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Abstract
This paper studies stochastic processes under probab-
ility bounding, using nonstandard conditional lower
previsions within the framework of internal set theory.
Following Nelson’s approach to stochastic processes,
we introduce elementary processes which are defined
over a finite number of time points and that serve to
approximate any standard process, including processes
over continuous time. We show that every standard
process can be represented by an elementary process,
and that the shadow of every elementary process con-
stitutes again a standard process. We then move to
demonstrate how elementary processes can be used
to define imprecise Markov chains both in discrete
and continuous time. To demonstrate the benefits and
downsides of this approach, we show how to recover
some basic results for continuous time Markov chains
through analysis of a nonstandard elementary process.
Keywords: imprecise Markov chain, stochastic pro-
cess, lower prevision, internal set theory, nonstandard
analysis

1. Introduction

The theory of imprecise Markov chains has been an active
area of research and applications for nearly two decades
[15, 2, 13, 3, 1, 6]. Moving from discrete time to continuous
time however presents an analytical challenge, similar to
the challenges encountered for precise stochastic processes.
Nelson [9] developed an approach to stochastic processes
based on internal set theory, which simplifies the analysis
of continuous time, by introducing the notion of nearby
stochastic processes, which comprise nonstandard discrete
representations of continuous time processes that can be
used to study continuous time processes in a far more
algebraic manner, with fewer technicalities involved, at the
expense of nonstandard logic.
This paper aims to explore Nelson’s ideas as applied to

stochastic processes described by probability bounding, or
more precisely, by Williams coherent lower previsions. We
introduce a Nelson-inspired approach to representing arbit-
rary imprecise stochastic processes by means of elementary
(discrete) ones. As applications, we state a basic definition
for imprecise Markov chains which covers both discrete and
continuous time simultaneously, and we recover a standard

result from imprecise continuous time Markov chains using
simple algebraic means via Nelson’s nonstandard logic. In
doing so, we find (see Definition 17) that imprecise con-
tinuous time Markov chains can be defined as an envelope
of precise processes that need not be ‘well behaved’ (with
‘well behaved’ in the sense of [6]), thereby making a modest
generalisation to the existing theory.
Section 2 gives a brief introduction to internal set the-

ory. Section 3 states a few useful results on convergence
within internal set theory. Section 4 defines stochastic pro-
cesses, and Section 5 studies discrete representations of
such processes. Section 6 briefly touches upon how conver-
gence within such discrete representations can be handled.
Section 7 applies the theory to imprecise Markov chains,
with Section 8 focusing on the continuous case, where we
recover the well-known expression for the expectation in
terms of the exponential of the lower rate operator. Section 9
concludes.

2. Internal Set Theory
In this section, we give a brief introduction to internal
set theory. For a more in-depth treatment, we refer to for
instance [8, 9, 4, 10].

2.1. Basic Concepts

In a nutshell, internal set theory:

• introduces a new predicate for sets, called ‘standard’
(so, each set can be either standard or not; one could
imagine that each set now carries a colour, ‘standard’
or ‘not standard’), and

• extends ZFC (the axioms of Zermelo-Fraenkel set
theory plus the axiom of choice) by three new ax-
iom schemata which govern the use of the predicate
‘standard’.

Formulae that use ‘standard’ (such as “there is a standard
natural number”) are called external, and those that do not
(such as “one is larger than zero”) are called internal. All
ZFC axioms are internal formulae, and all of mathematics
that follows from ZFC is internal.
We note that, in ZFC, every object is a set, including

numbers, functions, etc. For instance, a function is identified
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with its graph, i.e. in ZFC, a function 𝑓 : 𝑋 → 𝑌 is a subset
of 𝑋 × 𝑌 such that for each 𝑥 ∈ 𝑋 there is a unique 𝑦 ∈ 𝑌

such that (𝑥, 𝑦) ∈ 𝑓 . So, since functions are sets, we can
also talk about them being standard or not, and we will do
so regularly in what follows.
Finally, we emphasize that the ZFC axiom of specification

is not extended to external formulae, as doing so would
lead to an inconsistent theory. This means that we cannot
form sets using external formulae, and doing so is called
illegal set formation. For example, we cannot form the set
{𝑛 ∈ ℕ : 𝑛 is standard}, since ‘𝑛 is standard’ involves the
predicate ‘standard’ and is therefore external. However, we
can use nonstandard parameters to form sets. For example,
we can form the set {𝑛 ∈ ℕ : 𝑛 ≤ 𝑁} for some nonstandard
𝑁 ∈ ℕ. This works because the formula 𝑛 ≤ 𝑁 is internal.
Next, we cover each of the three new axioms, inter-

spersed with some important results that will be used in the
remainder of the paper.

2.2. Transfer

We start with the transfer principle, which states that for
every internal formula 𝐴(𝑥, 𝑡1, . . . , 𝑡𝑘 ) with free variables
𝑥, 𝑡1, . . . , 𝑡𝑘 (and no other free variables) we have that

∀s𝑡1 · · · ∀s𝑡𝑘
(
∀s𝑥 : 𝐴(𝑥, 𝑡1, . . . , 𝑡𝑘 )

=⇒ ∀𝑥 : 𝐴(𝑥, 𝑡1, . . . , 𝑡𝑘 )
)
(1)

Here, we used ‘∀s𝑥 . . . ’ as an abbreviation for
‘∀𝑥(𝑥 standard =⇒ . . . )’. We also have a dual version of
transfer:

∀s𝑡1 · · · ∀s𝑡𝑘
(
∃𝑥 : 𝐴(𝑥, 𝑡1, . . . , 𝑡𝑘 )

=⇒ ∃s𝑥 : 𝐴(𝑥, 𝑡1, . . . , 𝑡𝑘 )
)
(2)

where we used ‘∃s𝑥 . . . ’ as an abbreviation for
‘∃𝑥(𝑥 standard ∧ . . . )’.
For example, for every standard function 𝑓 and standard 𝑥

in the domain of 𝑓 , it follows that 𝑓 (𝑥) is standard. Indeed,

∀ 𝑓 : 𝑋 → 𝑌 ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 : 𝑓 (𝑥) = 𝑦 (3)

implies, by transfer (provided 𝑋 and 𝑌 are standard),

∀s 𝑓 : 𝑋 → 𝑌 ∀s𝑥 ∈ 𝑋 ∃s𝑦 ∈ 𝑌 : 𝑓 (𝑥) = 𝑦 (4)

As yet another important example, if there is a unique
𝑥 such that some internal formula 𝐴(𝑥, 𝑡1, . . . , 𝑡𝑘 ) holds,
then, provided 𝑡1, . . . , 𝑡𝑘 are standard, it follows that 𝑥 must
be standard. Consequently, all sets used in conventional
mathematics, such as ℕ, ℝ, 0, 1, 𝜋, log, exp, sin, . . . are
all standard, because they can be uniquely characterized
by internal formulae. For instance, one of the ZFC axioms
states that there is a unique set ∅ such that “∀𝑥 : 𝑥 ∉ ∅”, so ∅

is standard because “∀𝑥 : 𝑥 ∉ ∅” is internal. From the ZFC
axioms, one can show that there is a unique set 𝑁 satisfying

𝑁 = ∩{𝑋 : (∅ ∈ 𝑋 ∧ (∀𝑥 ∈ 𝑋 : 𝑥 ∪ {𝑥} ∈ 𝑋))} (5)

This unique set 𝑁 must be standard because this formula
is internal and ∅ is a standard parameter; 𝑁 is the set of
natural numbers ℕ, where 0 is identified with ∅, 1 with
∅ ∪ {∅}, and so on [11, §1.47, p. 31]. So we have shown
that ℕ is standard, and that 0 is standard. But we know that
every natural number has a unique successor:

∀𝑛 ∈ ℕ : ∃!𝑚 ∈ ℕ : 𝑚 = 𝑛 + 1 (6)

so by transfer,

∀s𝑛 ∈ ℕ : ∃!𝑠𝑚 ∈ ℕ : 𝑚 = 𝑛 + 1 (7)

or in other words, if 𝑛 is standard then its successor 𝑛 + 1 is
also standard.
Interestingly, these observations do not imply that all

elements of ℕ are standard, and therefore do not exclude
the existence of nonstandard elements in ℕ. At first, this
may seem counterintuitive. However, as we shall see next,
we can do this because we do not extend the axiom of
specification to external formulae.

