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Abstract
Self-training is a simple yet effective method within

semi-supervised learning. Self-training’s rationale is
to iteratively enhance training data by adding pseudo-
labeled data. Its generalization performance heavily
depends on the selection of these pseudo-labeled data
(PLS). In this paper,we render PLSmore robust towards
the involved modeling assumptions. To this end, we
treat PLS as a decision problem, which allows us to
introduce a generalized utility function. The idea is
to select pseudo-labeled data that maximize a multi-
objective utility function.We demonstrate that the latter
can be constructed to account for different sources
of uncertainty and explore three examples: model
selection, accumulation of errors and covariate shift.
In the absence of second-order information on such
uncertainties, we furthermore consider the generic
approach of the generalized Bayesian 𝛼-cut updating
rule for credal sets. We spotlight the application of
three of our robust extensions on both simulated and
three real-world data sets. In a benchmarking study, we
compare these extensions to traditional PLS methods.
Results suggest that robustness with regard to model
choice can lead to substantial accuracy gains.
Keywords: semi-supervised learning, self-training,
pseudo labeling, generalized Bayes, model selection,
covariate shift, generalized updating rules

1. Introduction
Labels for observations are burdensome to obtain in a myr-
iad of applied learning tasks ranging from image classifica-
tion [72] over financial econometrics [69] to genomics [45].
This scarcity of labeled data has given rise to the paradigm of
semi-supervised learning (SSL). Within SSL, self-training
(also called pseudo-labeling) is often considered the most
straight-forward approach [68, 39, 51]. Self-training follows
the general rationale of iteratively assigning pseudo-labels
to unlabeled data according to themodel’s predictions.More
precisely, the idea is to predict classes of unlabeled data by
means of a model trained on labeled data and include some
of the predictions as pseudo-labeled data in the training
data, before predicting on the remaining unlabeled data

again. This process requires a criterion (called confidence
measure) for pseudo-label selection (PLS), that is, the selec-
tion of pseudo-labeled instances to be added to the training
data.1 What most of these confidence measures have in
common is the fact of stemming uniquely and exclusively
from one sole model. The paper at hand aims at a selection
of pseudo-labeled data with regard to a variety of (fitted)
models. This is achieved by embedding PLS into decision
theory and deploying multi-objective utility functions that
account for different models, thus rendering PLS robust
with regard to model imprecision, see section 2. The latter
can have multiple sources. Section 3 discusses how to deal
with three of them in detail: model selection, accumulation
of errors and covariate shift. In case such sources are not
identifiable, we propose a generic robust approach to PLS in
section 4, building on the rich literature on credal sets and
generalized Bayesian inference. The remainder of this sec-
tion discusses related work and introduces semi-supervised
learning formally, leaning on [64]. The paper concludes
with a detailed experimental analysis of three robust PLS
methods in sections 5 and 6, before discussing some venues
for future work in section 7.

1.1. Semi-supervised Learning

The vast majority of SSLmethods is concerned with classifi-
cation tasks [76, 13]. Loosely leaning on [74], we formalize
SSL as follows. Consider labeled data

D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 ∈ (X × Y)𝑛 (1)

and unlabeled data

U = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=𝑛+1 ∈
(
X × 2Y

)𝑚−𝑛
(2)

from the same data generation process, where X is the
feature space and Y is the categorical target space. The
aim of SSL is to learn a predictive classification function
�̂�\ (𝑥) parameterized by \ utilizing both D and U. The

1Importantly, one selects pseudo-labeled data in this setup instead
of pseudo-labels, as the misleading, yet established name pseudo-label
selection (PLS) suggests.
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objective can be twofold [74]. On the one hand, one simply
aims at labeling U (transductive learning). On the other
hand, and more commonly, both D and U can be used
to learn a prediction function to predict any unseen test
data (inductive learning) in a more accurate way than only
relying on D as in classical supervised learning.

1.2. Self-training

According to [56] and [76], SSL can be broadly categorized
into self-training and co-training. We will focus on the for-
mer, whose general idea is commonly described as fitting
a model on D by empirical risk minimization and then
exploiting this model’s predictions to label U. Typically,
those instances from U are added whose predictions are
most confident according to some confidence measure. The
predicted probability (probability score) is among the most
popular ones [74]. Besides, the predictions’ variance as well
as a linear combination of variance and probability score
are used [58]. Regarding the inclusion of pseudo-labeled
data from U to D, [74] and [37] distinguish between in-
cremental, batch-wise, and amending mechanisms. The
incremental approaches label instances one-by-one in a
sequential fashion, whereas batch-wise and amending tech-
niques allow for adding of multiple data points or removal of
data, respectively. Moreover, [74] differentiate self-training
methods into single- andmulti-classifier ones, depending on
the number of learned classifiers �̂�(𝑥) used while labeling.
If multiple classifiers are used, they can either be based
on the same model class or a variety of models. This is
known as single- versus multi-learning, see [74] for instance.
Combining and aggregating the predictions and confidence
measures of multiple classifiers can be done in various ways.
This is slightly related to our proposed model-robust PLS,
see sections 3 and 4. The difference is, of course, that we
select pseudo-labeled data in the light of multiple models,
while multi-learning deploys multiple models for predicting
pseudo-labels.
Additionally, self-training algorithms may have different

stopping criteria [74]. A naive option is to label and add the
entire setU. Alternatively, one could stop when �̂�(𝑥), the
predictive classifier, no longer changes due toU, leaving the
remaining data inU unlabeled. In this paper, we propose
both incremental and batch-wise approaches that can be
used with any stopping criterion for the purpose of inductive
learning.

1.3. Superset Learning

The notion of superset learning generalises semi-supervised
learning. Instead of completely unlabeled (i.e. fully ambigu-
ous) dataU = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=1 ∈

(
X × 2Y

)𝑚, superset learn-
ing considers {(𝑥𝑖 , 𝑌𝑖)}𝑚𝑖=1 ∈

(
X × 2Y

)𝑚, where 𝑌𝑖 ⊆ Y. In

this context, 𝑌𝑖 is regarded as a superset of a “true” underly-
ing singleton 𝑦𝑖 , thus the name; see also the epistemic view
in [14, 15]. There exist optimistic as well as pessimistic
variants of superset learning and approaches to balance
these extreme cases [28, 29, 30, 63]. The general idea is to
find a singleton representation (often called instantiation)
of the supersets that corresponds to the most predictive (op-
timistic, with smallest loss) or least predictive (pessimistic,
with highest loss) model when trained and evaluated on it.
In the optimistic case, this can be achieved byminimizing an
optimistic version of the empirical risk, the generalized em-
pirical risk: 1

𝑛

∑𝑛
𝑖=1 𝐿

∗ ( �̂�𝑖 , 𝑌𝑖) = 1
𝑛

∑𝑛
𝑖=1min𝑦∈𝑌𝑖 𝐿 ( �̂�𝑖 , 𝑦)

with 𝐿∗ the optimistic superset or infimum loss [9].

