 𝑣 ∈ (ℐ𝑟×𝒳)∗;
she’s again prohibited from borrowing money and assumed
to start with unit capital. Her prequential betting strategies
are formalised as follows; as announced in the Introduction,
we borrow the underlying idea as well as the terminology
from Refs. [4, 14].

Definition 4 A real-valued map 𝐹 : (ℐ𝑟 × 𝒳)∗ → ℝ is
called a superfarthingale if 𝐸 𝐼𝑟 (𝐹 (𝑣𝐼𝑟 ·)) ≤ 𝐹 (𝑣) for all
𝑣 ∈ (ℐ𝑟 ×𝒳)∗ and 𝐼𝑟 ∈ ℐ𝑟 , and these maps are collected
in the set 𝔽. We call a non-negative superfarthingale 𝐹 ≥ 0
such that 𝐹 (�) = 1 a test superfarthingale.

Here too, to obtain a sensible prequential notion of
randomness, we need to restrict Sabine’s betting strategies to
a countable set, and we’ll do so by specifying what it means
for a betting strategy to be ‘effectively implementable’.

4. Effective Objects
To define what it means for a mathematical object to be
effectively implementable, we turn our attention to the field
of computability theory. As its basic objects, it considers
natural maps 𝜙 : ℕ → ℕ. Such a natural map 𝜙 is called
recursive if it can be computed by a Turing machine; this
means that there’s a Turing machine that, when given a
natural number 𝑛 ∈ ℕ, outputs the natural number 𝜙(𝑛) ∈
ℕ. By the Church-Turing thesis, this is equivalent to the
existence of a finite algorithm that outputs 𝜙(𝑛) ∈ ℕ in a
finite number of steps when given 𝑛 ∈ ℕ as an input. Via
encoding, this notion of effectiveness is extended to all
rational maps 𝑞 : D → ℚ, where D denotes any countably
infinite set whose elements can be encoded by the natural

numbers; the choice of encoding isn’t important, provided
we can algorithmically decide whether a natural number
is an encoding of an object and, if this is the case, we can
find an encoding of the same object with respect to the
other encoding [12, p. xvi]. By the Church-Turing thesis, a
rational map 𝑞 : D → ℚ is then recursive if there’s some
finite algorithm that outputs the rational number 𝑞(𝑑) ∈ ℚ

in a finite number of steps, when it’s given 𝑑 ∈ D as an
input. In line with the approach in Ref. [9], we’ll provide or
describe an algorithmwheneverwewant to establish amap’s
recursive character. In particular, since a finite number of
algorithms can always be combined into one [13], a rational
forecasting system 𝜑𝑟 ∈ 𝛷𝑟 is called recursive if there are
two recursive maps 𝑞, 𝑞 : 𝒳∗ → ℚ such that 𝜑

𝑟
(𝑤) = 𝑞(𝑤)

and 𝜑𝑟 (𝑤) = 𝑞(𝑤) for all 𝑤 ∈ 𝒳
∗.

Recursive maps can be used to provide notions of im-
plementability for (extended) real-valued maps of the form
𝑟 : D → ℝ∪ {+∞}, whose co-domain isn’t countably infin-
ite. Such a map 𝑟 is called lower semicomputable if there’s
some recursive rational map 𝑞 : D × ℕ0 → ℚ such that
𝑞(𝑑, 𝑛) ≤ 𝑞(𝑑, 𝑛 + 1) and lim𝑚→∞ 𝑞(𝑑, 𝑚) = 𝑟 (𝑑) for all
𝑑 ∈ D and 𝑛 ∈ ℕ0; as a shorthand notation, we’ll then
write 𝑞(𝑑, •) ↗ 𝑟 (𝑑). Any such map 𝑞 that witnesses the
lower semicomputability of the map 𝑟 in the above sense,
will also be called a code for 𝑟 . We may always assume that
this approximation from below is strictly increasing.

Lemma 5 An extended real map 𝑟 : D → ℝ ∪ {+∞} is
lower semicomputable if and only if there’s some recursive
rational map 𝑞 : D×ℕ0 → ℚ such that lim𝑚→∞ 𝑞(𝑑, 𝑚) =
𝑟 (𝑑) and 𝑞(𝑑, 𝑛) < 𝑞(𝑑, 𝑛 + 1) for all 𝑑 ∈ D and 𝑛 ∈ ℕ0.

Proof The ‘if’-part is obvious. For the ‘only if’-part,
consider a recursive rational map 𝑞′ : D × ℕ0 → ℚ such
that 𝑞′(𝑑, •) ↗ 𝑟 (𝑑) for all 𝑑 ∈ D. Define 𝑞 : D×ℕ0 → ℚ

by 𝑞(𝑑, 𝑛) B 𝑞′(𝑑, 𝑛) − 2−𝑛 for all 𝑑 ∈ D and 𝑛 ∈ ℕ0. We
then have that lim𝑚→∞ 𝑞(𝑑, 𝑚) = lim𝑚→∞ 𝑞′(𝑑, 𝑚) = 𝑟 (𝑑)
and 𝑞(𝑑, 𝑛) < 𝑞′(𝑑, 𝑛) − 2−(𝑛+1) ≤ 𝑞′(𝑑, 𝑛+ 1) − 2−(𝑛+1) =
𝑞(𝑑, 𝑛 + 1) for all 𝑑 ∈ D and 𝑛 ∈ ℕ0.

This also provides a proof for the following statement.

Corollary 6 There’s a single algorithm that, upon the
input of a code for a lower semicomputable extended real
map 𝑟 : D → ℝ ∪ {+∞}, outputs a recursive rational map
𝑞 : D × ℕ0 → ℚ such that lim𝑚→∞ 𝑞(𝑑, 𝑚) = 𝑟 (𝑑) and
𝑞(𝑑, 𝑛) < 𝑞(𝑑, 𝑛 + 1) for all 𝑑 ∈ D and 𝑛 ∈ ℕ0.

We’ll also consider a stronger notion of effective imple-
mentability: a real map 𝑟 : D → ℝ is called computable if
there’s some recursive rational map 𝑞 : D × ℕ0 → ℚ

such that |𝑟 (𝑑) − 𝑞(𝑑, 𝑛) | ≤ 2−𝑛 for all 𝑑 ∈ D and
𝑛 ∈ ℕ0. In particular, a forecasting system 𝜑 ∈ 𝛷 is
called computable if there are two recursive rational maps

393



Persiau de Cooman

𝑞, 𝑞 : 𝒳∗ ×ℕ0 → ℚ such that |𝜑(𝑤) − 𝑞(𝑤, 𝑛) | ≤ 2−𝑛 and
|𝜑(𝑤) − 𝑞(𝑤, 𝑛) | ≤ 2−𝑛 for all 𝑤 ∈ 𝒳

∗ and 𝑛 ∈ ℕ0.

