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Abstract

Sampling subgraphs for training Graph Neural Net-
works (GNNs) is receiving much attention from
the GNN community. While a variety of meth-
ods have been proposed, each method samples
the graph according to its own heuristic. How-
ever, there has been little work in mixing these
heuristics in an end-to-end trainable manner. In
this work, we design a generative framework for
subgraph sampling. Our method, SubMix, parame-
terizes subgraph sampling as a convex combination
of heuristics. We show that a continuous approxi-
mation of the discrete sampling process allows us
to efficiently obtain analytical gradients for train-
ing the sampling parameters. Our experimental
results illustrate the usefulness of learning graph
sampling in three scenarios: (1) robust training of
GNNs by automatically learning to discard noisy
edge sources; (2) improving model performance by
trainable and online edge subset selection; and (3)
by integrating our framework into decoupled GNN
models improves their performance on standard
benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) are frequently used as
machine learning models for relational data, e.g., in pre-
dicting node classes or relationships between nodes (a.k.a.
edges). The node and edge types are domain-specific. Ap-
plication domains include social, biochemical, and compu-
tational networks, e.g., where GNNs are used for recom-
mendation, predicting protein-protein interactions, or job
scheduling [Bruna et al., 2014, Kipf and Welling, 2017,
Monti et al., 2017, Veličković et al., 2018, Hamilton et al.,
2017, Battaglia et al., 2018, Chami et al., 2022].

Early GNNs were conceptually formulated and imple-

mented on the graph as a whole [Bruna et al., 2014, Kipf and
Welling, 2017]. As such, the entire graph is processed at ev-
ery training step. For training on larger graphs, researchers
resorted to a variety of directions, including (D.1) subgraph
sampling and (D.2) graph-decoupled training, among oth-
ers (§7).

Direction (D.1) repeatedly samples subgraphs from the
(larger) input graph. Each subgraph sample serves as one
training example for the GNN. The process of sampling
subgraphs–how to select a meaningful neighborhood for
a set of nodes–is usually based on a heuristic and is not
trainable. For instance, Chiang et al. [2019] partitions the in-
put graph into smaller subgraphs via an algorithm for graph
clustering such as METIS [Karypis and Kumar, 1998]. Once
the subgraphs are created, they are repeatedly used through-
out training (and inference). Zeng et al. [2020] try three
samplers: node-level, edge-level, and random walk-based
samplers, respectively, similar to [Chen et al., 2018], [Zou
et al., 2019] and [Hamilton et al., 2017, Markowitz et al.,
2021]. These methods all employ sampling heuristics, e.g.,
choose nodes with probability proportional to their degree
[Chen et al., 2018], or a few edges for every sampled node
[Hamilton et al., 2017, Ying et al., 2018, Markowitz et al.,
2021]. While these heuristics stem from reasonable induc-
tive biases, learning to combine them is under-explored.

Contributions1: We propose a generative model of sub-
graphs (§3), which can be written as a mixture distribu-
tion of sampling heuristics, where the mixture weights are
learned. Given a node, each heuristic assigns a probability
distribution on its neighbors. We train parameters of the
mixture model to optimize the supervision objective, e.g.,
cross-entropy for node classification. To obtain analytical
gradients, we relax the discrete process of subgraph sam-
pling into the continuous domain. We evaluate our method in
three setups. First, if we use an adversary sampling heuris-

1Our implementation could be accessed through
https://github.com/tensorflow/gnn/tree/
main/tensorflow_gnn/models/submix
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Figure 1: Summary of our Method. (top-left). The input graph initializes our utilized heuristics only once. Each heuristic
maintains distribution Q(· | u) per node u. We show relative mass outgoing a node by edge color: red and blue, for QLOWDEG,
depict larger mass than grey edges. Once initialized, (left), user can request 5 edges outgoing from node u. Each heuristic j
then yields an ordered list of neighbors, sampled from Qj(· | u) with (or without) replacement. The (Trainable) πφ(j)
allocates the total budget of 5 among the heuristics where heuristic j can select bj = πφ(j)× 5. (top right) Finally, the
sampled edges get combined into sampled subgraph. The discrete process is relaxed in §3.4.

tic, always yielding non-edges, we find that our method
assigns it weight ≈ 0. Second, we cluster edges using fea-
tures of its connecting endpoint nodes. Our method can
choose which cluster to sample more frequently, generally
increasing model performance. Finally, we show how our
framework can be integrated into full-graph decoupled GNN
methods (D.2) This improves the performance of decoupled
GNNs on standard benchmarks. The performance gains in-
troduce no additional GNN parameters.