1.4. Overview of Related Work

The robustness of SSL and, in particular, of self-training has
been widely discussed. [3] propose an information-theoretic
approach to pseudo-label prediction that is resistant to co-
variate shift.Coming close to our use of credal sets in sec-
tion 4, [43, 44] suggest identifying pseudo-labels as sets of
probability distributions (“credal self-supervised learning”).
Inspired by consistency regularization [8, 70, 78], superset
learning [28, 29, 30, 63] and distributional alignment [38],
“credal self-supervised learning” aims at decreasing the
reliance on a single distributional assumption. Our work
follows the same rationale while being conceptually dif-
ferent: [43, 44] start by imprecisiation of the training data
by means of soft labels through data augmentation, thus
obtaining set-valued predictions. In this paper, we exploit
the expressiveness of credal sets only in the selection phase.
Generally, there appears to be a large body of research
on robustifying predictions in SSL by means of Bayesian
techniques [24, 54, 1], weighted likelihood [71], condi-
tional likelihood [25], and joint mixture likelihood [2]. On
the other hand, there is only limited (Bayesian) or hardly
any (likelihood-based) work regarding robust versions of
Bayesian or likelihood-based selection of pseudo-labels,
which is the very idea of the paper at hand. The authors
of [42] quantify the uncertainties of pseudo-labels by mix-
tures of predictive distributions of a neural net, utilizingMC
dropout, thus simulating a Bayesian setup without explicitly
considering the posterior predictive.More recently, [55] pro-
posed PLS with respect to the entropy of the pseudo-labels’
posterior predictive distribution.
[64] tackle the problem of pseudo-label selection (PLS)

in semi-supervised learning from the viewpoint of decision
theory, proposing Bayes-optimal pseudo-label selection
(BPLS). The idea is to make PLS more robust towards the
initial fit by marginalizing over the parameters’ posterior
instead of considering the predictive distribution of a single
best parameter vector.While this allows for selecting pseudo-
labeled data in light of more than one fit of a given model,
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BPLS is still restricted to the assumed (type of) model and
the distributional assumptions that come with it. This is the
very starting point for several robust extensions of BPLS,
that will be presented in the main part of this paper, namely
sections 3 and 4. To begin with, we introduce the conditional
view on PLS in section 2.1. This allows our understanding
of (B)PLS as decision problems, as explained in section 2.2.

2. Pseudo-Label Selection
2.1. Conditional Pseudo-Label Selection

As in standard self-training, we start by fitting a para-
metric model 𝑀 with unknown parameter vector \ ∈ 𝛩
on labeled data D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1. In this work, we as-
sume 𝛩 to be compact and denote dim(𝛩) = 𝑞. Note
that Bayesian inference smoothly integrates into this setup,
since we might state a prior function over 𝛩 for a given
parametric model 𝑀 as 𝜋(\ | 𝑀). We aim at learning
the conditional distribution of 𝑝(𝒚 | 𝒙) through \ from
observing features 𝒙 = (𝑥1, . . . , 𝑥𝑛), 𝑥𝑖 ∈ X, and classes
𝒚 = (𝑦1, . . . , 𝑦𝑛), 𝑦𝑖 ∈ Y in D. As touched upon in sec-
tions 1.1 and 1.2, we start by estimating \̂ ∈ 𝛩 from 𝑀

through the labeled dataD, predict on unlabeled dataU and
select those predicted (pseudo-labeled) data points that we
are most confident in according to some selection criterion
and add them to D.
Most importantly, throughout this paper, we do not deal

with predicting unknown labels of U = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=1 by
the fitted model on D. Rather, we are primarily concerned
with the problem of selecting from those already predicted.
That is, we identify each element inU = {(𝑥𝑖 ,Y)𝑖}𝑚𝑖=𝑛+1 ∈(
X × 2Y

)𝑚−𝑛 with its corresponding prediction {(𝑥𝑖 , �̂�)}𝑖 ,
obtaining Û = {(𝑥𝑖 , �̂�)}𝑚𝑖=𝑛+1 ∈ (X × Y)𝑚−𝑛 . However,
we will stick with U in the following to emphasize that
our reasoning holds for any functional �̂�(𝑥). This is not to
say that we completely abstain from any specifications of
the prediction method, see remark 7, where we will rely on
maximum-likelihood estimation.

2.2. PLS as Decision Problem

Following [64], we formalize pseudo-label selection as a
canonical decision problem with likelihood utility and thus
lay the groundwork for several robust extensions of classical
decision criteria.

Definition 1 (Canonical Decision Problem) Define
(𝔸, 𝛩, 𝑢(·)) as decision-theoretic triple with an action
space 𝔸, an unknown set of states of nature 𝛩 and a utility
function 𝑢 : 𝔸 ×𝛩 → ℝ.

Throughout this section, we are concerned with the de-
cision of selecting pseudo-labeled data, where an action

corresponds to the selection of an instance from the unla-
beled data 𝔸U = {(𝑧,Y) | ∃ 𝑖 ∈ {𝑛 + 1, . . . , 𝑚} : (𝑧,Y) =
(𝑥𝑖 ,Y)𝑖 ∈ U}, i.e., instances as actions 𝔸U 3 𝑎 = (𝑧,Y).
This is in stark contrast to statistical decision theory, where
estimators instead of data are to be selected. The decision
for an action is guided by a utility function. Closely follow-
ing [64] and loosely inspired by [10, 11], we proceed by
defining the utility of a selected data point (𝑧,Y) = (𝑥𝑖 ,Y)𝑖
as the plausibility of being generated jointly with D by a
model 𝑀 with states (parameters) \ ∈ 𝛩 if we include it
with its predicted pseudo-label �̂�(𝑧) = �̂�(𝑥𝑖) = �̂�𝑖 ∈ Y in
D ∪ (𝑥𝑖 , �̂�𝑖), see definition 2.

Definition 2 (Pseudo-Label Likelihood as Utility)
Given D and the prediction functional �̂� : X → Y, we

define the following utility function

𝑢 : 𝔸U ×𝛩 → ℝ

((𝑧,Y), \) ↦→ 𝑢((𝑧,Y), \) = 𝑝(D ∪ (𝑧, �̂�(𝑧)) | \, 𝑀),

which is said to be the pseudo-label likelihood. In the
following, for ease of exposition, we will write ℓ(𝑖) := 𝑝(𝑖 |
\, 𝑀) := 𝑝(D ∪ (𝑥𝑖 , �̂�(𝑥𝑖)) | \, 𝑀) for the pseudo-label
likelihood.

Based on this embedding of PLS in decision theory,
classical decision criteria such as max-max or the Bayes
criterion can be derived. [64, section 2.2] shows that the
former corresponds to optimistic superset learning [29]
and the latter to the posterior predictive of data to be
pseudo-labeled 𝑝(D∪(𝑥𝑖 , �̂�𝑖) | D, 𝑀), subsequently called
pseudo posterior predictive (PPP). The max-max-criterion
is defined by 𝛷𝑚 : 𝔸U → ℝ; 𝑎 ↦→ max\ 𝑢(𝑎, \). Each
element of argmax𝛷𝑚 is then called a max-max-action.
The Bayes-criterion given 𝜋 is defined by 𝛷𝜋 : 𝔸U →
ℝ; 𝑎 ↦→ 𝔼𝜋 (𝑢(𝑎, \)). Each element of argmax𝛷𝜋 is then
called Bayes-action.