5. Martin-Löf and Game-Randomness
5.1. The Standard Approach

To get to a first notion of randomness, in the standard setting,
we impose lower semicomputability on Sceptic Sabine’s bet-
ting strategies—the test supermartingales—so as to obtain
our ‘imprecise-probabilistic’ martingale-theoretic version
of Martin-Löf randomness [5, Definition 2]. We refer to our
earlier work [5] for an extensive discussion of this type of
randomness, its properties, and reasons for introducing it.

Definition 7 A path 𝜔 ∈ 𝒳
ℕ is Martin-Löf random for a

forecasting system 𝜑 ∈ 𝛷 if lim sup𝑛→∞ 𝑇 (𝜔1:𝑛) < ∞ for
all lower semicomputable test supermartingales 𝑇 ∈ 𝕋 (𝜑).

We can give a more prequential flavour to this random-
ness notion, but to do so, we require somemore terminology.
With any infinite sequence of outcomes 𝜔 ∈ 𝒳

ℕ and fore-
casting system 𝜑 ∈ 𝛷, we associate the infinite sequence of
forecasts 𝜑[𝜔] B (𝜑(𝜔1:0), 𝜑(𝜔1:1), 𝜑(𝜔1:2), . . . ). Simil-
arly, we associate with any finite sequence of outcomes 𝑤 ∈
𝒳

∗ and forecasting system 𝜑 ∈ 𝛷 the finite sequence
of forecasts 𝜑[𝑤] B (𝜑(𝑤1:0), 𝜑(𝑤1:1), . . . , 𝜑(𝑤1: |𝑤 |−1)).
This allows us to check the compatibility of a forecasting
system 𝜑 ∈ 𝛷 with a given infinite sequence 𝜐 = (𝜄, 𝜔) ∈
(ℐ ×𝒳)ℕ of forecasts and outcomes, in the sense that 𝜑
emits the same forecasts based on the observed outcomes 𝜔
in 𝜐 as the forecasts 𝜄 that are present in 𝜐: we say that 𝜑
is compatible with 𝜐 if 𝜑[𝜔] = 𝜄, that is, if 𝜑(𝜔1:𝑛) = 𝜄𝑛+1
for all 𝑛 ∈ ℕ0. If the forecasting system 𝜑 produces more
conservative forecasts along 𝜔 compared to 𝜄, that is, if
𝜄𝑛+1 ⊆ 𝜑(𝜔1:𝑛) for all 𝑛 ∈ ℕ0, then we say that 𝜑 is more
conservative (or less informative) on 𝜐 = (𝜄, 𝜔). Similarly,
we say that a forecasting system 𝜑 is compatible with a pre-
quential situation 𝑣 = (𝑖, 𝑤) ∈ (ℐ𝑟 ×𝒳)∗ if 𝜑(𝑤1:𝑛) = 𝑖𝑛+1
for all 0 ≤ 𝑛 ≤ |𝑣 | − 1. Definition 7 can now be adapted to
this new context as follows.

Definition 8 We’ll call a sequence 𝜐 = (𝜄, 𝜔) ∈ (ℐ×𝒳)ℕ
of interval forecasts and outcomes Martin-Löf random if
there’s some forecasting system 𝜑 that’s compatible with 𝜐
such that 𝜔 is Martin-Löf random for 𝜑.

Before introducing an ‘imprecise-probabilistic’ and
martingale-theoretic prequential notion of randomness
that’s inspired by Vovk and Shen’s work [14], let’s now first
argue why we restrict our attention to rational forecasts in
the prequential setting. First of all, compared to their ap-
proach in Ref. [14], it allows us to employ a technically less
involved version of effective implementability that results

in simpler proofs. Secondly, and perhaps more importantly,
we intend to compare our standard and prequential notions
of randomness, and, as the following proposition shows,
rational forecasts are enough to capture the essence of
randomness in the standard setting.

Proposition 9 For every non-degenerate computable fore-
casting system 𝜑 ∈ 𝛷 there’s a recursive rational forecasting
system 𝜑𝑟 ∈ 𝛷𝑟 , with 𝜑 ⊆ 𝜑𝑟 , such that a path 𝜔 ∈ 𝒳

ℕ

is Martin-Löf random for 𝜑 if and only if it’s Martin-Löf
random for 𝜑𝑟 .

Proof Since 𝜑 is computable, there are two recursive
rational maps 𝑞, 𝑞 : 𝒳∗ × ℕ0 → ℚ such that��𝜑(𝑤) − 𝑞(𝑤, 𝑛)�� ≤ 2−𝑛 and ��𝜑(𝑤) − 𝑞(𝑤, 𝑛)�� ≤ 2−𝑛

for all 𝑤 ∈ 𝒳
∗ and 𝑛 ∈ ℕ0. (3)

By Lemma 19 in Appendix A of Ref. [16], since 𝜑 is also
assumed to be non-degenerate, we know there’s a recursive
natural map 𝐶 : 𝒳∗ → ℕ such that 𝑇 (𝑤) ≤ 𝐶 (𝑤) for all
𝑤 ∈ 𝒳

∗ and 𝑇 ∈ 𝕋 (𝜑). We’ll now use these recursive maps
to define an appropriate recursive rational approximation
of 𝜑. As a first step, let 𝑁 : 𝒳∗ → ℕ0 be defined as

𝑁 (𝑤) B min
{
𝑛 ∈ ℕ0 : 2−𝑛 ≤ 2−|𝑤 |

max{𝐶 (𝑤1), 𝐶 (𝑤0)} + 2

}
for all 𝑤 ∈ 𝒳

∗. This map is recursive because 𝐶 is. Now,
for any 𝑤 ∈ 𝒳

∗, let 𝜑𝑟 ∈ 𝛷𝑟 be defined by

𝜑
𝑟
(𝑤) B max

{
0, 𝑞(𝑤, 𝑁 (𝑤) + 1) − 2−(𝑁 (𝑤)+1)}

and
𝜑𝑟 (𝑤) B min

{
1, 𝑞(𝑤, 𝑁 (𝑤) + 1) + 2−(𝑁 (𝑤)+1)}.