2.3. Idealisation

The axiom of idealisation is somewhat involved, however
for the purpose of this paper, we really only need a few
consequences of this axiom [8, Theorems 1.1 & 1.2]. Before
we state these consequences, we remind the reader that
we say that a set 𝐴 is finite whenever there is a natural
number 𝑛 ∈ ℕ and a bijection between 𝐴 and the set
{𝑚 ∈ ℕ : 𝑚 < 𝑛} [11, §2.16]. This is the usual definition
that most readers will be familiar with, and we want to
emphasize here that nothing is changed about what it means
for a set to be finite.

Theorem 1 All elements of a set 𝐴 are standard if and
only if 𝐴 is a finite standard set.

Theorem 2 For every set 𝐴, there is a finite subset 𝐵 of 𝐴
such that 𝐵 contains all standard elements of 𝐴.

Remember that every object in ZFC is a set (including
numbers, functions, etc.), so every element of a set is also a
set, thus it makes sense to talk about the standard elements
of a set.
As an obvious consequence, there is a finite subset of

ℕ containing all standard elements of ℕ. Let 𝑁 denote the
maximum of this set. Then 𝑁 + 1 must be nonstandard. In
fact, 𝑁 must also be nonstandard, since if it were standard,
wewould conclude that its successor 𝑁+1would be standard
too (by the proof given earlier).
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So, if we depict ℕ, we have all standard naturals on the
left (starting from 0), and all nonstandard naturals on the
right, but we cannot say where the nonstandard naturals
start as we are forbidden from forming the largest standard
natural. Indeed, ‘𝑛 is standard’ is an external formula, and
we are disallowed from forming the set of all standard
naturals. At first this seems limiting. However, the idea that
we cannot form certain sets turns out to be a very useful
fact that can be used in proofs.
Let us now investigate the structure of ℝ within internal

set theory. We say that 𝑥 ∈ ℝ is infinitesimal, and write
𝑥 ' 0, if for all standard 𝑛 ∈ ℕ we have that |𝑥 | ≤ 1

𝑛
. We

write 𝑥 ' 𝑦 if 𝑥 − 𝑦 ' 0. We say 𝑥 ∈ ℝ is unlimited if for all
standard 𝑛 ∈ ℕ we have that |𝑥 | ≥ 𝑛. We write 𝑥 ∼ ∞ if 𝑥 is
unlimited and positive. We saw that naturals are unlimited
if and only if they are nonstandard. However, whilst every
unlimited real is nonstandard, as we will see shortly, not all
limited reals are standard (for instance, 𝑥 + 𝜖 for standard 𝑥
and infinitesimal 𝜖 ≠ 0).
Before we move on, now is perhaps a good time to reflect

on Theorem 2. This theorem applies to every set, regardless
of its cardinality: ℕ, ℚ, ℝ, ℝℝ, etc. To aid with intuition,
‘standard’ is sometimes understood to mean ‘at any stage
within the mathematical discourse, [...] uniquely defined’ [4,
§1.1.1, p. 2].1 For example, take the collection of standard
rationals to be the collection of all rationals that humanity
will ever compute. If we assume humanity will perish one
day, then this collection is finite, though unimaginably large.
Similarly, the collection of reals that will ever be uniquely
characterized by some explicitly written internal formula is
finite, since humanity can only write finitely many internal
formulae. Idealization abstracts this idea. In general, if a
set 𝐴 is infinite, then one can easily show that any finite set
𝐵 containing all standard elements of 𝐴 must necessarily
have nonstandard cardinality, i.e. though finite, 𝐵 will be
unimaginably large, as desired.

2.4. Standardisation

Finally, we have the standardisation principle. As with
idealisation, this axiom is quite involved, and here we will
only state its main consequences that we need further. We
already said that every unlimited real is nonstandard. To
complete the picture of the reals, the following result follows
from the standardisation principle [8, Theorem 1.4]:

Theorem 3 For every limited real 𝑥 there is a unique
standard real 𝑦, called the shadow of 𝑥, such that 𝑥 ' 𝑦.

There is also a more general version of this theorem that
applies to real-valued functions (the formulation here is a
special case of [8, Theorem 1.3]):

1We might say more precisely, ‘uniquely defined using an explicitly
written internal formula’.

Theorem 4 Assume 𝑋 is standard, and let 𝑓 : 𝑋 → ℝ be
a function (standard or nonstandard) such that for every
standard 𝑥 ∈ 𝑋 , we have that 𝑓 (𝑥) is limited. Then there
is a unique standard function 𝑓0 : 𝑋 → ℝ, called the
shadow of 𝑓 , such that for all standard 𝑥 ∈ 𝑋 we have that
𝑓 (𝑥) ' 𝑓0 (𝑥).

Together with Theorem 2, this theorem permits us to use
nonstandard functions on finite domains to represent stand-
ard functions on arbitrary domains. We thus arrive at the
following generalization of Theorem 4:

Theorem 5 Assume 𝑋 ⊆ 𝑋0 where 𝑋0 is standard and
such that 𝑋 and 𝑋0 have the same standard elements. Let
𝑓 : 𝑋 → ℝ be a function such that for every standard 𝑥 ∈ 𝑋 ,
we have that 𝑓 (𝑥) is limited. Then there is a unique standard
function 𝑓0 : 𝑋0 → ℝ, called the shadow of 𝑓 , such that for
all standard 𝑥 ∈ 𝑋 we have that 𝑓 (𝑥) ' 𝑓0 (𝑥).

Proof Define 𝑔 : 𝑋0 → ℝ as follows: 𝑔(𝑥) B 𝑓 (𝑥) for
all 𝑥 ∈ 𝑋 , and 𝑔(𝑥) B 0 for all 𝑥 ∈ 𝑋0 \ 𝑋 . Note that
𝑔(𝑥) is limited for all standard 𝑥 ∈ 𝑋0. By Theorem 4, 𝑔
has a shadow, say 𝑓0, and for this shadow we have that
𝑓 (𝑥) = 𝑔(𝑥) ' 𝑓0 (𝑥) for all standard 𝑥 ∈ 𝑋 .
To prove uniqueness, let 𝑓 ′0 : 𝑋0 → ℝ be any other

standard function such that ∀s𝑥 ∈ 𝑋 : 𝑓 (𝑥) ' 𝑓 ′0 (𝑥). By
the previous part of the proof, we already know that ∀s𝑥 ∈
𝑋 : 𝑓 (𝑥) ' 𝑓0 (𝑥). So,

∀s𝑥 ∈ 𝑋 : 𝑓0 (𝑥) ' 𝑓 (𝑥) ' 𝑓 ′0 (𝑥) (8)

but, since 𝑓0 and 𝑓 ′0 are standard, it follows that 𝑓0 (𝑥) and
𝑓 ′0 (𝑥) are also standard for all standard 𝑥 ∈ 𝑋 , so

∀s𝑥 ∈ 𝑋 : 𝑓0 (𝑥) = 𝑓 ′0 (𝑥) (9)

Now note that ∀s𝑥 ∈ 𝑋 is the same as ∀s𝑥 ∈ 𝑋0. Since the
formula is internal, we can apply transfer to conclude that
𝑓0 (𝑥) = 𝑓 ′0 (𝑥) for all 𝑥 ∈ 𝑋0, establishing uniqueness.