3. Robust PLS: In All Likelihoods

Within common approaches to self-training in SSL, it might
well be possible to generalize and robustify models used
for predicting pseudo-labels. In the following, however,
we aim at robust selection of pseudo-labeled data, see
section 2.1. To this end, we will modify the generic utility
function (definition 2) and the respective Bayes criterion [64,
section 2.2]. This allows us to account for three frequent
sources of uncertainty and imprecision: model selection,
accumulation of errors and covariate shift. Instead of relying
on likelihood utilities from models that are assumed to
be correct “in all likelihood”, we suggest relying on all
likelihoods from multiple models.
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3.1. Model Selection: Reversing Occam’s razor

An obvious and ubiquitous source of imprecision is the
model choice: The likelihood under which distributional
assumption (and corresponding model) should be taken
into account? So far, we have defined the pseudo-label
likelihood as the one under the model 𝑀 that we have
used for predicting pseudo-labels. Albeit, this is far from
necessary. As discussed above, our conditional approach to
choosing pseudo-labeled data renders this selection com-
pletely orthogonal to predicting pseudo-labels. Instead of
defining the utility function (see 2) as the likelihood of
observing the pseudo-labeled data under the assumptions of
model 𝑀 , we might as well consider �̃� or a weighted sum
of likelihoods under several models. In what follows, we
start with the generic case of any finite number of different
models that can be parameterized in a meaningful way and
work our way through nested models, ending with nested
generalized linear models, and discuss how to account for
their specifications in PLS.

3.1.1. Generic Case

Start by considering any 𝑀1, . . . , 𝑀𝐾 , 𝐾 < ∞, different
parametric models specified on respective parameter spaces
𝛩1, . . . , 𝛩𝐾 . Denote by �̃� = ×𝐾

𝑘=1𝛩𝑘 their Cartesian prod-
uct and by 𝑓𝑘 : �̃� → 𝛩𝑘 , 𝑘 ∈ {1, . . . , 𝐾} the projections
from the Cartesian product to each 𝛩𝑘 . We can easily
extend the pseudo-label likelihood utility (definition 2)
to account for several models, inducing a multiobjective
decision problem.

Definition 3 (Multi-Model Likelihood Utility) As in def-
inition 2 consider D and pseudo-labels �̂� ∈ Y from
�̂� : X → Y as given. The 𝐾-dimensional utility function

𝑢 : 𝔸U × �̃� → ℝ𝐾

((𝑥𝑖 ,Y)𝑖 , \) ↦→ (ℓ(𝑖, 1), . . . , ℓ(𝑖, 𝐾)) ′

shall be called multi-model likelihood. We write ℓ(𝑖, 𝑘) =
𝑝(𝑖 | 𝑓𝑘 (\), 𝑀𝑘 ) = 𝑝(D ∪ (𝑧, �̂�(𝑧)) | 𝑓𝑘 (\), 𝑀𝑘 ) with
𝑓𝑘 (\) = \𝑘 the parameter vector of model 𝑘 for brevity. Let
𝐾 again denote the number of models under consideration.

For the optimization of such a multiobjective utility
considered in definition 3 one is faced with a multicriteria
decision problem. For such decision problems, there are
lots of solution strategies. One modern way to deal with
a multidimensional utility function was recently proposed
in [33]. The idea is – utilizing that each single dimension
considered is perfectly cardinal – to embed the image of
the utility function into a preference system A, i.e. into
a specific order-theoretic structure allowing for modeling

spaces with locally cardinal scale of measurement.2 Each
such preference system is then describable by a set of
functionsNA , where each element of this set is of the form
𝜙 : [0, 1]𝐾 → [0, 1].
The selection of the optimal unlabeled data would then

consequently be based on this same set NA . To generalize
the already mentioned Bayes criterion to this set of utility
functions, there are a lot of possibilities (for a compilation
of these see in particular [31]). We will only briefly discuss
here the one among them that does not need to make any ad-
ditional assumptions and is a consequential generalization
of first-order stochastic dominance to our partial cardinal
setting. The idea of this generalization is straightforward: If
𝜋 still denotes the prior distribution on the set𝛩 of states of
nature (= parameters), then now – instead of choosing unla-
beled data that maximize expected utility w.r.t. some fixed
utility function – we exclude all unlabeled data which is
expectation-dominated by some other data for all compatible
functions 𝜙 : [0, 1]𝐾 → [0, 1]. More formally, the solution
to the decision problem from definition 3 with respect to this
generalized stochastic dominance criterion is then given by
the set𝔸𝜋

U defined by {𝑎 | �𝑎
′ : 𝑑𝜋 (𝑎′, 𝑎) ≥ 0∧𝑑𝜋 (𝑎, 𝑎′) <

0}, where, for 𝑎1, 𝑎2 ∈ U𝔸, we set 𝑑𝜋 (𝑎1, 𝑎2) =

inf𝜙∈NA [𝔼𝜋 (𝜙 ◦ 𝑢(𝑎1, ·)) − 𝔼𝜋 (𝜙 ◦ 𝑢(𝑎2, ·))] .
Importantly, note that all elements remaining in the above

set are incomparablewith respect to the considered criterion
of optimality, that is, each of them is an equally plausible
candidate for the best next unlabeled data point. In case
domain-specific knowledge induces a preference for some
of the models under consideration that can be expressed
by weights, one might as well simply scalarize the single
likelihoods as follows.

Definition 4 (Weighted Sum of Likelihoods) The utility
function 𝑢 : 𝔸U × �̃� → ℝ;

((𝑥𝑖 ,Y)𝑖 , \) ↦→
∑︁
𝑘

𝑤𝑘 · ℓ(𝑖, 𝑘),

with weights 𝑤𝑘 ∈ (0, 1), 𝑘 ∈ {1, . . . , 𝐾} summing up to 1,
shall be called weighted sum of likelihoods.