By Equation (3), 𝑞(𝑤, 𝑁 (𝑤) + 1) − 2−(𝑁 (𝑤)+1) ≤ 𝜑(𝑤),
and hence, since 0 ≤ 𝜑(𝑤), also 𝜑

𝑟
(𝑤) ≤ 𝜑(𝑤), for all

𝑤 ∈ 𝒳
∗. By Equation (3), it also holds for all 𝑤 ∈ 𝒳

∗

that 𝜑(𝑤) ≤ 𝑞(𝑤, 𝑁 (𝑤) + 1) + 2−(𝑁 (𝑤)+1) , and therefore
𝜑(𝑤) − 2−𝑁 (𝑤) ≤ 𝑞(𝑤, 𝑁 (𝑤) + 1) − 2−(𝑁 (𝑤)+1) ≤ 𝜑

𝑟
(𝑤).

We conclude that

𝜑(𝑤) − 2−𝑁 (𝑤) ≤ 𝜑
𝑟
(𝑤) ≤ 𝜑(𝑤) for all 𝑤 ∈ 𝒳

∗. (4)

In a similar fashion, we can show that

𝜑(𝑤) ≤ 𝜑𝑟 (𝑤) ≤ 𝜑(𝑤) + 2−𝑁 (𝑤) for all 𝑤 ∈ 𝒳
∗. (5)

As a result, we already find that 𝜑 ⊆ 𝜑𝑟 . Proposition 10 in
Ref. [5] then tells us that a path 𝜔 ∈ 𝒳

ℕ is Martin-Löf ran-
dom for 𝜑 only if it’s Martin-Löf random for 𝜑𝑟 . It remains
to prove the ‘if’-direction, so assume that 𝜔 is Martin-
Löf random for 𝜑𝑟 and assume towards contradiction that
there’s some lower semicomputable test supermartingale
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𝑇 ∈ 𝕋 (𝜑) for which lim sup𝑛→∞ 𝑇 (𝜔1:𝑛) = ∞. Define the
map 𝑇 ′ : 𝒳∗ → ℝ as

𝑇 ′(𝑤) B 𝑇 (𝑤) + 2−|𝑤 |+1

3
for all 𝑤 ∈ 𝒳

∗.

Clearly, lim sup𝑛→∞ 𝑇
′(𝜔1:𝑛) = 1

3 lim sup𝑛→∞ 𝑇 (𝜔1:𝑛) =

∞, so we’re done if we can prove that 𝑇 ′ ∈ 𝕋 (𝜑𝑟 ) and that
𝑇 ′ is lower semicomputable. 𝑇 ′ starts with unit capital since
𝑇 (�)+2
3 = 1, is non-negative since 𝑇 ′(𝑤) ≥ 𝑇 (𝑤)

3 ≥ 0 for
all 𝑤 ∈ 𝒳

∗, and is lower semicomputable because 𝑇 is. We
complete the proof by proving its supermartingale character.
Fix any 𝑤 ∈ 𝒳

∗. If 𝑇 ′(𝑤1) ≥ 𝑇 ′(𝑤0), then

𝐸 𝜑𝑟 (𝑤) (𝑇 ′(𝑤 ·))
(1)
= 𝜑𝑟 (𝑤)𝑇 ′(𝑤1) +

(
1 − 𝜑𝑟 (𝑤)

)
𝑇 ′(𝑤0)

(5)
≤

(
𝜑(𝑤) + 2−𝑁 (𝑤) )𝑇 ′(𝑤1)

+
(
1 − 𝜑(𝑤)

)
𝑇 ′(𝑤0)

(1)
= 𝐸 𝜑 (𝑤) (𝑇 ′(𝑤 ·)) + 2−𝑁 (𝑤)𝑇 ′(𝑤1)

C2,C4
=

𝐸 𝜑 (𝑤) (𝑇 (𝑤 ·)) + 2−|𝑤 |

3
+ 2−𝑁 (𝑤)𝑇 ′(𝑤1)

≤ 𝑇 (𝑤) + 2−|𝑤 |

3

+ 2−|𝑤 |

max{𝐶 (𝑤1), 𝐶 (𝑤0)} + 2
𝑇 (𝑤1) + 2

3

≤ 𝑇 (𝑤) + 2−|𝑤 |

3
+ 2

−|𝑤 |

3

=
𝑇 (𝑤) + 2−|𝑤 |+1

3
= 𝑇 ′(𝑤).

Otherwise, if 𝑇 ′(𝑤1) < 𝑇 ′(𝑤0), then

𝐸 𝜑𝑟 (𝑤) (𝑇 ′(𝑤 ·))
(1)
= 𝜑

𝑟
(𝑤)𝑇 ′(𝑤1) +

(
1 − 𝜑

𝑟
(𝑤)

)
𝑇 ′(𝑤0)

(4)
≤ 𝜑(𝑤)𝑇 ′(𝑤1)

+
(
1 − 𝜑(𝑤) + 2−𝑁 (𝑤) )𝑇 ′(𝑤0)

(1)
= 𝐸 𝜑 (𝑤) (𝑇 ′(𝑤 ·)) + 2−𝑁 (𝑤)𝑇 ′(𝑤0)

C2,C4
=

𝐸 𝜑 (𝑤) (𝑇 (𝑤 ·)) + 2−|𝑤 |

3
+ 2−𝑁 (𝑤)𝑇 ′(𝑤0)

≤ 𝑇 (𝑤) + 2−|𝑤 |

3

+ 2−|𝑤 |

max{𝐶 (𝑤1), 𝐶 (𝑤0)} + 2
𝑇 (𝑤0) + 2

3

≤ 𝑇 (𝑤) + 2−|𝑤 |

3
+ 2

−|𝑤 |

3
= 𝑇 ′(𝑤),

so we’re done.

5.2. A Prequential (Martingale-Theoretic) Approach

To obtain a truly prequential imprecise-probabilistic
martingale-theoretic notion of randomness, we mimic
Vovk and Shen’s approach [14], and proceed by impos-
ing lower semicomputability on Sabine’s prequential bet-
ting strategies—which we’ve called test superfarthingales.
Contrary to their approach, we won’t allow the test super-
farthingales to be infinite-valued as a way to take care of
conditional probability zero; instead, to deal with this is-
sue, we explicitly restrict our attention to prequential paths
𝜐 = (𝜄, 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ that don’t allow zero probability
jumps, i.e., for which 𝜄𝑛 ≠ 1 − 𝜔𝑛 for all 𝑛 ∈ ℕ, and which
we’ll call non-degenerate prequential paths. Analogously,
we’ll call a prequential situation 𝑣 = (𝑖, 𝑤) ∈ (ℐ𝑟 ×𝒳)∗
non-degenerate if 𝑖𝑚 ≠ 1 − 𝑤𝑚 for all 1 ≤ 𝑚 ≤ |𝑤 |.