2 BACKGROUND

Denote the space of graphs of n nodes as G = A × X .
A graph G ∈ G with adjacency matrix A ∈ A def

= Rn×n

node feature matrix X ∈ X def
= Rn×d with d-features per

node. Denote node set as V def
= [n]. Node u ∈ V has an edge

to node v ∈ V iff Auv = 1. For node classification task
with c classes, let Y def

= Rn×c define the label space. Denote
labeled examples as Vtr ⊆ V . Let N (u) denote the set of
out-neighbors of u with N (u) = {Au,v = 1 | v ∈ V}.

2.1 GRAPH NEURAL NETWORKS

GNNs are neural networks for graph data structures, where
nodes repeatedly communicate their features [Chami et al.,
2022] to their neighbors, where each node incorporates all
its incoming messages into its representation. GNNs, for

node classification tasks, can be trained by minimizing the
negative log-likehood:

− log pθ(Y | A,X). (1)
A popular GNN architecture is the GCN of [Kipf and
Welling, 2017]:

pθ(Y | A,X) = softmax(Â[ÂXW(1)]+W
(2)), (2)

where θ = {W(1),W(2)}, .̂ is symmetric normalization2

Â = D−
1
2AD−

1
2 and D = diag(1>A). Another popular

GNN model of GraphSAGE [Hamilton et al., 2017]:
pθ(Y | A,X) = softmax(X(L)) with X(0) = X, (3)

X
(`)
j = σ(normRows(ÂX(`−1))W(`)), ∀l ∈ [L], with

Â = [A I] (concatenation), normRows() normalizes each
row to unit-norm, and θ = {W(`)}`∈[L].

2.2 SUBGRAPH SAMPLING

In large-scale settings, where A contains large connected
components, it is common to train on subgraph mini-batches.
Let Ã ∈ A denote the adjacency corresponding to sampled
subgraph. Some methods independently sample each edge
(e.g., [Chen et al., 2018, Zou et al., 2019]). Other methods
break-up the full adjacency into a number of smaller adja-
cency matrices as a pre-processing step [Chiang et al., 2019].
Finally, many methods employ tree-based sampling (§2.3).

2pre-processing adds self-loops and undirects graph.
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By optimizing the GNN on samples Ã, in essence, these
methods minimize

min
θ
−EÃ log pθ(Y | Ã,X). (4)

2.3 TREE-BASED SUBGRAPH SAMPLING

A number of methods sample subgraphs as trees. Each tree is
rooted at a labeled node u ∈ Vtr [e.g., Hamilton et al., 2017,
Markowitz et al., 2021, Ferludin et al., 2022]. Specifically,
given node u and level-wise budgets b(1), b(2), . . . b(h) ∈
Z+, these methods sample b(1) neighbors of u, and for each
sampled v ∈ N (u), subsequently sample b(2) neighbors of
v, and so on, until sampling depth h is reached. This process
can be described by a recursive function:

Algorithm 1 Tree-based subgraph sampling of Ã

1: Input: Seed u ∈ V; sampling budgets: [b(1), . . . , b(h)];
2: Output: Adjacency Ã of sampled subgraph.
3: Ã← 0 // initialize empty to populate recursively
4: def recursiveNeighbors(u′, s):
5: if s > h: return
6: {vk}b

(s)

k=1 ∼ Q(V | u′) // sample b(s) neighbors
7: for each vk do
8: Ãu′,vk ← 1
9: recursiveNeighbors(vk, s+ 1)

10: recursiveNeighbors(u, 1)

Q(V | u) (line 6) can be hand-crafted. Popular sampling
implementations [Hamilton et al., 2017, Ying et al., 2018,
Markowitz et al., 2021, Ferludin et al., 2022] (implicitly)
define Q as i.i.d Q(V | u) =

∏
v∈V Q(v | u) and uniform

Q(v | u) = Auv

Duu
. Further, it is possible to design Q to

assign probability as a function of node degrees, following
Chen et al. [2018], Zeng et al. [2020], Zou et al. [2019].