The respective Bayes criterion (cf. section 2.2) withmulti-
model likelihood utility is a weighted sum of posterior
predictives of pseudo-labeled data (cf. ibid.). This fact
follows directly from theorem 2 in [64] as well as from the
additivity and homogeneity of the expected value.
Remarkably, the following should be noted: The Bayes-

optimal pseudo-labeled data, i.e. the optimal solutions of
the decision problem for selecting pseudo-labeled data ac-
cording to the Bayes criterion, are always elements of the

2A preference system is a triplet A = [𝐴, 𝑅1, 𝑅2 ] consisting of a
non-empty set 𝐴 ≠ ∅, a pre-order 𝑅1 ⊆ 𝐴 × 𝐴 on 𝐴, and a pre-order
𝑅2 ⊆ 𝑅1 × 𝑅1 a on 𝑅1. Intuitively, the relation 𝑅1 captures the available
ordinal information, whereas 𝑅2 encodes the information’s cardinal part.
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set 𝔸𝜋
U considered before. This means in particular that

the aforementioned generalized stochastic dominance and
the Bayes criterion based on multi-model likelihood utility
are compatible in the sense that the latter – independent of
the concrete weights – ensures that no labels excluded by
the former are chosen. This suggests the following recom-
mendation for criterion selection in concrete application
situations: If no content-motivated way of choosing the
weights of the multi-model likelihood utility is available,
further analysis should rely on the set 𝔸𝜋

U alone. If, on the
contrary, there is the possibility to determine the weights
informed by the content, the Bayes criterion based on the
multi-model likelihood utility provides more precise and –
then also non-arbitrary – results. We now consider a case
where a natural choice of weights via penalization of model
complexity is appropriate, namely nested models.

3.1.2. Nested Models

Consider again the generic case with models 𝑀1, . . . , 𝑀𝐾 ,
𝐾 < ∞. Additionally, let the models be nested with nested
parametrizations 𝛩1 ⊆ 𝛩2 ⊆ · · · ⊆ 𝛩𝐾 , such that the
same parameters in different models refer to the same
covariates. We can interpret the so-induced hierarchy on
the parameter space such that the lower 𝑘 ∈ {1, . . . , 𝐾}, the
simpler the hypothesis space. Aiming at regularization of
PLS, we could penalize the respective likelihood utilities
of more complex models. In definition 4, this could imply
e.g. setting 𝑤𝑘 =

dim(𝛩𝑘 )
dim(𝛩𝐾 ) (before normalization) for all

𝑘 ∈ {1, . . . , 𝐾}.3
However, we will opt for a safer approach that guarantees

plausibility of at least some pre-specified level 𝜏 under all
models 𝑀1, . . . , 𝑀𝐾 . We therefore draw on the common
practice of thresholding selection criteria when selecting
pseudo-labeled data in self-training. That is, not only one
data point with highest selection function value but all above
a threshold are to be selected. We propose to extend this
to an intersection of thresholds resulting from likelihood
utilities from different models. The following definition is
an example thereof.

Definition 5 (Multi-Model Threshold Criterion) As in
definition 2, let (𝑥𝑖 ,Y)𝑖 be any decision (selection) from
𝔸U . We assign utility to each (𝑥𝑖 ,Y)𝑖 given D and pseudo-
labels �̂� ∈ Y by the multi-model likelihood utility function
from definition 3. Now consider the following thresholding
Bayes criterion𝛷𝜏, b , 𝜋 : 𝔸U → ℝ;

𝑎 ↦→𝛷𝜏, b , 𝜋 (𝑎) =


0, ∃𝑘 : 𝔼𝜋 (ℓ(𝑖, 𝑘)) < 𝜏
0.5, ∀𝑘 : 𝜏 < 𝔼𝜋 (ℓ(𝑖, 𝑘)) < b,
1, 𝑒𝑙𝑠𝑒.

3One could also weight the likelihoods ℓ (𝑖, 1) , . . . , ℓ (𝑖, 𝐾 ) directly
in the general case of the multiobjective utility from definition 3.

again with ℓ(𝑖, 𝑘) = 𝑝(𝑖 | 𝑓𝑘 (\), 𝑀𝑘 ), 𝑘 ∈ {1, . . . , 𝐾}, and
b > 𝜏 some pre-specified thresholds.

Note that this corresponds to thresholding all pseudo
posterior predictive, respectively, see section 2.2. For para-
metric models like additive regressions with 𝐾 = 𝑑𝑖𝑚(𝛩)
we can exploit the hierarchy among models induced by the
number of parameters 𝐾 . Before running the procedure (see
algorithm 1), we start by thresholding pseudo-labeled data
based on the full model (𝐾 covariates). We refit with lower
threshold if no data is selected. If a positive number of data
is selected, we kick off the algorithm. We begin decreasing
𝑘 in a step-wise manner and terminate the process if none
of the pseudo-labeled data that were selected in all previous
rounds makes it past the threshold. The pseudo-code in
algorithm 1 describes the procedure.

Algorithm 1 Reversed Occam’s Razor
Data: D,U, set S𝐾+1 = 𝔸U , criterion value 𝑐 ∈ {0.5, 1}
Result: D
for 𝑘 ∈ {𝐾, . . . , 1} do

for 𝑖 ∈ {1, . . . , |U|} do
predict Y 3 �̂�𝑖 = �̂�(𝑥𝑖)
evaluate 𝔼𝜋 (ℓ(𝑖, 𝑘))

end
select S𝑘 = {(𝑥𝑖 , �̂�𝑖)𝑖 | 𝛷𝜏, b , 𝜋 (𝑎) ≥ 𝑐, 𝑎 ∼ 𝑖}
if S𝑘 ∩ S𝑘+1 ≠ ∅ : update D = D ∪ (S𝑘 ∩ S𝑘+1)
else stop

end

We thus ensure not only ∀𝑘 ∈ {1, . . . , 𝐾} : S𝑘 ≠ ∅,
but also

⋂
𝑘=1,...,𝐾

S𝑘 ≠ ∅. That is, among those elements

that can be explained equally well by a fixed model, we
opt for those that are explained similarly well by simpler
models. This can be viewed as reversing Occam’s razor
since we are concerned with selecting data instead of hy-
potheses. Occam’s time-honored razor advocates selecting
the hypothesis with the least assumptions among competing
hypotheses that have the same explanatory power regarding
a single phenomenon. Conversely, we consider multiple phe-
nomena and choose those ones which can still be explained
by the simplest hypothesis from a set of competing ones.
Occam’s razor can be operationalized by Bayesian statistics
through the marginal likelihood (or Bayesian evidence),
see [35, 57, 47, 46] for instance. Recall that the Bayesian
selection of pseudo-labeled data corresponds to selection
with regard to the posterior predictive which is nothing but
a marginalized version of the pseudo-labeled data’s likeli-
hood.4 Just like in model selection by Bayesian evidence or
Bayes factors (i.e., ratios of marginal likelihoods), we are

4Marginalized with regard to the posterior.
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concerned with how well data can be explained by a model.
The only difference is that we are interested in comparing
(pseudo-)data by how likely it is given a model and not vice
versa.

3.2. Accumulation of Errors: In All Posteriors?

The most inherent uncertainty in PLS is caused by the fact
that pseudo-labeled data are treated as ground truths in
subsequent iterations.