For example, let 𝑋0 = ℕ and 𝑋 = {0, . . . , 2𝑁} for
some nonstandard 𝑁 ∈ ℕ. The shadow of the function
𝑓 (𝑛) B 1/𝑛 for 𝑛 ∈ {0, . . . , 𝑁} and 𝑓 (𝑛) B 𝑛 for 𝑛 ∈
{𝑁 + 1, . . . , 2𝑁} is the function 𝑓0 (𝑛) = 1/𝑛 for 𝑛 ∈ ℕ,
because 𝑓0 is standard (as it is defined using an internal
formula) and 𝑓 (𝑛) = 𝑓0 (𝑛) for all standard 𝑛 ∈ 𝑋 . Note
that the shadow of 𝑓 does not depend on the choice of 𝑁:
different functions can have the same shadow.
In Section 4 and further, we will use Theorem 5 to

represent continuous time processes through discrete time
ones.

3. Convergence of Sequences
The next two results are canonical; for instance see [10,
Theorems 3.4.1 & 3.4.9(b)].
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Lemma 6 For every standard sequence (𝑥𝑛)𝑛∈ℕ,

lim
𝑛→∞

𝑥𝑛 = 0 ⇐⇒ (∀𝑛 ∼ ∞ : 𝑥𝑛 ' 0) (10)

Lemma 7 (Robinson’s Lemma) For every sequence
(𝑥𝑛)𝑛∈ℕ,

(∀s𝑛 : 𝑥𝑛 ' 0) ⇐⇒ (∃𝑁 ∼ ∞ : ∀𝑛 ≤ 𝑁 : 𝑥𝑛 ' 0) (11)

We will also need the next result later, which allows us
to study the limit of a standard sequence from a ‘nearby’
nonstandard finite sequence. It resembles Robinson’s lemma
(and indeed that lemma is used to prove both directions). It
does not appear to be a canonical result from the literature,
therefore a proof is provided.

Lemma 8 Let (𝑥𝑛)𝑛∈ℕ be a standard sequence, and let
(𝑦𝑛)𝑁𝑛=0 be a finite sequence for some nonstandard 𝑁 such
that

∀s𝑛 : 𝑥𝑛 ' 𝑦𝑛 (12)

Then

lim
𝑛→∞

𝑥𝑛 = 0 ⇐⇒

∃𝑀 ∼ ∞, 𝑀 ≤ 𝑁 : ∀𝑛 ∼ ∞, 𝑛 ≤ 𝑀 : 𝑦𝑛 ' 0 (13)

Proof First note that by Lemma 7 applied on the sequence
𝑥𝑛 − 𝑦𝑛,

∃𝑀 ′ ∼ ∞ : ∀𝑛 ≤ 𝑀 ′ : 𝑥𝑛 − 𝑦𝑛 ' 0 (14)

‘only if’. Assume lim𝑛→∞ 𝑥𝑛 = 0. Then, by Lemma 6,

∀𝑛 ∼ ∞ : 𝑥𝑛 ' 0 (15)

By Equation (14), with 𝑀 B min{𝑀 ′, 𝑁}, the right-hand
side of Equation (13) must hold.
‘if’. Assume the right-hand side of Equation (13) holds.

By Equation (14), with 𝑀 ′′ B min{𝑀 ′, 𝑀}, we conclude
that

∀𝑛 ∼ ∞, 𝑛 ≤ 𝑀 ′′ : 𝑥𝑛 ' 0 (16)

and consequently,

∀𝑛 ≤ 𝑀 ′′ : ∀s𝜖 > 0: ( |𝑥𝑛 | > 𝜖 =⇒ 𝑛 � ∞) (17)

Fix any standard 𝜖 > 0, and consider the set

N𝜖 B {𝑛 ∈ {0, . . . , 𝑀 ′′} : ∀𝑚 ∈ {𝑛, . . . , 𝑀 ′′} : |𝑥𝑚 | ≤ 𝜖}
(18)

This set is non-empty by Equation (16), so it has a minimum:

𝑛𝜖 B minN𝜖 ≤ 𝑀 ′′ (19)

and
𝑛𝜖 = 0 or |𝑥𝑛𝜖 −1 | > 𝜖 (20)

Either way, by Equation (17), we must have that 𝑛𝜖 is
standard too. So,

∀s𝜖 > 0: ∃s𝑛𝜖 : ∀𝑚 ∈ {𝑛𝜖 , . . . , 𝑀 ′′} : |𝑥𝑚 | ≤ 𝜖 (21)

But {𝑛𝜖 , . . . , 𝑀 ′′} contains all standard 𝑚 ≥ 𝑛𝜖 , so

∀s𝜖 > 0: ∃s𝑛𝜖 : ∀s𝑚 ≥ 𝑛𝜖 : |𝑥𝑚 | ≤ 𝜖 (22)

Now use transfer to conclude that lim𝑛 𝑥𝑛 = 0.

In Lemma 8, though we only require that 𝑥𝑛 ' 𝑦𝑛 for
standard 𝑛, we can say something about the limit of 𝑥𝑛 by
studying 𝑦𝑛 for nonstandard 𝑛. This is due to a phenomenon
called overspill [9, pp. 18-19], and excellently demonstrates
the power of nonstandard analysis.
Note that the limiting number 0 in the above results can be

replaced by any standard real number 𝑧, since lim𝑛 𝑥𝑛 = 𝑧

if and only if lim𝑛 (𝑥𝑛 − 𝑧) = 0.

4. Stochastic Processes
We are now ready to turn to the main topic of the paper.
Consider a finite state space X (for instance, {1, . . . , 𝑛}

for some natural number 𝑛), representing the set of values
that a process can take. The state spaceX is fixed throughout
the paper, and is assumed to be a standard finite set; this
implies that its cardinality is standard, and that all of its
elements are standard too (see Theorem 1). We also need
a totally ordered index set 𝑇0 ⊆ ℝ+, interpreted as a set of
time points at which we can observe the state of the process.
We assume 𝑇0 to be standard.
Finally, we let 𝛺 denote a possibility space. Throughout,

we assume that 𝛺 is a standard (though not necessarily
finite) set. As with the state space, the possibility space is
fixed throughout the paper.
Next, we fix a standard function b : 𝑇0 × 𝛺 → X. This

function describes the time evolution of the process: given
outcome 𝜔 and time 𝑡, the state of the process is b (𝑡, 𝜔).
We aim to study discrete versions of the process, that is,

we want to study the process for (usually, finite) subsets 𝑇
of 𝑇0. Informally, a stochastic process on an index set 𝑇 is a
function b ′ : 𝑇 × 𝛺 → X where b ′ = b |𝑇 along with some
description of uncertainty on 𝛺 pertaining to b ′.
This paper is concerned with stochastic processes under

severe uncertainty. Therefore, we will take uncertainty to
be described by probability bounds rather than a probability
measure. More specifically, we assume uncertainty on 𝛺
to be described by a coherent conditional lower prevision,
with coherence in the sense of Williams [16] [17, Section 3]
(see Definition 9 further). Such approach includes the usual
measure theoretic approaches, and more general approaches
that allow finite additivity as well as probability bounding.
Before we can formally define this, we need some notation
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to adequately describe the domain of the conditional lower
prevision that we will be working with. For this paper, we
keep our structures intentionally simple, as this will ease
the nonstandard representation further.
First, let A(𝑇) denote the algebra (or field) generated

by events of the form {b (𝑡) = 𝑥} for 𝑡 ∈ 𝑇 and 𝑥 ∈ X. For
example, if 𝐵 is a subset of X and 𝑡 ∈ 𝑇 then

{b (𝑡) ∈ 𝐵} B {𝜔 ∈ 𝛺 : b (𝑡, 𝜔) ∈ 𝐵} (23)

is an element of A(𝑇), representing the event that the state
at time 𝑡 is in 𝐵 (note this works for arbitrary 𝐵 ⊆ X because
X is finite).
The indicator function of an event 𝐴 is the function

𝐼𝐴 : 𝛺 → {0, 1} which takes value 1 on 𝐴 and 0 elsewhere.
By L(𝑇) we denote the linear span of the set of indicator
functions induced by events in A(𝑇). An element of L(𝑇)
is called a gamble on b, or simply a gamble if the process is
clear from the context. For example, if 𝑔 ∈ ℝX then 𝑔(b (𝑡))
is the gamble ∑︁

𝑥∈X
𝑔(𝑥)𝐼{b (𝑡)=𝑥 } (24)

Finally, we define

K(𝑇) B L(𝑇) × (A(𝑇) \ {∅}) (25)

This domain is simpler but slightly larger than the one
considered in [6, Definition 4.3].
The general characterisation of Williams coherence of

conditional lower previsions can be found in [17, Proposi-
tions 1 & 2]. For the domain considered here, the following
properties (also due to [17, p. 370]) are necessary and
sufficient; for a proof see for instance [14, Thm. 13.33].