3 SUBMIX

Our method can be seen as an extension of Tree-based
subgraph sampling methods (§2.3, Algorithm. 1). Rather
than assuming that the neighborhood distribution function
Q is fixed apriori (see Line 6), we assume a tunable Q
that is a convex combination other Q’s that are known to
perform well, e.g., uniform or as a function of node degrees.
Formally,

Qφ(V | u) =
∏
j

πφ(j | u) Qj(V | u), (5)

with categorical πφ (
∑
j πφ(j) = 1 and πφ(j) ≥ 0 ∀j).

j indexes sampling heuristics, e.g., QRAND(V | u) =∏
v∈V

Auv

Duu
corresponds to the choice of [Hamilton et al.,

2017, Markowitz et al., 2021, Ferludin et al., 2022]. Other
possible j choices are listed in §3.3.

In our construction, Qj needs-not to factorize over neigh-
bors. In particular, we do not assume i.i.d Qj(V | u) =∏
v∈V Qj(v | u). In other words, our algorithm accepts

Qj(V | u) 6=
∏
v∈V Qj(v | u) for which sampling an item

from Qj influences the subsequent probability of sampling
remaining items. This allows for expressing sophisticated
sampling heuristics that cannot be factorized per edge, for
example based on maximum coverage, mutual information
or other monotone submodular functions, a class of func-
tions widely used for data sampling and summarization. For
this class of functions, the well known Greedy algorithm
(Nemhauser and Wolsey [1978], Minoux [2005], Mirza-
soleiman et al. [2015]) produces an ordering in which every
prefix of size b (1 − 1/e)-approximates the size-b subset
of maximum objective value. Therefore, by producing an
ordering based on such greedy algorithms we can capture a
variety of data sampling methods with implicit Qj(· | u).

3.1 MIXTURE SAMPLING ALGORITHM

Subgraph sampling algorithm that mixes heuristics can be
written as:

Algorithm 2 Sample Ã with heuristics

1: Input: Seed u ∈ V; sampling budgets: [b(1), . . . , b(h)],
J sampling heuristics {Qj}j∈[J], mixture weights πφ;

2: Output: Adjacency Ã of sampled subgraph.
3: Ã← 0 // initialize empty to populate recursively
4: def recursiveNeighbors(u′, s):
5: if s > h: return
6: for each j ∈ [J ]:
7: b

(s)
j ← πφ(j | u′)b(s) // budget assigned to j

8: {vk}
b
(s)
j

k=1 ∼ Q(V | u′) // sample b(s)j neighbors
9: for each vk do

10: Ãu′,vk ← 1
11: recursiveNeighbors(vk, s+ 1)
12: recursiveNeighbors(u, 1)

Algorithm 2 is explained by-example in §3.4.

The training objective can then be written as:
min
θ,φ
L(θ, φ) = min

θ,φ
−EÃ log pθ(Y | Ã,X). (6)

Note that the parameters φ determine the generated Ã per
Algorithm 2. In the remainder of this section, we discuss pos-
sible parameterizations of πφ (§3.2), choices of Qj (§3.3),
and an approximation of Algorithm 2 that allows us to obtain
analytical gradients of Eq. 6 w.r.t. φ (§3.4), i.e.,∇φL.

3.2 PARAMETERIZING WEIGHTS πφ

We propose two versions for parameterizing πφ, each mak-
ing its own assumptions. The first version π(· | u) is in-
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dependent of how u was sampled. In this case, (e.g., the
π(· | u) is identical if u was a seed node or if it was re-
covered by any sampler j). The second version employs a
Markov assumption: π(· | u) changes depeneding on the
identity of the heuristic that gave rise to u (e.g., was u part
of the seed batch? was it sampled with heuristic j?). The
second (more general) version can be written as:

πφ(j | u is seed node) = softmax(c)j
def
= cj

(7)

πφ(j | u sampled by heuristic k) = softmax(ck)j
def
= cjk

(8)

where c, c1, c2, . . . , cJ ∈ RJ are the trainable distribution
parameters, and J denotes the number of components. In
this case sampling parameters φ are:

φ = {c, c1, c2, . . . , cJ}. (9)
When operating under the first version, πφ(j | seed u) =
πφ(j | sampled u) = c and therefore φ = {c}. In general,
N th order Markov-chain would require O(J1+N ) parame-
ters.

3.3 PARAMETERIZING COMPONENTS Qj

While component weights are trainable (§3.2), the com-
ponents Qj’s are fixed sampling heuristics, listed next.
The first four factorize on the neighbors, i.e., with Qj(V |
u) =

∏
v∈V Qj(v | u). As such, it suffices to write-down

Qj(v | u). Subsequent Qj’s do not produce independent
samples.

• Random sampler (QRAND): given node u, return subset
of its neighbors N (u) uniformly at random.