Definition 6 (Multi-Label Likelihood as Utility) As in
definition 2, let (𝑧,Y) be any decision (selection) from
𝔸U . Conversely to definition 2, we now consider not only
the predicted pseudo-labels �̂�𝑖 ∈ Y, but also all other
hypothetical labels �̃�𝑖 ∈ Y \ {�̂�𝑖}. Denote by �̃�𝑖, 𝑗 ∈ Y all
possible labels for (𝑥𝑖 ,Y)𝑖 with 𝑗 ∈ {1, . . . , 𝐽} and 𝐽 = |Y|.
We assign utility to each (𝑥𝑖 ,Y)𝑖 by the following utility
function 𝑢 : 𝔸U ×𝛩 → ℝ;

((𝑧,Y), \) ↦→
𝐽∑︁
𝑗=1
𝑤 𝑗 · 𝑝(D ∪ (𝑧, �̃�𝑖, 𝑗 ) | \, 𝑀)

with weights 𝑤 𝑗 ∈ (0, 1) summing up to 1. This utility
function shall be called multi-label likelihood.

Again, the respective Bayes criterion is a weighted sum
of posterior predictives of pseudo-labeled data (cf. sec-
tion 2.2), because of theorem 2 in [64] and the additivity
and homogeneity of the expected value. A logical choice
for the weights 𝑤 𝑗 ∈ (0, 1) would be the predicted proba-
bility of the respective 𝑗-th label, i.e. 𝑝((𝑧,Y) = (𝑧, �̃� 𝑗 ,𝑖)).
This appears quite intuitive. However, while allowing to
characterize the unlabeled data points by their plausibilty
with hypothetically assigned labels one is still forced to
add them with their actually predicted label. As of now, we
loosen this restriction. Notably, definition 2 and thus all
subsequent deliberations depended on a model 𝑀 as well
as on already predicted labels. We have relaxed the former
dependency while having left the latter untouched. The
following remark calls this into question; it demonstrates
that we cannot make any statement about the selection
optimality of pseudo-labeled data with labels that were not
predicted by the predictive model we conditioned on earlier.

Remark 7 Consider 𝑢 : 𝔸U × 𝛩 → ℝ from definition 2
with �̂�𝑖 = �̂� \̂𝑀𝐿 (𝑥𝑖) and \̂𝑀𝐿 = argmax\ 𝑝(D | \, 𝑀)
the maximum-likelihood estimator. Furthermore, consider
�̃� : 𝔸U × 𝛩 → ℝ; ((𝑧,Y), \) ↦→ �̃�((𝑧,Y), \) = 𝑝(D ∪
(𝑧, �̃�(𝑧)) | \, 𝑀), where 𝑧 = 𝑥𝑖 and �̃�(𝑧) = �̃�𝑖 = �̂� \̃ (𝑥𝑖)
with any sub-optimal \̃ ∈ 𝛩 such that 𝑝(D | \̃, 𝑀) ≤
𝑝(D | \̂𝑀𝐿 , 𝑀). It holds that the max-max-action �̃�∗𝑚 =

argmax𝑎 max\ �̃�(𝑎, \) does generally not have lower utility
than the max-max-action 𝑎∗𝑚 = argmax𝑎 max\ 𝑢(𝑎, \). To

see this, let 𝑎∗𝑚 be the max-max action under 𝑢 as above.
It holds 𝑎∗𝑚 = argmax𝑎 max\ (𝑝(D ∪ (𝑧, �̂�𝑖) | \, 𝑀)) =

argmax𝑎 𝑝(D ∪ (𝑧, �̂�𝑖) | \̂𝑀𝐿 , 𝑀). Analogously, �̃�∗𝑚 maxi-
mizes 𝑝(D ∪ (𝑧, �̃�𝑖) | \̂𝑀𝐿 , 𝑀). As both (𝑧, �̃�𝑖) and (𝑧, �̂�𝑖)
were not considered in ML estimation, we cannot make any
statement about the relation of 𝑢(𝑎∗𝑚) to �̃�(�̃�∗𝑚).

Motivated by this remark, let us now consider the standard
utility (definition 2) on a different action space �̃�U =

{(𝑧, 𝑦 𝑗 ) | 𝑦 𝑗 ∈ Y and ∃ 𝑖 ∈ {𝑛 + 1, . . . , 𝑚} : (𝑧,Y) =

(𝑥𝑖 ,Y)𝑖 ∈ U} and a modified (full) Bayes criterion that
accounts for a prior 𝜌 onY that weights labels proportional
to the predictive distribution from the prediction step before,
i.e., 𝔼𝜌 (𝛷𝜋 (𝑎)) = 𝔼𝜌𝔼𝜋 (𝑢(𝑎, \)).

Proposition 8 (Full Bayes Equates Weighted Utility)
In case of 𝑤 𝑗 = 𝜌(𝑦 𝑗 ) the Bayes criterion under multi-label
utility (definition 6) defined on �̃�U instead of 𝔸U equals
the (full) Bayes criterion 𝔼𝜌 (𝛷𝜋 (𝑎)) on 𝔸U .

Proof 𝔼𝜌𝔼𝜋 (𝑢(𝑎, \)) =
∫
Y

∫
𝛩
𝑢(𝑎, \) 𝑑𝜋(\) 𝑑𝜌(𝑦 𝑗 ) =∫

Y 𝑝(D ∪ (𝑧, 𝑦 𝑗 ) | \, 𝑀) 𝑑𝜌(𝑦 𝑗 ) =
∑

Y 𝑝(D ∪ (𝑧, 𝑦 𝑗 ) |
𝑀) 𝜌(𝑦 𝑗 ) =

∑
𝑗 𝑝(D ∪ (𝑧, 𝑦 𝑗 ) | 𝑀) 𝜌(𝑦 𝑗 )

3.3. Covariate Shift

Selection criteria typically render some unlabeled data
more likely to be added than others [62]. In the course
of self-training, this can lead to a distributional shift of
the covariates’ marginal distribution, often referred to as
covariate shift. Depending on the stopping criterion, this
covariate shift can be propagated to the final model, poten-
tially harming the model’s interpretability by techniques
from the realm of interpretable machine learning (IML).
For instance, regions in the covariate space where data is
scarce are detrimental to robust estimates of partial depen-
dencies [20]. Notably, this distributional shift affects all
previously discussed selection criteria for PLS. In this sub-
section, we discuss possible extensions that aim at selecting
pseudo-labeled data that are optimal with regard to both the
de facto selected dataD and a hypothetical i.i.d. sampleD ′

that we generate by drawing pseudo-labeled data randomly.
In the spirit of the multi-model likelihood utility (defini-
tion 3) and in complete analogy to the previously discussed
generalizations, we can define a multi-data likelihood utility,
rendering PLS robust with regard to covariate shift. The
above-discussed decision criteria apply as well. Further
note that in this special case of a bi-objective, one might
also proceed with an interval-valued utility (loss) function
as e.g. in [66, section 3.2].

Definition 9 (Multi-Data Likelihood Utility) We assign
utility to each (𝑥𝑖 ,Y)𝑖 given D, D ′ and the prediction
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functional �̂� : X → Y by the following bi-objective utility
function 𝑢 : 𝔸U ×𝛩 → ℝ2;

((𝑧,Y), \) ↦→ (ℓD (𝑖), ℓD′ (𝑖)) ′,

with ℓD (𝑖) = 𝑝(D ∪ (𝑥𝑖 , �̂�𝑖) | \, 𝑀) and ℓD′ (𝑖) = 𝑝(D ′ ∪
(𝑥𝑖 , �̂�𝑖) | \, 𝑀).