Definition 9 (Coherence) 𝔼 : K(𝑇) → ℝ is said to be
coherent if for all 𝑓 , 𝑔 ∈ L(𝑇), all 𝐴, 𝐵 ∈ A(𝑇) such that
𝐴 ∩ 𝐵 ≠ ∅, and all _ ≥ 0, we have that

• 𝔼( 𝑓 | 𝐴) ≥ inf ( 𝑓 | 𝐴)

• 𝔼( 𝑓 + 𝑔 | 𝐴) ≥ 𝔼( 𝑓 | 𝐴) + 𝔼(𝑔 | 𝐴)

• 𝔼(_ 𝑓 | 𝐴) = _𝔼( 𝑓 | 𝐴)

• 𝔼(𝐼𝐴( 𝑓 − 𝔼( 𝑓 | 𝐴 ∩ 𝐵)) | 𝐵) = 0

Definition 10 (Self-Conjugacy) We say that 𝔼 is self-
conjugate when 𝔼( 𝑓 | 𝐴) = −𝔼(− 𝑓 | 𝐴) for all ( 𝑓 , 𝐴) ∈
K(𝑇).

It is known that a self-conjugate coherent lower prevision 𝔼
is an expectation operator induced by a conditional finitely
additive probability measure in the sense of Dubins [5,
Section 3], and is usually denoted by 𝔼 (without the lower
bar).
We can now formally define stochastic processes:

Definition 11 A (stochastic) process on 𝑇 is a coherent
conditional lower prevision 𝔼 defined on K(𝑇). If 𝑇 is
finite, then we say that the process is elementary. If 𝔼 is
self-conjugate, then we say that the process is precise.

We will show that, under certain conditions, every ele-
mentary process on 𝑇 can be turned into a standard one on
𝑇0. To do so, first, we prove a simple yet very useful lemma:

Lemma 12 Assume 𝑇 ⊆ 𝑇0 and 𝑇 contains all standard
elements of 𝑇0. Then,

∀s ( 𝑓 , 𝐴) ∈ K(𝑇0) : ( 𝑓 , 𝐴) ∈ K(𝑇) (26)

Proof Recall that X is standard and finite, so all elements
𝑥 of X are standard too (see Theorem 1).
If 𝐴 ∈ A(𝑇0) then 𝐴 can be written through a finite

number of unions and complements on sets of the form
{b (𝑡) = 𝑥} with 𝑡 ∈ 𝑇0 and 𝑥 ∈ X. If, additionally, 𝐴 is
standard, then, by transfer, 𝐴 can be expressed through a
standard finite number of such unions and complements,
where all 𝑡 (and 𝑥) involved in these operations must be
standard too. But that means that 𝑡 ∈ 𝑇 for all these sets.
Consequently, 𝐴 is generated from sets of the form {b (𝑡) =
𝑥} with 𝑡 ∈ 𝑇 and 𝑥 ∈ X. In other words, 𝐴 ∈ A(𝑇).
Similarly, for 𝑓 ∈ L(𝑇0) to be standard, by transfer, it

must be a standard linear combination of indicator functions
of standard events inA(𝑇0). Since all those standard events
are in A(𝑇) by the previous part, it follows that 𝑓 ∈ L(𝑇).

To satisfy the conditions of Lemma 12, for example, if
𝑇0 = ℕ, we can take 𝑇 B {0, 1, . . . , 𝑁} for some nonstand-
ard 𝑁 .

Theorem 13 Assume 𝑇 ⊆ 𝑇0 and 𝑇 contains all standard
elements of 𝑇0. Let 𝔼 : K(𝑇) → ℝ be any process. Then
there is a unique standard process 𝔼0 : K(𝑇0) → ℝ, called
the shadow of 𝔼, satisfying

∀s ( 𝑓 , 𝐴) ∈ K(𝑇0) : 𝔼( 𝑓 | 𝐴) ' 𝔼0 ( 𝑓 | 𝐴) (27)

Note that the theorem needs that all standard elements in
K(𝑇0) belong to K(𝑇). This is guaranteed by Lemma 12.
Proof Since |𝔼( 𝑓 | 𝐴) | ≤ sup( | 𝑓 |), it follows that 𝔼 is
limited for all standard ( 𝑓 , 𝐴) ∈ K(𝑇) (because sup( | 𝑓 |) is
standard, and therefore limited, for standard 𝑓 ). Therefore,
there is a unique function 𝔼0 satisfying the conditions of the
theorem by the standardisation principle (see Theorem 5).
Is the function 𝔼0 coherent? Indeed, for all standard 𝑓 ,

𝑔 ∈ L(𝑇0), all standard 𝐴, 𝐵 ∈ A(𝑇0) such that 𝐴∩ 𝐵 ≠ ∅,
and all standard _ ≥ 0, we have2

2We rely on some properties of infinitesimal calculus; notably for
standard 𝑎 and 𝑏, one can show that if 𝑎 + 𝜖 = 𝑏 for some infinitesimal 𝜖
then 𝑎 = 𝑏, and if 𝑎 + 𝜖 ≥ 𝑏 for some infinitesimal 𝜖 then 𝑎 ≥ 𝑏.
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• 𝔼0 ( 𝑓 | 𝐴) ' 𝔼( 𝑓 | 𝐴) ≥ inf ( 𝑓 | 𝐴) so 𝔼0 ( 𝑓 | 𝐴) ≥
inf ( 𝑓 | 𝐴) since both sides are standard.

• 𝔼0 ( 𝑓 + 𝑔 | 𝐴) ' 𝔼( 𝑓 + 𝑔 | 𝐴) ≥ 𝔼( 𝑓 | 𝐴) + 𝔼(𝑔 |
𝐴) ' 𝔼0 ( 𝑓 | 𝐴) + 𝔼0 (𝑔 | 𝐴) so 𝔼0 ( 𝑓 + 𝑔 | 𝐴) ≥
𝔼0 ( 𝑓 | 𝐴) + 𝔼0 (𝑔 | 𝐴) since both sides are standard.

• 𝔼0 (_ 𝑓 | 𝐴) ' 𝔼(_ 𝑓 | 𝐴) = _𝔼( 𝑓 | 𝐴) ' _𝔼0 ( 𝑓 | 𝐴)
so 𝔼0 (_ 𝑓 | 𝐴) = _𝔼0 ( 𝑓 | 𝐴) since both sides are
standard.