Definition 10 We call a sequence 𝜐 = (𝜄, 𝜔) ∈ (ℐ𝑟 ×
𝒳)ℕ of rational forecasts and outcomes game-random if
it’s non-degenerate and if all lower semicomputable test
superfarthingales 𝐹 ∈ 𝔽 satisfy lim sup𝑛→∞ 𝐹 (𝜐1:𝑛) < ∞.

In the remainder, we intend to explore how this new pre-
quential randomness notion compares to our notion of
Martin-Löf randomness. We’ll start by comparing defini-
tions to uncover which (prequential) paths are(n’t) random
for both notions, and will then show that these definitions
result in (almost) equivalent randomness notions when we
restrict our attention to recursive rational forecasting sys-
tems on the standard approach. This endeavour can be seen
as a continuation (and generalisation) of the discussion in
Section 4 of Ref. [14], where Vovk and Shen prove that a
standard and a prequential precise-probabilistic approach
to randomness coincide for non-degenerate computable
forecasting systems. Afterwards, we’ll compare a few basic
properties for both imprecise-probabilistic notions, where
we’ll be especially concerned with whether (and which)
computability restrictions are necessary for these properties
to hold.

6. Comparing Both Randomness Notions
6.1. Game-Randomness Implies Martin-Löf

Randomness

Any prequential path that’s game-random is alsoMartin-Löf
random. Game-randomness is a therefore at least as strong
a randomness notion as Martin-Löf randomness.

Proposition 11 Consider any infinite sequence of interval
forecasts and outcomes 𝜐 = (𝜄, 𝜔) ∈ (ℐ𝑟×𝒳)ℕ that’s game-
random. Then the infinite sequence of outcomes𝜔 is Martin-
Löf random for any rational forecasting system 𝜑𝑟 ∈ 𝛷𝑟

that’s compatible with 𝜐.
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Proof Consider any rational forecasting system 𝜑𝑟 ∈ 𝛷𝑟

that’s compatible with 𝜐 (which is non-degenerate by as-
sumption) and assume towards contradiction that there’s a
lower semicomputable test supermartingale𝑇 ∈ 𝕋 (𝜑𝑟 ) such
that lim sup𝑛→∞ 𝑇 (𝜔1:𝑛) = ∞; we can assume𝑇 to be posit-
ive. We’ll now construct a lower semicomputable test super-
farthingale 𝐹 ′ ∈ 𝔽 in such a way that 𝐹 ′(𝜑𝑟 [𝑤], 𝑤) = 𝑇 (𝑤)
for all 𝑤 ∈ 𝒳

∗ for which (𝜑𝑟 [𝑤], 𝑤) is non-degenerate, for
which then of course lim sup𝑛→∞ 𝐹

′(𝜐1:𝑛) = ∞.
Define the lower semicomputable map 𝐹 : (ℐ𝑟 ×𝒳)∗ →

ℝ by 𝐹 (𝑖, 𝑤) B 𝑇 (𝑤) for all (𝑖, 𝑤) ∈ (ℐ𝑟 × 𝒳)∗. By
construction, 𝐹 (𝜑𝑟 [•], •) : 𝒳∗ → ℝ is a positive test su-
permartingale for 𝜑𝑟 . Invoking Lemma 20 in Appendix A
of Ref. [16], we then obtain a lower semicomputable test
superfarthingale 𝐹 ′ ∈ 𝔽 such that 𝐹 ′(𝜑𝑟 [𝑤], 𝑤) = 𝑇 (𝑤)
for all 𝑤 ∈ 𝒳

∗ for which (𝜑𝑟 [𝑤], 𝑤) is non-degenerate.

Conversely, any Martin-Löf random path 𝜔 ∈ 𝒳
ℕ is also

game-random, provided we impose recursiveness on the
forecasting systems 𝜑𝑟 ∈ 𝛷𝑟 and non-degeneracy on the
prequential paths (𝜑𝑟 [𝜔], 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ.

Proposition 12 Consider any recursive rational forecast-
ing system 𝜑𝑟 ∈ 𝛷𝑟 and any path 𝜔 ∈ 𝒳

ℕ. If 𝜔 is Martin-
Löf random for 𝜑𝑟 and (𝜑𝑟 [𝜔], 𝜔) is non-degenerate, then
the prequential path (𝜑𝑟 [𝜔], 𝜔) is game-random.

Proof Since (𝜑𝑟 [𝜔], 𝜔) is non-degenerate, assume
towards contradiction that there’s some lower semi-
computable test superfarthingale 𝐹 ∈ 𝔽 such that
lim sup𝑛→∞ 𝐹 (𝜑𝑟 [𝜔1:𝑛], 𝜔1:𝑛) = ∞. Let 𝑇 : 𝒳∗ → ℝ be
defined as 𝑇 (𝑤) B 𝐹 (𝜑𝑟 [𝑤], 𝑤) for all 𝑤 ∈ 𝒳

∗. Then
lim sup𝑛→∞ 𝑇 (𝜔1:𝑛) = ∞. So we’re done if we can show
that 𝑇 ∈ 𝕋 (𝜑𝑟 ) and that 𝑇 is lower semicomputable. Obvi-
ously, it holds that 𝑇 (�) = 1 and 𝑇 ≥ 0 because 𝐹 (�) = 1
and 𝐹 ≥ 0. Furthermore, for any 𝑤 ∈ 𝒳

∗, it follows
from the superfarthingale condition that 𝐸 𝜑𝑟 (𝑤) (𝑇 (𝑤 ·)) =
𝐸 𝜑𝑟 (𝑤) (𝐹 (𝜑𝑟 [𝑤]𝜑𝑟 (𝑤), 𝑤 ·)) ≤ 𝐹 (𝜑𝑟 [𝑤], 𝑤) = 𝑇 (𝑤), so
we conclude that 𝑇 ∈ 𝕋 (𝜑𝑟 ). Since 𝐹 is assumed to be
lower semicomputable, there’s some recursive rational map
𝑞 : (ℐ𝑟 ×𝒳)∗ × ℕ0 → ℚ such that 𝑞(𝑣, •) ↗ 𝐹 (𝑣) for all
𝑣 ∈ (ℐ𝑟 × 𝒳)∗. Let the rational map 𝑞′ : 𝒳∗ × ℕ0 → ℚ

be defined as 𝑞′(𝑤, 𝑛) B 𝑞((𝜑𝑟 [𝑤], 𝑤), 𝑛) for all 𝑤 ∈ 𝒳
∗

and 𝑛 ∈ ℕ0. This is a recursive map since 𝜑𝑟 is assumed to
be a recursive rational forecasting system. By construction,
𝑞′(𝑤, •) = 𝑞((𝜑𝑟 [𝑤], 𝑤), •) ↗ 𝐹 (𝜑𝑟 [𝑤], 𝑤) = 𝑇 (𝑤) for
all 𝑤 ∈ 𝒳

∗, and therefore 𝑇 is lower semicomputable.