4. Updating by 𝛼-cuts
All robust extensions of PLS discussed in section 3 require
some second-level information about the involved uncer-
tainties (e.g., model choice, previous confidence, covariate
shift). Aiming at an agnostic and universally robust ap-
proach to PLS, we turn to imprecise probabilities [77, 5]
and credal sets [40, 41], more specifically to the fruitful
frameworks of convex sets of priors [65], 𝛤-maximin [67]
and 𝛼-cut updating [11, 12].

4.1. Updating Credal Sets

Due to our aforementioned general scepticism regarding
the initial model fit \̂, we would like to weaken the influ-
ence of the likelihood on the posterior in a general way.
This can be achieved by means of generalizing Bayesian
analysis [77, 65, 5]. Again, we can avail ourselves of rich
decision theoretical literature dating back to [18, 36, 7].
We will borrow from the theory on Max-E-Min [36] or
equivalently 𝛤-maximin, see for instance [67, 7, 21, 75, 27].
To this end, we introduce a convex set of priors 𝛱 ⊆
{𝜋(\) | 𝜋(·) a probability measure on (𝛩, 𝜎(𝛩))} with 𝛩
compact as above and 𝜎(·) an appropriate 𝜎-algebra.5. The
rough idea now is this: After observing data, we base our
selection (action) on the prior from 𝛱 that corresponds to
the lowest posterior from the set of resulting posteriors. In
other words, we hedge against the worst-case prior. In a
nutshell, we select the pseudo-labeled instance that would
have had the highest expected utility (likelihood) if we had
specified the prior in such a way that it contradicted the
(potentially overfitted) model’s likelihood the most. The
respective decision criterion would be the 𝛤-maximin cri-
terion 𝛷𝛱 : 𝔸U → ℝ; 𝑎 ↦→ 𝛷(𝑎) = 𝔼𝛱 (𝑢(𝑎, \)) with
𝔼𝛱 (𝑢(𝑎, \)) = inf 𝜋∈𝛱 𝔼(𝑢(𝑎, \)) the lower expectation,
which we assume to be affinely superadditive (thus equating
coherent lower previsions) in the following.6 The lower
expectation corresponds to the posterior predictive with
regard to the posterior that results from updating the prior
𝜋∗ (·) ∈ 𝛱 that has the lowest value in the maximum-
likelihood estimator \̂𝑀𝐿 .

5The priors in 𝛱 can reflect uncertainty regarding prior information,
but might as well represent priors near ignorance, see e.g. [6, 49, 48, 59,
60, 61]

6This will allow us to exploit the 𝛼-cut updating rule introduced by
[12] for lower previsions.

Such an approach, however, might be too much of a
good thing since its respective decisions can completely
disregard the likelihood, not to mention its high sensitivity
towards 𝛱 . Instead, we opt for an updating rule of credal
sets leaning on [11, 12]7: Cattaneo’s 𝛼-cut updating rule
with 𝛼 ∈ (0, 1), also referred to as “soft revision” [4]. Its
rough idea is to only update those priors whose respective
marginal likelihood (evidence) is larger or equal to 𝛼 times
the corresponding maximum marginal likelihood. In other
words, the priors whose (relative) likelihood is below 𝛼 are
discarded from the set of lower expectations before updating
all prior lower expectations to posterior lower expectations
in this set. This implies restricting the set of all posteriors
to

{𝜋 ∈ 𝛱 | 𝑚(𝜋) ≥ 𝛼 ·max
𝜋
𝑚(𝜋)}, (3)

with 𝑚(𝜋) =
∫
𝛩
ℓ(\)𝜋(\)𝑑\ the marginal likelihood. This

way, we can make sure no decision is made in complete
disregard of the likelihood, i.e., based on a \ with a tiny
likelihood.
What is more, the 𝛼-cut updating rule allows for a dy-

namically adaptive selection of pseudo-labelled data. Note
that each predicted pseudo-label �̂� comes with a predicted
probability 𝑝 �̂� ∈ [0, 1] for �̂� to be the true label. After
selecting (𝑥𝑖 ,Y)𝑖 with respective (𝑥𝑖 , �̂�𝑖), the probability
𝑝 �̂� represents our belief in the dataD∪(𝑥𝑖 , �̂�𝑖) under which
the subsequent model’s likelihood is specified.8 More gen-
erally, in iteration 𝑡 of SSL, our belief in the pseudo-labeled
data is

∏𝑇
𝑡=1 𝑝 �̂�,𝑡 . We thus could update 𝛱 in iteration 𝑡

by 𝛼-cuts such that 𝛼𝑡 =
∏𝑇
𝑡=1 𝑝 �̂�,𝑡 . The interpretation of

such an adaptive 𝛼-cut rule is this: The less we trust the
pseudo-labeled data, the wider the cuts should be since we
want to make sure not to down-weight a \ only because
our possibly flawed data says so. Vice versa, if we trust
the pseudo-labeled data, we can be more restrictive with
regard to the cuts. While providing this strong intuition,
we could not find any guarantees for an updating rule of
this kind so far. Hence, in what follows, we will motivate
an updating rule for SSL based on the expected regret of
having considered specific predictions from one specific
model in PLS.

4.2. A Regret-Based Updating Rule

The previous deliberations on how to select models (sec-
tion 3.1) and non-redundancy of sub-optimal labels (re-
mark 7) motivate our modification of the 𝛼-cut updating
rule for PLS: We update 𝛱 such that our Bayes action
has some quantifiable guarantee with regard to a regret

7Updating rules of similar nature have already been introduced
by [53, 52, 22]. Notably, [23, p. 46f] introduced the special case of 𝛼 = 1
as “type 2 maximum likelihood”, see also [7, section 3.5.4].

8Not without a dash of impudence, we might as well borrow from
frequentist reasoning and interpret 1 − �̂��̂� as frequency of error.
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(as ratio, see definitions 10 through 12) that stems from
both the possibly wrong labels and the possibly wrong
models.9. Thus, we start by quantifying these two regrets
as random variables on 𝛩, before defining the total regret
as a (posterior) expectation of a function of the two regrets.

Definition 10 (Label-Induced Regret) Consider �̃�𝑖, 𝑗 ∈
Y all possible labels for (𝑥𝑖 ,Y)𝑖 with 𝑗 ∈ {1, . . . , 𝐽} and
𝐽 = |Y|. As in remark 7, let �̃� 𝑗 be the pseudo-label likelihood
�̃� 𝑗 (·, ·) (definition 2) with �̃�𝑖 = �̃�𝑖, 𝑗 . Furthermore, set �̂�𝑖,ℎ =

�̂� \̂ (𝑥𝑖) as actually predicted label, see remark 7. For any
given decision 𝑎∗ and any \, the function 𝑟𝑙 (·, 𝑎∗) : 𝛩 → ℝ;

\ ↦→ 𝑟𝑙 (\, 𝑎∗) = sup
𝑗

𝑢 𝑗 (\, 𝑎∗)
�̃�ℎ (\, 𝑎∗)

is said to be the label-induced regret.