• Note that

𝔼0 (𝐼𝐴( 𝑓 − 𝔼0 ( 𝑓 | 𝐴 ∩ 𝐵)) | 𝐵)
' 𝔼(𝐼𝐴( 𝑓 + 𝜖 − 𝔼( 𝑓 | 𝐴 ∩ 𝐵)) | 𝐵) (28)

where 𝜖 B 𝔼( 𝑓 | 𝐴∩𝐵)−𝔼0 ( 𝑓 | 𝐴∩𝐵) ' 0. It suffices
to show that the right hand side of Equation (28) is
infinitesimal. Indeed, by coherence

0 − |𝜖 | = 𝔼(𝐼𝐴( 𝑓 − 𝔼( 𝑓 | 𝐴 ∩ 𝐵)) | 𝐵) − |𝜖 | (29)
≤ 𝔼(𝐼𝐴( 𝑓 + 𝜖 − 𝔼( 𝑓 | 𝐴 ∩ 𝐵)) | 𝐵) (30)
≤ 𝔼(𝐼𝐴( 𝑓 − 𝔼( 𝑓 | 𝐴 ∩ 𝐵)) | 𝐵) + |𝜖 | (31)
= 0 + |𝜖 | (32)

and so, the conclusion follows since 𝜖 ' 0.

Note that we used Lemma 12. Apply transfer to conclude
that 𝔼0 is coherent on all of K(𝑇0).

The above proof, though short and simple, is one of the
main contributions of the paper, as without it we could not
construct nonstandard representations of standard processes.
Indeed, the shadow of a function generally does not inherit
all properties of that function. For example, the shadow of
a countably additive probability measure may not retain
countable additivity, and only retains finite additivity. In this
sense, Nelson’s radically elementary probability theory [9]
is a theory of finite additivity (even though this fact is not
mentioned in [9]). For this reason, it appears that internal
set theory is generally not used in nonstandard probability,
in favour of other approaches that stay within the realm of
countable additivity such as those based on Loeb spaces
[7]. However, coherent lower previsions are not bound by
countable additivity, and that gives us the flexibility needed
to stay within internal set theory.

5. Nearby Elementary Processes
This paper aims to study standard processes by means of
‘nearby’ (usually, nonstandard) elementary processes. Note
that, by idealisation, for any standard 𝑇0, we know there
always is a finite (and usually nonstandard) subset 𝑇 of
𝑇0 which contains all standard elements of 𝑇0, so we can

always find a set 𝑇 ⊆ 𝑇0 such that 𝑇 contains all standard
elements of 𝑇0 (see Theorem 2).
There are various ways in which we can define a notion

of ‘nearby’. Here is one, using the shadow introduced in
Theorem 13:

Definition 14 A standard process 𝔼0 on 𝑇0 is said to be
nearby an elementary process 𝔼 on 𝑇 if 𝑇 ⊆ 𝑇0, 𝑇 contains
all standard elements of 𝑇0, and 𝔼0 is the shadow of 𝔼.

Definition 14 differs from Nelson’s definition [9, p. 81]
in several ways. Besides the obvious difference that ours
applies to coherent conditional lower previsions and not
just to probability measures, ours is more restrictive in
that we do not allow perturbations of the process b itself
(for standard indices 𝑡). This would only make sense if
we studied real-valued processes like Nelson, but we do
not in this paper: our processes only take values in a
standard finite set. Secondly, we allow perturbations of our
uncertainty structure, whereas Nelson does not: Nelson’s
elementary process has the same probability measure as
the standard process (though restricted to a finite algebra).
Our definition permits a nonstandard elementary definition
of continuous-time imprecise Markov chains further in
the paper: in this application, the lower previsions of the
induced standard process are only approximately equal to
the lower previsions of the elementary process. Despite
these differences, we have opted for the same terminology,
as the overall intention is identical: study of processes
through elementary approximation.
We already know that every elementary process has a

unique nearby standard process (namely, its shadow). Con-
versely, every standard process also has a nearby elementary
process:

Theorem 15 If 𝔼0 is a standard process on 𝑇0, 𝑇 is finite
with 𝑇 ⊆ 𝑇0, and 𝑇 contains all standard elements of 𝑇0,
then 𝔼0 |K(𝑇 ) is an elementary process nearby 𝔼0.

Proof Using Lemma 12, it is immediately verified that
𝔼 B 𝔼0 |K(𝑇 ) satisfies the condition of Theorem 13.

By transfer, every internal statement that holds for all
standard processes extends to all processes. Therefore,
it suffices to study standard processes only. But every
standard process has nearby elementary processes, and
every elementary process determines a standard process.
So, it suffices to study elementary processes only.
As these processes are defined on a finite index set 𝑇 ,

their study is much easier. For instance, if for any 𝑥 ∈ X𝑇

and 𝑋 ⊆ X𝑇 , we use the notation

{b = 𝑥} B {𝜔 ∈ 𝛺 : (∀𝑡 ∈ 𝑇) (b (𝑡) (𝜔) = 𝑥(𝑡))} (33)

{b ∈ 𝑋} B
⋃
𝑥∈𝑋

{b = 𝑥} (34)
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then, since 𝑇 is finite,

A(𝑇) = {{b ∈ 𝑋} : 𝑋 ⊆ X𝑇 } (35)

L(𝑇) =
{ ∑︁
𝑥∈X𝑇

𝑔(𝑥)𝐼b=𝑥 : 𝑔 : X𝑇 → ℝ

}
(36)

So, for an elementary process b, events correspond to
arbitrary sets of paths (of which there are only finitelymany),
and gambles correspond to arbitrary real-valued functions
of paths. BecauseA(𝑇) forms a finite algebra, L(𝑇) forms
a finite dimensional vector space. Obviously, this comes at
the expense of the more complicated nonstandard logic.

For the remainder of this paper, 𝔼0 will denote
a standard process and 𝔼 will denote a nearby
elementary process.

6. Convergence of Processes
As a simple example, let us show how convergence of a
standard process with index set𝑇0 = ℕ translates to a nearby
elementary process. All the hard work for this has been
done in Lemma 8.

Theorem 16 Let 𝑇0 = ℕ and 𝑇 = {0, 1, . . . , 𝑁} for some
nonstandard 𝑁 ∈ ℕ. Let 𝔼∗ be a standard coherent lower
prevision on ℝX . Then for all 𝑓 ∈ ℝX and all 𝑥 ∈ X we
have that

lim
𝑛→∞

𝔼0 ( 𝑓 (b (𝑛)) | b (0) = 𝑥) = 𝔼∗ ( 𝑓 ) (37)

if and only if for all standard 𝑓 ∈ ℝX and all 𝑥 ∈ X,

∃𝑀 ∈ 𝑇, 𝑀 ∼ ∞ : ∀𝑛 ∈ 𝑇, 𝑛 ∼ ∞, 𝑛 ≤ 𝑀 :
𝔼( 𝑓 (b (𝑛)) | b (0) = 𝑥) ' 𝔼∗ ( 𝑓 ) (38)

Proof Immediate from Lemma 8, since for all standard
𝑛 ∈ ℕ we have that

𝔼( 𝑓 (b (𝑛)) | b (0) = 𝑥) ' 𝔼0 ( 𝑓 (b (𝑛)) | b (0) = 𝑥) (39)

To make a statement for more general 𝑇0, for instance, one
can use a standard sequence (𝑡𝑛)𝑛∈ℕ in 𝑇0 and replace b (𝑛)
with b (𝑡𝑛) in the above theorem.
As another quick example, consider a (precise) discrete

time Markov chain with transition matrix 𝑃 ' 𝑃0 for some
standard stochastic matrix 𝑃0. Then, lim𝑛→∞ 𝑃𝑛

0 converges
to a standard stochastic matrix 𝛱 if and only if there is an
𝑀 ∼ ∞ such that 𝑃𝑛 ' 𝛱 (element-wise) for all 𝑛 ∼ ∞,
𝑛 ≤ 𝑀. So, we can use nonstandard powers of 𝑃 to study
the convergence properties of 𝑃0.

7. Imprecise Markov Chains

We now assume that:

• 𝑇0 ⊆ ℝ, with min𝑇0 = 0, and

• 𝛺 = X𝑇0 with b (𝑡, 𝜔) B 𝜔(𝑡) (i.e. we work in the
so-called canonical representation).