The following example shows that the recursiveness of
the rational forecasting systems 𝜑𝑟 ∈ 𝛷𝑟 in the previous pro-
position can’t be dropped, so game-randomness is a strictly
stronger randomness notion than Martin-Löf randomness,
since there’s at least one prequential path 𝜐 ∈ (ℐ𝑟 ×𝒳)ℕ
that’s Martin-Löf random but not game-random.

Example 1 By Corollary 20 in Ref. [5], there’s at least one
path 𝜔 ∈ 𝒳

ℕ that’s Martin-Löf random for the stationary
forecasting system 1/2; this path is then necessarily non-
recursive. Consider the rational forecasting system 𝜑𝑟 ∈ 𝛷𝑟

defined by

𝜑𝑟 (𝑤) B
{
[0, 1/2] if 𝜔 |𝑤 |+1 = 1
[1/2, 1] if 𝜔 |𝑤 |+1 = 0

for all 𝑤 ∈ 𝒳
∗,

which is non-recursive since 𝜔 is. Since {1/2} ⊆ 𝜑𝑟 , it
follows from Proposition 10 in Ref. [5] that 𝜔 is also
Martin-Löf random for 𝜑𝑟 . Meanwhile, (𝜑𝑟 [𝜔], 𝜔) isn’t
game-random. To see this, define the test superfarthingale
𝐹 ∈ 𝔽 recursively by 𝐹 (�) B 1 and

𝐹 (𝑣𝐼𝑟𝑥) B


2𝐹 (𝑣) if 𝐼𝑟 = [0, 1/2] and 𝑥 = 1
2𝐹 (𝑣) if 𝐼𝑟 = [1/2, 1] and 𝑥 = 0
0 otherwise

for all 𝑣 ∈ (ℐ𝑟 ×𝒳)∗, 𝐼𝑟 ∈ ℐ𝑟 and 𝑥 ∈ 𝒳.

𝐹 is clearly recursive, and 𝐹 (𝜑𝑟 [𝜔1:𝑛], 𝜔1:𝑛) = 2𝑛 for all
𝑛 ∈ ℕ0. Consequently, lim sup𝑛→∞ 𝐹 (𝜑𝑟 [𝜔1:𝑛], 𝜔1:𝑛) =

∞, and therefore (𝜑𝑟 [𝜔], 𝜔) isn’t game-random.

By combining the last two propositions, we obtain con-
ditions under which both randomness notions coincide;
these conditions mimic the ones in Corollary 1 of Ref. [14],
which are required to obtain a similar equivalence in Vovk
and Shen’s precise-probabilistic setting.

Theorem 13 Consider any non-degenerate recursive ra-
tional forecasting system 𝜑𝑟 ∈ 𝛷𝑟 . Then any path 𝜔 ∈ 𝒳

ℕ

is Martin-Löf random for 𝜑𝑟 if and only if the prequential
path (𝜑𝑟 [𝜔], 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ is game-random.

This also shows that if a path𝜔 ∈ 𝒳
ℕ is Martin-Löf random

for a non-degenerate recursive rational forecasting system
𝜑𝑟 ∈ 𝛷𝑟 , then only the forecasts 𝜑𝑟 [𝜔] that are produced
along 𝜔 matter, since the path 𝜔 is also Martin-Löf random
for any other non-degenerate recursive rational forecasting
system 𝜑′𝑟 ∈ 𝛷𝑟 such that 𝜑′𝑟 [𝜔] = 𝜑𝑟 [𝜔]. This result
is in line with Dawid’s Weak Prequential Principle [4],
which states that any criterion for assessing the ‘agreement’
between Forecaster Frank andReality should depend only on
the actual observed sequences 𝜄 = (𝐼1, . . . , 𝐼𝑛, . . . ) ∈ ℐ

ℕ
𝑟

and 𝜔 = (𝑥1, . . . , 𝑥𝑛, . . . ) ∈ 𝒳
ℕ, and not on the strategies

(if any)whichmight have produced these, such as a recursive
rational forecasting system 𝜑𝑟 ∈ 𝛷𝑟 for which 𝜑𝑟 [𝜔] = 𝜄 .

6.2. Properties

As a first property, similarly as for Martin-Löf randomness
[6, 7], we mention (and prove) the existence of a so-called
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universal test superfarthingale𝑈 ∈ 𝔽 that conclusively tests
the game-randomness of any non-degenerate prequential
path 𝜐 ∈ (ℐ𝑟 ×𝒳)ℕ.

Theorem 14 There’s a so-called universal superfarthin-
gale𝑈 with the property that any non-degenerate prequen-
tial path 𝜐 ∈ (ℐ𝑟 × 𝒳)ℕ is game-random if and only
if lim sup𝑛→∞𝑈 (𝜐1:𝑛) < ∞.

Proof Lemma 13 in Ref. [14] states that there’s a uniformly
lower semicomputable sequence of maps 𝑓𝑛 : (ℐ𝑟 ×𝒳)∗ →
[0, +∞] that contains every lower semicomputable map
𝑓 : (ℐ𝑟 ×𝒳)∗ → [0, +∞]. The sequence ( 𝑓𝑛)𝑛∈ℕ0 contains
all lower semicomputable positive test superfarthingales
𝐹 ∈ 𝔽, so it follows from Corollary 21 in Appendix A of
Ref. [16] that there’s a uniformly lower semicomputable
sequence of test superfarthingales 𝐹𝑛 ∈ 𝔽 such that for every
positive test superfarthingale 𝐹 ′ ∈ 𝔽 there’s some 𝑁 ∈ ℕ0
such that

𝐹𝑁 (𝑣) =
{
𝐹 ′(𝑣) if 𝑣 is non-degenerate
0 if 𝑣 is degenerate

for all 𝑣 ∈ (ℐ𝑟 ×𝒳)∗.