Definition 11 (Model-Induced Regret) Let 𝑀1, . . . , 𝑀𝐾
and𝛩1, . . . , 𝛩𝐾 denote all models under consideration and
their parameter spaces, respectively, as well as �̃� = ×𝐾

𝑘=1𝛩𝑘
their Cartesian product. As in definition 3, consider as
ℓ(𝑖, 𝑘) = 𝑝(𝑖 | 𝑓𝑘 (\), 𝑀𝐾 ) the likelihood utility of selecting
(𝑥𝑖 ,Y)𝑖 given model 𝑀𝑘 with the projection on 𝛩𝑘 . In
analogy to definition 10, denote by 𝑀ℎ the actually used
model. For any decision 𝑎∗=̂ 𝑖∗ and any \ ∈ �̃�, the function
𝑟𝑚 (·, 𝑎∗) : �̃� → ℝ;

\ ↦→ 𝑟𝑚 (\, 𝑎∗) = sup
𝑘

ℓ(𝑖∗, 𝑘)
ℓ(𝑖∗, ℎ)

is said to be the model-induced regret.

Definition 12 (Total Prediction Regret in SSL) Denote
by �̃� 𝑗 ,𝑘 (\, 𝑎∗) the utility of 𝑎∗=̂ 𝑖∗ with prediction �̃�𝑖∗ , 𝑗 under
model 𝑀𝑘 . The function 𝑟 (·, 𝑎∗) : �̃� → ℝ

\ ↦→ 𝑟 (\, 𝑎∗) =
sup 𝑗 ,𝑘 �̃� 𝑗 ,𝑘 (\, 𝑎∗)
�̃�ℎ,ℎ (\, 𝑎∗)

shall be called total (prediction) regret.

Definition 13 (Expected Total Regret Functional)
Based on definition 12, the expectation functional
𝛩 × 𝛱 → ℝ; (\, 𝜋) ↦→ 𝔼𝜋 (𝑟 (\, 𝑎∗)) for given 𝑎∗ ∈ 𝔸U
with posterior 𝜋 ∈ 𝛱 is said to be the expected total regret
functional.

We can now define an 𝛼-cut updating rule such that the
posterior credal set is

𝛱𝛼 = {𝜋 ∈ 𝛱 | 𝑚(ℓℎ,ℎ , 𝜋) ≥ 𝛼 · sup
𝑗 ,𝑘

𝑚(ℓ 𝑗 ,𝑘 , 𝜋)}. (4)

Note that this is just a robustified version of the generic
𝛼-cut updating according to equation 3, such that it gives us
the following guarantee with regard to the expected regret.

9Note that reasoning with both sets of priors and model imprecision
is reminiscent of [77, chapter 8]

Proposition 14 (Myopic Regret-Guarantee of 𝛼-Cuts)
Bayes-optimal selections 𝑎∗ of pseudo-labeled data under
the above 𝛼-cut updating rule have expected total regret
𝔼𝜋 (𝑟 (\, 𝑎∗)) ≤ 1

𝛼
for any posterior 𝜋 ∈ 𝛱 .

Proof Consider any 𝜋 ∈ 𝛱𝛼. It holds ∀𝑎 ∈ 𝔸U :
𝑚(ℓℎ,ℎ , 𝜋) ≥ 𝛼 · sup 𝑗 ,𝑘 𝑚(ℓ 𝑗 ,𝑘 , 𝜋). With 𝑚(ℓ, 𝜋) the
marginal likelihood w.r.t. to 𝜋 we get: ∀𝑎 ∈ 𝔸U :∫
𝛩
ℓℎ,ℎ (\)𝜋(\)𝑑\ ≥ 𝛼 · sup 𝑗 ,𝑘

∫
𝛩
ℓ 𝑗 ,𝑘 (\)𝜋(\)𝑑\ =⇒

∀𝑎 ∈ 𝔸U : 𝔼𝜋 (ℓℎ,ℎ (\)) ≥ 𝛼 · 𝔼𝜋 (sup 𝑗 ,𝑘 ℓ 𝑗 ,𝑘 (\)) ≥
𝛼 · sup 𝑗 ,𝑘 𝔼𝜋 (ℓ 𝑗 ,𝑘 (\)). In particular for 𝑎∗ ∈ 𝔸U we

have 1
𝛼

≥ sup 𝑗,𝑘 𝔼𝜋 (�̃� 𝑗,𝑘 (𝑎∗ , \))
𝔼𝜋 (�̃�ℎ,ℎ (𝑎∗ , \)) ≥ 𝔼𝜋 (sup 𝑗,𝑘 �̃� 𝑗,𝑘 (𝑎∗ , \))

𝔼𝜋 (�̃�ℎ,ℎ (𝑎∗ , \)) =

𝔼𝜋 (𝑟 (\, 𝑎∗)) with ℓ 𝑗 ,𝑘 (\) = �̃� 𝑗 ,𝑘 (𝑎, \).

The 𝛼-cut updating rule was motivated as continuous
updating rule by [12]. This continuity still holds for the
regret-based 𝛼-cut updating, as follows directly from [12,
theorem 3].

4.3. Generalized Stochastic Dominance under IP

In the case of using the multi-model likelihood utility from
definition 3 (rather than a weighted sum of its components)
together with a credal-prior 𝛱 , the criterion of generalized
stochastic dominance addressed in section 3.1.1 can also be
easily adapted. Instead of the solution set 𝔸𝜋

U used under
precise 𝜋, here we would move to the solution set 𝔸𝛱U
robustified under the IP model and defined by

{𝑎 | �𝑎′ : 𝐷 (𝑎′, 𝑎) ≥ 0 ∧ 𝐷 (𝑎, 𝑎′) < 0}, (5)

where, for 𝑎1, 𝑎2 ∈ U𝔸, we set 𝐷 (𝑎1, 𝑎2) =

inf 𝜋∈𝛱 𝑑𝜋 (𝑎1, 𝑎2). The interpretation of the set 𝔸𝛱U ro-
bustified by 𝛱 is similar to the interpretation of the set
𝔸𝜋

U under precise 𝜋: It contains all pseudo-labeled data 𝑎
which are not strictly dominated with respect to generalized
stochastic dominance by another pseudo-labeled data 𝑎′ for
no matter which prior 𝜋 ∈ 𝛱 . Put formally, we thus have
that𝔸𝛱U =

⋂
𝜋∈𝛱 𝔸𝜋

U . Again, similar to the 𝛼-cuts method,
there are ways to reduce the set of non-excludable pseudo-
labels by transitioning from sets NA and 𝛱 to (reasonably
chosen) subsets N ⊂ NA and �̃� ⊂ 𝛱 in the definition of
the set 𝔸𝛱U .
Such a reduction of the set might be desirable, since –

depending on the richness of sets NA and 𝛱 – set 𝔸𝛱U
might contain too many (possibly even all) available options.
In the case of the set NA , a natural way of reduction is
discussed in [31] and further deepened in [32, 34]: Instead of
considering all possible representatives 𝜙 of the underlying
preference system, here it is proposed to consider only
those that evaluate strict comparability in the underlying
partial order above some pre-specified threshold b ∈ [0, 1].
Also for the reduction of the set 𝛱 a completely natural
possibility offers itself: One can simply shrink the set 𝛱
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Figure 1: Results of Self-Training with Different PLS Methods on Banknote Data (One Instance Added per Iteration).

by transitioning to the set �̃� = 𝛱𝛼 from equation (4) for
some reasonable value of 𝛼. Of course, also combinations
of both reduction methods can be used.