As before, 𝑇 is a finite subset of 𝑇0 containing all standard
elements of 𝑇0. In particular, 0 ∈ 𝑇 . For any function 𝜙 on
𝑇 and 𝑡 ∈ 𝑇 , by 𝜙(0 : 𝑡) we denote the restriction of 𝜙 to
[0, 𝑡] ∩ 𝑇 . Define 𝑇 ′ B 𝑇 \ {max𝑇}. If 𝑡 ∈ 𝑇 ′ then 𝑡 + 𝑑𝑡

denotes the successor of 𝑡 in 𝑇 , i.e.

𝑑𝑡 B min{𝑡 ′ ∈ 𝑇 : 𝑡 ′ > 𝑡} − 𝑡 (40)

Let 𝕀 be a coherent lower prevision onℝX . For each 𝑥 inX,
and 𝑡 ∈ 𝑇 ′, let 𝕋𝑡 (·) (𝑥) be a coherent lower prevision onℝX ,
or in other words, for each 𝑡 ∈ 𝑇 ′, let 𝕋𝑡 be a lower transition
operator. So, 𝕀 : ℝX → ℝ and 𝕋 : 𝑇 ′ → (ℝX → ℝX).

Definition 17 We say that a precise elementary process 𝔼
on 𝑇 is compatible with (𝕀, 𝕋) if for all paths 𝑥 : 𝑇 ′ → X,
all 𝑡 ∈ 𝑇 ′, and all 𝑓 ∈ ℝX ,

𝔼( 𝑓 (b (0)) ≥ 𝕀( 𝑓 ) (41)
𝔼( 𝑓 (b (𝑡 + 𝑑𝑡)) | b (0 : 𝑡) = 𝑥(0 : 𝑡)) ≥ 𝕋𝑡 ( 𝑓 ) (𝑥(𝑡)) (42)

If 𝔼 denotes the lower envelope of all these compatible pre-
cise elementary processes, then 𝔼 is called the elementary
imprecise Markov chain induced by (𝕀, 𝕋). Its shadow is
called the imprecise Markov chain induced by (𝕀, 𝕋).

The definition of compatibility is identical to the one given
for imprecise discrete time Markov chains in [2, p. 605]
(here formulated in terms of expectations instead of prob-
ability mass functions). The only new element in the above
definition is that we also consider the shadow of elementary
imprecise Markov chains to be an imprecise Markov chain.
Besides the shadow, we emphasize that all other parts of the
definition are completely internal as 𝑇 can be any arbitrary
finite set. In particular, the formula for the set of compatible
processes is internal, so we are not committing illegal set
formation, and we can take the lower envelope.
This single definition encompasses both continuous and

discrete time imprecise Markov chains. For discrete time,
take the above definition with 𝑇 = {0, 1, . . . , 𝑁} for some
nonstandard natural number 𝑁 , whereas for continuous time,
take 𝑇 to be a finite subset of ℝ+ containing all standard
𝑡 ≥ 0.
In continuous time, the definition allows for processes

whose shadow depends on the details of how𝑇 approximates
𝑇0, as in the following example.
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Example 1 Let 𝑇 B {𝑡0, 𝑡1, . . . , 𝑡𝑁 } contain all standard
non-negative reals, and let X B {0, 1}. Set

𝔼( 𝑓 (b (0)) B 𝑓 (0) (43)
𝔼( 𝑓 (b (𝑡 + 𝑑𝑡)) | b (0 : 𝑡) = 𝑥(0 : 𝑡)) B 𝑓 (1 − 𝑥(𝑡)) (44)

This models a precise (even deterministic) process which
starts at state 0 and then changes state at every time point
in 𝑇 . The state of the system at time 1 therefore depends on
the details of 𝑇 . However, it is compatible with (𝕀, 𝕋) where:

𝕀( 𝑓 ) B inf 𝑓 (45)
𝕋𝑡 ( 𝑓 ) (𝑥) B inf 𝑓 (46)

Is this problematic? Whilst many of the compatible precise
processes 𝔼 may depend on unspecified details of 𝑇 , since
our inferences about the lower envelope 𝔼 will be expressed
in terms of 𝕀 and 𝕋, there is no issue for us to allow such
precise processes, as long as 𝕀 and 𝕋 are sufficiently regular
so that the shadow of 𝔼 does not depend on how 𝑇 was
constructed from 𝑇0. One way of doing so will be described
in Section 8.
In the literature, imprecise continuous time Markov

chains have been defined as the envelope of ‘well behaved’
processes [6, Definition 6.4]. Could we, in principle, restrict
the envelope to processes whose shadow is ‘well behaved’
and thereby, hopefully, remove the issue seen in the above
example?Whilst this would allow us to study the connection
with standard definitions of continuous time Markov chains,
the nonstandard definition here leads to the same inferences
found in the literature, at least for the events and gambles
that we are studying here. So, although there might be a
way to make a strong connection, it complicates the analysis
for no immediate benefit, and we will not further explore
this connection here. One of the contributions of this paper
is that there is no need to restrict the precise processes in
the envelope to well-behaved processes when dealing with
imprecise continuous time Markov chains.
Because an elementary imprecise Markov chain is simply

a non-homogeneous finite horizon discrete time imprecise
Markov chain indexed by 𝑇 , it follows from the usual
discrete time theory (in the canonical representation) that
the bounds are coherent, in the sense that [2, Section 3]:

𝔼( 𝑓 (b (0)) = 𝕀( 𝑓 ) (47)
𝔼( 𝑓 (b (𝑡 + 𝑑𝑡)) | b (0 : 𝑡) = 𝑥(0 : 𝑡)) = 𝕋𝑡 ( 𝑓 ) (𝑥(𝑡)) (48)

For an arbitrary gamble 𝑔 : X𝑇 → ℝ, we can recursively
calculate the following for all paths (𝑥0, . . . , 𝑥max𝑇 ) and all
𝑡 ∈ 𝑇 ′ [2, Section 3]:

𝑔max𝑇 (𝑥0, . . . , 𝑥max𝑇 ) B 𝑔(𝑥0, . . . , 𝑥max𝑇 ) (49)
𝑔𝑡 (𝑥0, . . . , 𝑥𝑡 ) B 𝕋𝑡 (𝑔𝑡+𝑑𝑡 (𝑥0, . . . , 𝑥𝑡 , 𝑋𝑡+𝑑𝑡 )) (𝑥𝑡 )

(50)

where 𝑔𝑡+𝑑𝑡 (𝑥0, . . . , 𝑥𝑡 , 𝑋𝑡+𝑑𝑡 ) is considered as a gamble
on 𝑥𝑡+𝑑𝑡 ∈ X for fixed 𝑥0, . . . , 𝑥𝑡 . One can show that

𝔼(𝑔(b) | b (0) = 𝑥) = 𝑔0 (𝑥) (51)

and consequently [2, Eq. (21)],

𝔼( 𝑓 (b (𝑡)) | b (0) = 𝑥) =
(∏
𝑠<𝑡

𝕋𝑠

)
( 𝑓 ) (𝑥) (52)

where the product considers 𝑠 ∈ 𝑇 ′ in increasing order (and
𝑠 < 𝑡).
As an important special case, if 𝑇 = {0, 1, . . . , 𝑁} and

𝕋𝑛 does not depend on 𝑛, then for all 𝑓 ∈ X and 𝑛 ∈ 𝑇 ,

𝔼( 𝑓 (b (𝑛)) | b (0) = 𝑥) = 𝕋𝑛
0 (𝑥) ( 𝑓 ) (53)

where 𝕋𝑛
0 denotes the 𝑛-th power of 𝕋0.