Let 𝑈 : (ℐ𝑟 × 𝒳)∗ → ℝ be defined by 𝑈 (𝑣) B∑∞
𝑛=0 2−𝑛−1𝐹𝑛 (𝑣) for all 𝑣 ∈ (ℐ𝑟 × 𝒳)∗. Since 𝐹𝑛 ≥ 0
and 𝐹𝑛 (�) = 1 for all 𝑛 ∈ ℕ0, it follows that 𝑈 is well-
defined (although possibly infinite),𝑈 ≥ 0 and𝑈 (�) = 1.
To check that𝑈 is indeed real-valued, fix any prequential
situation 𝑣 = (𝑖, 𝑤) ∈ (ℐ𝑟 ×𝒳)∗. If 𝑣 is degenerate, then
𝑈 (𝑣) = 0 because 𝐹𝑛 (𝑣) = 0 for all 𝑛 ∈ ℕ0 by Corollary 21
in Appendix A of Ref. [16]. If 𝑣 is non-degenerate, then
we infer from Lemma 18 in Appendix A of Ref. [16] that
there’s some real number 𝐵 ∈ ℝ such that 𝐹𝑛 (𝑣) ≤ 𝐵 for
all 𝑛 ∈ ℕ0, and therefore 𝑈 (𝑣) ≤ ∑∞

𝑛=0 2−𝑛−1𝐵 = 𝐵. A
standard argument we won’t repeat here shows that 𝑈 is
lower semicomputable as an infinite sum of uniformly lower
semicomputable non-negative maps 𝐹𝑛. To show that𝑈 is
a superfarthingale, fix any 𝑣 ∈ (ℐ𝑟 ×𝒳)∗ and any 𝐼𝑟 ∈ ℐ𝑟 ,
and observe that

𝐸 𝐼𝑟 (𝑈 (𝑣𝐼𝑟 ·)) = lim
𝑘→∞

𝐸 𝐼𝑟

( 𝑘∑︁
𝑛=0
2−𝑛−1𝐹𝑛 (𝑣𝐼𝑟 ·)

)
C2,C3
≤

∞∑︁
𝑛=0
2−𝑛−1𝐸 𝐼𝑟 (𝐹𝑛 (𝑣𝐼𝑟 ·))

≤
∞∑︁
𝑛=0
2−𝑛−1𝐹𝑛 (𝑣) = 𝑈 (𝑣),

where the first equality follows from C6, the real-valuedness
of 𝑈 and the non-negativity of 𝐹𝑛 for all 𝑛 ∈ ℕ0, and the
second inequality follows from the superfarthingale property
for all 𝐹𝑛. We conclude that𝑈 is a lower semicomputable
test superfarthingale.

We claim that 𝑈 is a universal superfarthingale in the
sense of the theorem. Consider any non-degenerate prequen-
tial path 𝜐 ∈ (ℐ𝑟 ×𝒳)ℕ. The ‘only if’-part is obvious: if 𝜐 is
game-random, then lim sup𝑛→∞ 𝐹

′(𝜐1:𝑛) < ∞ for all lower
semicomputable test superfarthingales 𝐹 ′ ∈ 𝔽, and therefore
also for𝑈. For the ‘if’-part, assume towards contradiction
that there’s some lower semicomputable test superfarthin-
gale 𝐹 ′ ∈ 𝔽 such that lim sup𝑛→∞ 𝐹

′(𝜐1:𝑛) = ∞; we can
assume 𝐹 ′ to be positive: if it isn’t, replace it with (𝐹 ′+1)/2.
We then know there’s some 𝑁 ∈ ℕ0 such that

𝐹𝑁 (𝑣) =
{
𝐹 ′(𝑣) if 𝑣 is non-degenerate
0 if 𝑣 is degenerate

for all 𝑣 ∈ (ℐ𝑟 ×𝒳)∗.

Hence, by the non-negativity of the test superfarthingales
𝐹𝑛 ∈ 𝔽 and the non-degeneracy of 𝜐,

lim sup
𝑛→∞

𝑈 (𝜐1:𝑛) = lim sup
𝑛→∞

∞∑︁
𝑘=0
2−𝑘−1𝐹𝑘 (𝜐1:𝑛)

≥ lim sup
𝑛→∞

2−𝑁−1𝐹𝑁 (𝜐1:𝑛)

= 2−𝑁−1 lim sup
𝑛→∞

𝐹 ′(𝜐1:𝑛) = ∞,

so we’re done.

For Martin-Löf randomness, where the emphasis lies on
the compatibility between a path and a forecasting system,
we have that, for every forecasting system 𝜑 ∈ 𝛷, there’s
at least one path 𝜔 ∈ 𝒳

ℕ that’s Martin-Löf random for 𝜑
[5, Corollary 20]. In the prequential setting, we have an
analogous result for sequences of rational forecasts 𝜄 ∈ ℐ

ℕ
𝑟

and sequences of outcomes 𝜔 ∈ 𝒳
ℕ.

Proposition 15 For every infinite sequence of rational
interval forecasts 𝜄 ∈ ℐ

ℕ
𝑟 there’s at least one path 𝜔 ∈ 𝒳

ℕ

such that (𝜄, 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ is game-random.

Proof Consider the universal superfarthingale 𝑈 from
Theorem 14. Assume that the path 𝜔 has been defined up to
𝑛 ≥ 0 entries such that 1 = 𝑈 (�) ≥ 𝑈 (𝜄1:1, 𝜔1:1) ≥ · · · ≥
𝑈 (𝜄1:𝑛, 𝜔1:𝑛) and 𝜄𝑚 ≠ 1−𝜔𝑚 for all 1 ≤ 𝑚 ≤ 𝑛. If 𝜄𝑛+1 = 0,
let 𝜔𝑛+1 B 0. Else, if 𝜄𝑛+1 = 1, let 𝜔𝑛+1 B 1. In both cases,
it holds by the superfarthingale property that𝑈 (𝜄1:𝑛, 𝜔1:𝑛) ≥
𝐸 𝜄𝑛+1 (𝑈 (𝜄1:𝑛+1, 𝜔1:𝑛 ·)) = 𝜄𝑛+1𝑈 (𝜄1:𝑛+1, 𝜔1:𝑛1) + (1 −
𝜄𝑛+1)𝑈 (𝜄1:𝑛+1, 𝜔1:𝑛0) = 𝑈 (𝜄1:𝑛+1, 𝜔1:𝑛𝜄𝑛+1). Otherwise,
that is, if 𝜄𝑛+1 ∉ {0, 1}, by the superfarthingale
property and C1, there’s always some 𝑥 ∈ 𝒳