5. Empirical Evaluation
We implement three of the above proposed extensions of
PLS: multi-label utility (def. 6) as both unweighted and
weighted sum as well as multi-model utility (def. 3). For
the latter, we use step-wise nested models, i.e., models
𝑀1, . . . , 𝑀𝑞 with parameter spaces 𝛩1 ⊆ 𝛩2 ⊆ · · · ⊆ 𝛩𝑞
such that ∀𝑖 ∈ {1, . . . 𝑞} : 𝑑𝑖𝑚(𝛩𝑖+1 \ 𝛩𝑖) = 1 with
𝑞 the number of features in the respective dataset. The
unweighted sum of all utilities is used as ensemble utility.
For the weighted multi-label utility we use weights that
are proportional to the predictive distribution from the
prediction step before (full Bayes, see proposition 8).
All of these PLS decision criteria require the computation

of the pseudo posterior predictive (PPP) that involves a
possibly intractable integral. Markov chain Monte Carlo
(MCMC) sampling is the usual Bayesian way to circumvent
such issues. This in turn usually comes at the cost of some
computational hurdles. In order to avoid them, we lean on
the analytical approximation of the PPP proposed in [64,
section 3]. For the sake of computational feasibility, we
further approximate the log-likelihood of D ∪ (𝑥𝑖 , �̂�𝑖) by

the log-likelihood of D, cf. [64, section 3.2], obtaining the
following approximate pseudo posterior predictive: 𝑝(D ∪
(𝑥𝑖 , �̂�𝑖) | D, 𝑀) ≈ 2ℓ(\̂𝑀𝐿)− 12 log|I(\̂𝑀𝐿) |with 𝐼 (\̂𝑀𝐿)
the Fisher information-matrix.

We benchmark semi-supervised logistic regression with
these robust PLS criteria against four common PLS criteria
(probability score, posterior predictive (Bayes action), like-
lihood (max-max action) and predictive variance) as well
as a supervised baseline. For the latter, we abstain from
self-training and only use the labeled data for training. Self-
training is done in an iterative way with one pseudo-sample
added per iterations.

Experiments are run on simulated binomially distributed
data and three real world data sets (banknote, cars, mush-
rooms) from the UCI machine learning repository [17]. The
cars data is used to assess the influence of the share of
unlabeled data. Details on the simulation setup as well as
on the UCI data sets can be found in the public repository,
see below. Since target classes are fairly balanced in all data
sets, we compare the methods w.r.t. to (test) accuracy. We
average the test accuracy for all data sets over a number
of repeated self-training rounds each with a new random
train-test split.
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Table 1: Best performing PLS method across varying sub-
samples from simulated (sim.), mushrooms and
banknote data; M.-M.: multi-model; Pred. Var.:
Predictive Variance.

Data Set Oracle Stopping Final
Banknote (𝑛 = 40) Probability Score Probability Score
Banknote (𝑛 = 80) Probability Score Probability Score
Banknote (𝑛 = 120) PPP M.-M. Probability Score
Banknote (𝑛 = 160) PPP M.-M. PPP M.-M.
Mush. (𝑛 = 120) Pred. Var. Pred. Var.
Mush. (𝑛 = 160) PPP M.-M. Supervised
Mush. (𝑛 = 200) Pred. Var. Pred. Var.
Sim. (𝑛 = 60) PPP M.-M. PPP M.-M.
Sim. (𝑛 = 100) PPP M.-M. PPP M.-M.
Sim. (𝑛 = 140) PPP M.-M. PPP M.-M.
Sim. (𝑛 = 160) PPP M.-M. PPP M.-M.
Sim. (𝑛 = 180) PPP M.-M. PPP M.-M.
Sim. (𝑛 = 200) PPP M.-M. PPP M.-M.

Figure 2: Results on Simulated Data. Legend: See Figure 1.

6. Results
For all results, more details on the experiments and our im-
plementation of robust PLS as well as code to reproduce the
benchmarking experiments, please refer to the public reposi-
tory robust-pls. Herein, we spotlight the application of
our methods on simulated data and banknote data [19, 73]
that contains measures (diagonal length, bottom margin,
length of bill) of 100 genuine and 100 counterfeit Swiss
franc banknotes. The learning task at hand is to classify ban-
knotes based on these covariates. The results are presented
in figures 1 (banknote) and figure 2 (simulated data). The
figures depict the average accuracy (evaluated on unseen
test data, averaged over 40 repetitions) of different PLS
methods for 80% unlabeled data. Table 1 summarizes the
best performing PLS methods on all benchmarking setups.
Results on cars data (with varying share of unlabeled data)
can be found in the public repository; see above.
The interpretation of the results is twofold: While PLS

w.r.t multi-model PPP outperforms concurring PLSmethods
on various tasks, the multi-label approaches appear to fail in
this regard, see figure 1 in particular. In this case, the multi-
label extension is even outperformed by the supervised
baseline. Apparently, it is not worth and probably even
detrimental to consider alternative classifications given the
initial supervised accuracy is that high (∼ 0.966). The
results of our multi-model extension, however, appear quite
promising. On some of the simulated data sets, PLS w.r.t
multi-model PPP achieves impressive accuracy gains of up
to 15 percentage points.

7. Discussion
We have introduced a number of robust extensions of
PLS, some of which surfaced avenues for future work.
For instance, the accumulated expected errors (section 3.2)
could be used as adaptive learning rate in fractional Bayesian
updating [79, 26, 16]. Future work might also focus on
implementing and testing the generic generalizations based
on 𝛼-cuts, as introduced in section 4.
Conclusively, PLS appears to be a promising field for

applying existing fruitful frameworks for robust statistical
learning such as generalized Bayesian updating using credal
sets or more specific multi-model and multi-label robustifi-
cation. Most of them can potentially be easily transferred
to PLS when taking the view on PLS as decision problem.
This might not only increase the credibility of the infer-
ence by weakening the assumptions, leaning on Manski’s
“law of decreasing credibility” [50]. It can also, as prelim-
inary evidence suggests, increase predictive performance
substantially. Further research is also needed on clarify-
ing interactions among different kinds of robustifications
(between multi-label and multi-model PLS, for instance).
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