8. Imprecise Continuous Time Markov
Chains

Let now 𝑇0 = ℝ+. As before, let 𝑇 be any finite subset
of 𝑇0 containing all standard elements of 𝑇0. We must
have that 𝑑𝑡 ' 0 for all limited 𝑡 ∈ 𝑇 ′. Indeed, if 𝑑𝑡
were non-infinitesimal, then the open interval (𝑡, 𝑡 + 𝑑𝑡)
would necessarily contain the shadow of 𝑡 +max{𝑑𝑡/2, 1},
contradicting our assumption that 𝑇 contains all standard
elements of 𝑇0. Without loss of generality, we can assume
that 𝑑𝑡 ' 0 for all 𝑡 ∈ 𝑇 ′ (i.e. even unlimited 𝑡). Indeed, if
𝑇 does not satisfy this requirement, simply pick any natural
number 𝑁 ≥ max𝑇 (𝑁 is necessarily nonstandard since
𝑇 contains all standard reals), and add all rationals of the
form 𝑛/𝑁 for 0 ≤ 𝑛 ≤ 𝑁2. This set is still finite and leaves
no non-infinitesimal gaps between points.
Let 𝐼 denote the identity operator on ℝX .

Definition 18 The lower rate operator ℚ : 𝑇 ′ → (ℝX →
ℝX) induced by 𝕋 : 𝑇 ′ → (ℝX → ℝX) is defined as:

ℚ
𝑡
B

𝕋𝑡 − 𝐼

𝑑𝑡
(54)

We are now interested in the case where ℚ
𝑡
is standard and

does not depend on 𝑡; we will simply write ℚ and omit the
time index. Note that 𝕋𝑡 may still depend on 𝑡, as the points
in 𝑇 cannot be chosen in an equidistant manner (doing so
would prevent 𝑇 from covering all standard elements of
ℝ+). Another way of saying this is that we fix a standard
function ℚ : ℝX → ℝX and define

𝕋𝑡 B 𝐼 + 𝑑𝑡ℚ (55)

Because 𝑑𝑡 ' 0 for all 𝑡 ∈ 𝑇 ′, and ℚ is standard, it follows
that 𝕋𝑡 (·) (𝑥) is a coherent lower prevision for every 𝑡 ∈ 𝑇 ′

and 𝑥 ∈ X, provided ℚ satisfies the properties listed in the
following definition:
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Definition 19 A function ℚ : ℝX → ℝX is called a lower
rate operator whenever

∀` ∈ ℝ : ℚ(`) = 0 (56)
∀𝑥, 𝑦 ∈ X, 𝑥 ≠ 𝑦 : ℚ(𝐼𝑦) ≥ 0 (57)

∀ 𝑓 , 𝑔 ∈ ℝX : ℚ( 𝑓 + 𝑔) ≥ ℚ( 𝑓 ) +ℚ(𝑔) (58)

∀ 𝑓 ∈ ℝX : ∀_ ≥ 0: ℚ(_ 𝑓 ) = _ℚ( 𝑓 ) (59)

The proof of the following result is an easy exercise (for
instance, see [1, Propositions 5 & 6] and note that the norm
of a standard ℚ is standard).

Theorem 20 A standard functionℚ : ℝX → ℝX is a lower
rate operator if for at least one infinitesimal 𝛿 > 0 we have
that 𝐼 + 𝛿ℚ is a lower transition operator. In such case,
𝐼 + 𝛿ℚ is a lower transition operator for all infinitesimal
𝛿 > 0.

With this notation, for all 𝑡 ∈ 𝑇 ′ we have

𝔼( 𝑓 (b (𝑡 + 𝑑𝑡)) | b (0 : 𝑡) = 𝑥(0 : 𝑡)) = (𝐼 + 𝑑𝑡ℚ) ( 𝑓 ) (𝑥(𝑡))
(60)

and

𝔼( 𝑓 (b (𝑡)) | b (0) = 𝑥) =
(∏
𝑠<𝑡

(𝐼 + 𝑑𝑠ℚ)
)
(𝑥) ( 𝑓 ) (61)

Definition 21 For any non-negative 𝑡 ∈ ℝ and lower rate
operatorℚ : ℝX → ℝX , the exponential of 𝑡ℚ : ℝX → ℝX

is:
𝑒𝑡ℚ ( 𝑓 ) (𝑥) B lim

𝑛→∞

((
𝐼 + 1

𝑛
𝑡ℚ

)𝑛
( 𝑓 ) (𝑥)

)
(62)

It can be shown that the above limit always exists, and
that 𝑒𝑡ℚ is a lower transition operator; see for instance [1,
Section 6].
We now need just three simple algebraic results to estab-

lish our main result for this section. First,

Lemma 22 For all non-negative 𝑡1, . . . , 𝑡𝑛,
𝑛∏
𝑖=1

𝑒𝑡𝑖ℚ = 𝑒
∑𝑛

𝑖=1 𝑡𝑖ℚ (63)

Proof This is the semi-group property; see for instance [1,
Eq. (10)] or [6, Proposition 7.13]. For fun, we give a quick
sketch of a nonstandard proof, for the case where all 𝑡𝑖 are
rational. We may assume that all 𝑡𝑖 > 0. By transfer, we
may assume that 𝑛 and 𝑡1, . . . , 𝑡𝑛 are standard. Pick any
non-standard natural number 𝑁 such that all 𝑁𝑡𝑖 are natural.
Define 𝑘𝑖 B 𝑁𝑡𝑖 . Note that all 𝑘𝑖 ∼ ∞. Then, since 𝑛 is
standard, and by Lemma 6,

𝑛∏
𝑖=1

𝑒𝑡𝑖ℚ '
𝑛∏
𝑖=1

(
𝐼 + 1

𝑘𝑖
𝑡𝑖ℚ

) 𝑘𝑖
=

𝑛∏
𝑖=1

(
𝐼 + 1

𝑁
ℚ

)𝑁𝑡𝑖

(64)

=

(
𝐼 + 1

𝑁
ℚ

)𝑁 ∑𝑛
𝑖=1 𝑡𝑖

=

(
𝐼 +

∑𝑛
𝑖=1 𝑡𝑖

𝑀
ℚ

)𝑀
(65)

' 𝑒
∑𝑛

𝑖=1 𝑡𝑖ℚ (66)

where 𝑀 = 𝑁
∑𝑛

𝑖=1 𝑡𝑖 ∼ ∞. The case for non-rational 𝑡𝑖
follows from a continuity argument (omitted here, but this
can also be done using nonstandard arguments).

For any (non-negatively homogeneous) operator𝛷 : ℝX →
ℝX (such as a lower transition or lower rate operator), let
‖𝛷‖ denote its operator norm:

‖𝛷‖ B sup{|𝛷( 𝑓 ) | : 𝑓 ∈ [−1, 1]X} (67)

Since this definition is internal, ‖𝛷‖ is standard whenever
𝛷 is. Note that ‖𝕋‖ = 1 for lower transition operators 𝕋 [6,
LT4], and ‖ℚ‖ < +∞ for lower rate operators ℚ [6, LR5].

Lemma 23 For all 𝑛 ∈ ℕ and all infinitesimal 𝛿 > 0,𝐼 + 𝛿ℚ −
(
𝐼 + 1

𝑛
𝛿ℚ

)𝑛 ≤ 𝛿2‖ℚ‖2 (68)

Proof This is a special case of [6, Lemma E.5].

Lemma 24 For any two finite sequences of lower transition
operators 𝑇1, . . . , 𝑇𝑛 and 𝑆1, . . . , 𝑆𝑛, 𝑛∏

𝑖=1
𝑇𝑖 −

𝑛∏
𝑖=1

𝑆𝑖

 ≤
𝑛∑︁
𝑖=1

‖𝑇𝑖 − 𝑆𝑖 ‖ (69)

Proof See [6, Lemma E.4].