such that 𝑈 (𝜄1:𝑛, 𝜔1:𝑛) ≥ 𝐸 𝜄𝑛+1 (𝑈 (𝜄1:𝑛+1, 𝜔1:𝑛 ·)) ≥
min𝑈 (𝜄1:𝑛+1, 𝜔1:𝑛 ·) = 𝑈 (𝜄1:𝑛+1, 𝜔1:𝑛𝑥), and let 𝜔𝑛+1 B 𝑥.
By invoking the axiom of dependent choice, we obtain a
non-degenerate prequential path 𝜐 = (𝜄, 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ
such that lim sup𝑛→∞𝑈 (𝜐1:𝑛) ≤ 1.
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In the next proposition and theorem, the required comput-
ability conditions on sequences of rational interval forecasts
(in the prequential setting) differ from the ones on fore-
casting systems that are needed to obtain similar results in
the standard setting [5]. For example, any path 𝜔 ∈ 𝒳

ℕ

that’s Martin-Löf random for a forecasting system 𝜑 ∈ 𝛷 is
also Martin-Löf random for any other more conservative
forecasting system [5, Proposition 10]. Meanwhile, for a
similar result to hold in the prequential setting, we need
to restrict our attention to sequences of rational forecasts
that are not only more conservative, but that also have a
compatible recursive rational forecasting system.

Proposition 16 Consider any recursive rational forecast-
ing system 𝜑𝑟 ∈ 𝛷𝑟 and any game-random prequential
path 𝜐 = (𝜄, 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ. If 𝜑𝑟 is more conservative
on 𝜐, then (𝜑𝑟 [𝜔], 𝜔) is game-random as well.

Proof Consider any recursive rational forecasting system
𝜑𝑟 ∈ 𝛷𝑟 that’s more conservative on 𝜐. We can always con-
sider a rational forecasting system 𝜑′𝑟 ∈ 𝛷𝑟 that’s compatible
with 𝜐 such that 𝜑′𝑟 ⊆ 𝜑𝑟 ; note that we don’t require com-
putability here and that 𝜐 = (𝜑′𝑟 [𝜔], 𝜔) is non-degenerate
since 𝜐 is game-random. By Proposition 11, we then know
that 𝜔 is Martin-Löf random for 𝜑′𝑟 . Consequently, by Pro-
position 10 in Ref. [5], since 𝜑′𝑟 ⊆ 𝜑𝑟 , 𝜔 is also Martin-Löf
random for 𝜑𝑟 . Since 𝜐 = (𝜑′𝑟 [𝜔], 𝜔) is non-degenerate and
𝜑′𝑟 ⊆ 𝜑𝑟 , the prequential path (𝜑𝑟 [𝜔], 𝜔) is non-degenerate,
and hence, by Proposition 12, (𝜑𝑟 [𝜔], 𝜔) is game-random
too.

The computability requirement in Proposition 16 is not
only sufficient, but also necessary. This follows almost
immediately from Example 1. It only remains to note
that the stationary forecasting system 1/2 is rational and
recursive, and hence, by Proposition 12, (1/2, 𝜔) is game-
random, while for the more conservative but non-recursive
forecasting system 𝜑𝑟 , the prequential path (𝜑𝑟 [𝜔], 𝜔) isn’t.
There are also prequential properties where the required

computability conditions on the forecasts are less, rather
than more, stringent. If we restrict our attention for example
to computable forecasting systems 𝜑 ∈ 𝛷, then the fre-
quency of ones along a Martin-Löf random path, and along
all so-called computably selected infinite subsequences, is
bounded by the computable forecasting system [5, Theorem
23]. In the prequential setting, we have a similar result,
but without any computability requirement on the infinite
sequence of interval forecasts; in spirit, this result also
generalises Dawid’s ideas on calibration in Ref. [2].

Theorem 17 Consider any infinite sequence of rational
interval forecasts and outcomes 𝜐 = (𝜄, 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ
and any recursive selection function 𝑆 : (ℐ𝑟 ×𝒳)∗×ℐ𝑟 →

{0, 1} such that
∑∞

𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1) = ∞. If 𝜐 is game-
random, then

lim inf
𝑛→∞

∑𝑛−1
𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1) [𝜔𝑘+1 −min 𝜄𝑘+1]∑𝑛−1

𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1)
≥ 0

and

lim sup
𝑛→∞

∑𝑛−1
𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1) [𝜔𝑘+1 −max 𝜄𝑘+1]∑𝑛−1

𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1)
≤ 0.

Proof We’ll give a proof for the first inequality, the proof
for the second one is similar. Assume towards contradiction
that there’s some real number 𝜖 , with 0 < 𝜖 < 1, such that

lim inf
𝑛→∞

∑𝑛−1
𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1) [𝜔𝑘+1 −min 𝜄𝑘+1]∑𝑛−1

𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1)
< −𝜖 .

Let the map 𝐹 B (ℐ𝑟 ×𝒳)∗ → ℝ be defined by

𝐹 (𝑣) B
|𝑣 |−1∏
𝑘=0

[
1 − 𝜖

3
𝑆(𝑣1:𝑘 , 𝑖𝑘+1) [𝑤𝑘+1 −min 𝑖𝑘+1]

]
for all 𝑣 = (𝑖, 𝑤) ∈ (ℐ𝑟 ×𝒳)∗.

We’ll now show in a number of steps that 𝐹 is a
lower semicomputable test superfarthingale for which
lim sup𝑛→∞ 𝐹 (𝜐1:𝑛) = ∞, implying that 𝜐 can’t be game-
random.
Trivially, 𝐹 (�) = 1, and also 𝐹 ≥ 0, since 𝜖 < 1, |𝑆 | ≤ 1

and |𝑥 −min 𝐼𝑟 | ≤ 1 for all 𝑥 ∈ 𝒳 and 𝐼𝑟 ∈ ℐ𝑟 . Moreover,
for any 𝑣 ∈ (ℐ𝑟 ×𝒳)∗ and 𝐼𝑟 ∈ ℐ𝑟 , we have that

𝐸 𝐼𝑟 (𝐹 (𝑣𝐼𝑟 ·))
C2
= 𝐹 (𝑣)𝐸 𝐼𝑟

(
1 + 𝜖
3
𝑆(𝑣, 𝐼𝑟 ) [min 𝐼𝑟 − 𝑋]