We can now formulate and prove the following key result:

Theorem 25 Assume ℚ is a standard lower rate matrix.
Then for all 𝑥 ∈ X, 𝑓 ∈ ℝX , and 𝑡 ≥ 0,

𝔼0 ( 𝑓 (b (𝑡)) | b (0) = 𝑥) = 𝑒𝑡ℚ ( 𝑓 ) (𝑥) (70)

Proof The statement is trivial for 𝑡 = 0. Assume 𝑡 > 0. By
transfer, we only need to establish the equality for standard
𝑡. By Equation (61), it suffices to show that∏

𝑠<𝑡

(𝐼 + 𝑑𝑠ℚ) − 𝑒𝑡ℚ

 ' 0 (71)

Indeed, by Lemma 22,∏
𝑠<𝑡

(𝐼 + 𝑑𝑠ℚ) − 𝑒𝑡ℚ

 =
∏
𝑠<𝑡

(𝐼 + 𝑑𝑠ℚ) −
∏
𝑠<𝑡

𝑒𝑑𝑠ℚ


(72)
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and so by Lemma 24,

≤
∑︁
𝑠<𝑡

𝐼 + 𝑑𝑠ℚ − 𝑒𝑑𝑠ℚ
 (73)

and so byLemma 23with 𝑛 ∼ ∞, togetherwithDefinition 21
and Lemma 6,

.
∑︁
𝑠<𝑡

(𝑑𝑠)2‖ℚ‖2 (74)

and with 𝛿 B max𝑠<𝑡 𝑑𝑠,

≤
∑︁
𝑠<𝑡

(𝑑𝑠)𝛿‖ℚ‖2 = 𝑡𝛿‖ℚ‖2 ' 0

(75)

since 𝑡 and ‖ℚ‖ are standard and therefore limited, and
𝛿 ' 0.

Note the final bound in the above proof closely resembles
the right hand side of [6, Lemma E.6], to no surprise.
So, we have shown that an elementary stochastic pro-

cess with infinitesimal time step 𝛿 and standard lower rate
operator ℚ can capture key behaviour of continuous-time
Markov chains, using mostly simple algebraic means.

9. Conclusion
We have explored an application of internal set theory
to imprecise stochastic processes. It is known that every
internal result that can be proved within internal set theory
can also be proved within ZFC, therefore there are no
fundamentally new mathematical insights to be gained [8].
Yet, whilst the axioms of internal set theory are unusual
and take some time to digest, the theory has allowed us
to simplify definitions and proofs concerning imprecise
stochastic processes. We coincidentally (and, modestly)
generalized the theory of continuous time impreciseMarkov
chains: we found that the compatible precise processes need
not be well behaved.
Continuous time processes are often explained in terms

of small time increments. Internal set theory allows us to
fully formalize that intuition, and allows the mathematical
work to focus on the key algebraic elements, which are
subjectively more pleasant than the analytic details. This
was shown in the unified definition between discrete and
continuous time imprecise Markov chains, as well as in
some proofs at the end of the paper. Readers familiar with
the literature may appreciate these simplifications.
There are some limitations. First, the notion of a ‘nearby

elementary process’ takes quite a bit of effort to set up. It
would be interesting to see if Nelson’s definition could be
incorporated with probability bounds. We did not do so here
to keep things simpler. Another obstacle is that Nelson’s

approach is inherently one of finite additivity. The theory
of lower previsions, and especially, Williams’s approach
(as opposed to Walley’s), fully embraces finite additivity,
giving the flexibility needed, and it worked for the results
needed in this paper. But without resorting to external sets
(such as in the approach of Loeb [7]) it is unclear how
the theory could deal with conglomerability, or with the
Shafer-Vovk-Ville formulae for stochastic processes under
probability bounding [12, 3].

Acknowledgments
I am indebted to Teddy Seidenfeld for introducing me to
Nelson’s internal set theory. I also thank the reviewers for
their comments which helped improving the manuscript.

References
[1] Jasper De Bock. The limit behaviour of imprecise
continuous-time markov chains. Journal of Nonlinear
Science, 27:159–196, 2017.

[2] Gert de Cooman, Filip Hermans, and Erik Quae-
ghebeur. Imprecise Markov chains and their limit
behavior. Probability in the Engineering and In-
formational Sciences, 23(4):597–635, October 2009.
doi:10.1017/S0269964809990039.

[3] Gert De Cooman, Jasper De Bock, and Stavros
Lopatatzidis. Imprecise stochastic processes in
discrete time: global models, imprecise Markov
chains, and ergodic theorems. International
Journal of Approximate Reasoning, 76:18–46, 2016.
doi:10.1016/j.ijar.2016.04.009.

[4] Francine Diener and Marc Diener, editors. Nonstand-
ard Analysis in Practice. Springer, 1995.

[5] Lester E. Dubins. Finitely additive conditional
probabilities, conglomerability and disintegrations.
The Annals of Probability, 3(1):89–99, 1975.
doi:10.1214/aop/1176996451.

[6] Thomas Krak, Jasper De Bock, and Arno Siebes.
Imprecise continuous-time Markov chains. Interna-
tional Journal of Approximate Reasoning, 88:452–
528, September 2017. doi:10.1016/j.ijar.2017.06.012.

[7] Peter A. Loeb. Conversion from nonstandard to stand-
ard measure spaces and applications in probability
theory. Transactions of the American Mathematical
Society, 211:113–122, 1975. doi:10.2307/1997222.

[8] Edward Nelson. Internal set theory: A new approach
to nonstandard analysis. Bulletin of the American
Mathematical Society, 83(6):1165–1198, 1977.

459

https://doi.org/10.1017/S0269964809990039
https://doi.org/10.1016/j.ijar.2016.04.009
https://doi.org/10.1214/aop/1176996451
https://doi.org/10.1016/j.ijar.2017.06.012
https://doi.org/10.2307/1997222


Troffaes

[9] Edward Nelson. Radically Elementary Prob-
ability Theory. Annals of Mathematical Stud-
ies. Princeton University Press, New Jersey, 1987.
URL https://web.math.princeton.edu/
~nelson/books/rept.pdf.

[10] Alain Robert. Nonstandard Analysis. Dover Publica-
tions, Inc., 2003.

[11] Eric Schechter. Handbook of Analysis and Its Found-
ations. Academic Press, San Diego, 1997.

[12] Glenn Shafer and Vladimir Vovk. Probability and
Finance: It’s Only a Game! Wiley, 2001.

[13] Damjan Škulj. Efficient computation of the bounds
of continuous time imprecise Markov chains. Applied
Mathematics and Computation, 250:165–180, 2015.
doi:10.1016/j.amc.2014.10.092.

[14] Matthias C. M. Troffaes and Gert de Cooman. Lower
Previsions. Wiley Series in Probability and Statistics.
Wiley, 2014. ISBN 978-0-470-72377-7.

[15] Damjan Škulj. Discrete time Markov chains with
interval probabilities. International Journal of
Approximate Reasoning, 50(8):1314–1329, 2009.
doi:10.1016/j.ijar.2009.06.007.

[16] Peter M. Williams. Notes on conditional previsions.
Technical report, School of Math. and Phys. Sci., Univ.
of Sussex, 1975.

[17] Peter M. Williams. Notes on conditional previsions.
International Journal of Approximate Reasoning, 44
(3):366–383, 2007. doi:10.1016/j.ijar.2006.07.019.

460

https://web.math.princeton.edu/~nelson/books/rept.pdf
https://web.math.princeton.edu/~nelson/books/rept.pdf
https://doi.org/10.1016/j.amc.2014.10.092
https://doi.org/10.1016/j.ijar.2009.06.007
https://doi.org/10.1016/j.ijar.2006.07.019

	Introduction
	Internal Set Theory
	Basic Concepts
	Transfer
	Idealisation
	Standardisation

	Convergence of Sequences
	Stochastic Processes
	Nearby Elementary Processes
	Convergence of Processes
	Imprecise Markov Chains
	Imprecise Continuous Time Markov Chains
	Conclusion