)
C2,C4
= 𝐹 (𝑣)

[
1 + 𝜖
3
𝑆(𝑣, 𝐼𝑟 )𝐸 𝐼𝑟 (min 𝐼𝑟 − 𝑋)

]
C4
= 𝐹 (𝑣)

[
1 + 𝜖
3
𝑆(𝑣, 𝐼𝑟 ) (min 𝐼𝑟 + 𝐸 𝐼𝑟 (−𝑋))

]
(2)
= 𝐹 (𝑣),

so we find that 𝐹 is a test superfarthingale. From the recurs-
iveness of 𝑆 and the rational-valuedness of the forecasts
𝐼𝑟 ∈ ℐ𝑟 and outcomes 𝑥 ∈ 𝒳 it follows that 𝐹 is recursive,
and therefore lower semicomputable as well. We conclude
that 𝐹 is a lower semicomputable test superfarthingale.
By assumption, for any 𝑚, 𝑀 ∈ ℕ0, there’s some 𝑁 > 𝑚

such that
∑𝑁−1

𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1) ≥ 𝑀 and∑𝑁−1
𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1) [𝜔𝑘+1 −min 𝜄𝑘+1]∑𝑁−1

𝑘=0 𝑆(𝜐1:𝑘 , 𝜄𝑘+1)
< −𝜖 . (6)

This will allow us to obtain a lower bound for 𝐹 (𝜐1:𝑁 ).
Since 1− 𝜖

3 𝑆(𝑣, 𝐼𝑟 ) [𝑥−min 𝐼𝑟 ] > 1/2 for all 𝑣 ∈ (ℐ𝑟 ×𝒳)∗,
𝐼𝑟 ∈ ℐ𝑟 and 𝑥 ∈ 𝒳, it holds that 𝐹 (𝜐1:𝑁 ) = exp(𝐾), with

𝐾 B
𝑁−1∑︁
𝑘=0
ln
(
1 − 𝜖

3
𝑆(𝜐1:𝑘 , 𝜄𝑘+1) [𝜔𝑘+1 −min 𝜄𝑘+1]

)
.
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Since ln(1 + 𝑥) ≥ 𝑥 − 𝑥2 for all 𝑥 > −1/2, we infer that

𝐾 ≥ − 𝜖
3

𝑁−1∑︁
𝑘=0

𝑆(𝜐1:𝑘 , 𝜄𝑘+1) [𝜔𝑘+1 −min 𝜄𝑘+1]

− 𝜖2

9

𝑁−1∑︁
𝑘=0

𝑆(𝜐1:𝑘 , 𝜄𝑘+1)2 [𝜔𝑘+1 −min 𝜄𝑘+1]2

and, also taking into account Equation (6), 𝑆2 = 𝑆 and
[𝜔𝑘+1 −min 𝜄𝑘+1]2 ≤ 1,

≥ 𝜖2

3

𝑁−1∑︁
𝑘=0

𝑆(𝜐1:𝑘 , 𝜄𝑘+1) −
𝜖2

9

𝑁−1∑︁
𝑘=0

𝑆(𝜐1:𝑘 , 𝜄𝑘+1)

=
2𝜖2

9

𝑁−1∑︁
𝑘=0

𝑆(𝜐1:𝑘 , 𝜄𝑘+1).

Hence,

𝐹 (𝜐1:𝑁 ) ≥ exp
(
2𝜖2

9

𝑁−1∑︁
𝑘=0

𝑆(𝜐1:𝑘 , 𝜄𝑘+1)
)
≥ exp

(
2𝜖2

9
𝑀

)
.

After recalling that the inequality above holds for any
𝑀 ∈ ℕ0 and for arbitrarily large well-chosen 𝑁 ∈ ℕ0, we
conclude that lim sup𝑛→∞ 𝐹 (𝜐1:𝑛) = ∞.

7. Conclusions and Future Work
We’ve introduced an imprecise-probabilistic prequential
notion of randomness, argued why we restrict our attention
here to rational interval forecasts, and proved several prop-
erties of this randomness notion. We’re especially satisfied
with having achieved equipping our standard imprecise-
probabilistic version of Martin-Löf randomness with a
prequential interpretation.
In future work, we intend to come closer to Vovk and

Shen’s work [14], by allowing for real interval forecasts.
We’ll try to achieve this by adopting a more involved
notion of lower semicomputability that allows for real maps
𝑟 : D ′ → ℝ whose domainD ′ can be uncountable, such as
the set (ℐ×𝒳)ℕ.We suspect that, in this continuous setting,
the necessary conditions to obtain analogous results to the
propositions and theorems in Section 6.2 will be different;
for one thing, we expect the computability condition on the
forecasting systems in Proposition 16 to drop, which would
arguably yield a more natural monotonicity property.
In line with Refs. [7, 10, 11, 14], we intend to explore

whether we can equip a prequential imprecise-probabilistic
(martingale-theoretic) randomness notion with a measure-
theoretic characterisation. We have already succeeded in
doing so in the context of this paper, but decided to omit
these results because of page limitations. The answer to

this question remains open for the more general prequen-
tial randomness notion that’s alluded to in the previous
paragraph.
Lastly, we wonder whether we can give a precise-

probabilistic interpretation to our prequential imprecise-
probabilistic notion of randomness. In the standard set-
ting, we’ve shown [8] that a path 𝜔 ∈ 𝒳

ℕ is Martin-
Löf random for an interval forecast 𝐼 ∈ ℐ if and only if
it’s random for some precise forecasting system 𝜑𝑝 ∈ 𝛷
that’s compatible with 𝐼, in the sense that 𝜑𝑝 (𝑤) ∈ 𝐼

for all 𝑤 ∈ 𝒳
∗. In this prequential context, we might

be able to interpret an infinite sequence of forecasts
𝜄 = (𝐼1, . . . , 𝐼𝑛, . . . ) ∈ ℐ

ℕ
𝑟 as bounds on precise forecasts,

and say that a prequential path (𝜄, 𝜔) ∈ (ℐ𝑟 ×𝒳)ℕ is game-
random if and only if (𝑝1, 𝜔1, 𝑝2, 𝜔2, . . . ) ∈ (ℐ𝑟 ×𝒳)ℕ is
game-random for some infinite sequence of probabilities
(𝑝1, . . . , 𝑝𝑛, . . . ) ∈ ℐ

ℕ
𝑟 such that 𝑝𝑖 ∈ 𝐼𝑖 for all 𝑖 ∈ ℕ.
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