QRAND(v | u) =
∏
v∈V

Auv

Duu
(10)

• Top-degree sampler (QTOPDEG): samples neighbor with
probability increasing with its degree.

QTOPDEG(v | u) ∝ Auv log(α+ δv). (11)
Here and below, we tried α = 1 and α = 2, without
noticing any significant difference in performance. In
practice, we tried sampling with and without replace-
ment, and the results are almost identical.

• Least-degree sampler (QLOWDEG): samples neighbor
with probability decreasing with its degree.
QLOWDEG(v | u) ∝ Auv log(α+ δmax − δv), (12)

where the maximum node degree δmax = maxu∈V δu.

• PageRank (QPAGERANK): samples neighbor with proba-
bility increasing with its PageRank [Page et al., 1999].
QPAGERANK(v | u) ∝ Auv log(α+ PageRank(v)).

(13)

• Self-sampler (QSELF) that samples only itself:
QSELF(v | u) = 1 iff v = u. (14)

• Subset-based samplers, ones assigning probability to
neighbor list, rather than independently per node, in-
cluding:

QMAXCOVERX(V | u),

QMAXCOVERA(V | u),

and QMAXCOVERAX(V | u),

for choosing edge-sets with destination nodes that are
far-apart, respectively, in the feature-space, the graph
topology, or a mixture of the two. For details see the
§6.3.

Now that we have specified πφ and Qj , the next steps in-
clude determining how to obtain∇φL.

3.4 LEARNING φ WHEN SUBGRAPH SAMPLING

As formalized in Algorithm 2, tree-based subgraph sampling
typically accepts:

• Seed node u ∈ V , as discussed earlier.

• Sampling budgets b(1), b(2), · · · ∈ Z+.

The algorithm then samples b(1) of u’s neighbors, and for
each of those neighbors, sample b(2) of its neighbors, and
so on. The sampled edges are accumulated in Ã

For the sake of demonstration, consider only two samplers
[QLowDeg, QTopDeg] and a first hop sampling budget of b(1) =
20. Also, suppose that the sampling budget is split with
proportion π = c = [0.2, 0.8] (defined in Eq.7). Then, first-
hop (direct) neighbors of u can be sampled as:

sample 4=0.2(20) = c1 × b(1) ∆
= b

(1)
1 edges from QLowDeg;

sample 16=0.8(20) = c2 × b(1) ∆
= b

(1)
2 edges from QTopDeg.

In general, sampler Qj gets a first-hop budget of:

b
(1)
j = cj × b(1). (15)

Sampler Qj can double its own b(1)
j by doubling the learn-

able cj = softmax(c)j , where c ∈ φ, cf. Eq.7. Subsequently,
at the ith-hop, when sampling edges for u ∈ V (i), Qj re-
ceives budget

b
(i)
j = cjk × b(i) (16)

where k ∈ {1, . . . , J} is the index of mixture mixture
identity from which u was sampled (second version, per
§3.2).

In summary, training φ determines the partitioning of (in-
tegral3) budgets, among J samplers, which compete for
budget via softmax transformation.

3b
(i)
j ’s are not integral but one can do randomized rounding,

e.g., draw Y ∼ Bernoulli(b(i)j − bb
(i)
j c) then b

(i)
j ← bb

(i)
j +Yc.
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3.4.1 How are b(i)j utilized in GNN h?

Parameters φ influence b(i)j and therefore Ã that is con-
sumed by the GNN (§2.1), upon which L is measured. To
reason about how φ can be learned, we’d like to assess the
influence4 of b(i)j on L. One can express Ã in terms of b(i)j .

Let e(i)
j (u) be a permutation of N (u), assembled by repeat-

edly sampling from ∼ Qj(· | u). With this, we can define
nodes E(i) ⊆ N (i) sampled at depth i:

E(i) =
⋃
j∈[J]

e
(i)
j (u)

[:b
(i)
j ]

(17)

Where notation [: b
(j)
j ] selects the first b(j)j of the ordered

sequence. Entry (u, v) of the adjacency matrix can now be
defined piece-wise:

Ãuv =

{
1, if (u, v) ∈

⋃
i∈[h]E

(i)

0, otherwise.
(18)

The order of elements in e(i)
j (u) is always respected – only

the first elements are chosen.

3.4.2 Backpropagation from pθ to φ

GNN pθ is a function of Ã. The information flows from φ

to the GNN pθ as φ → {b(i)j }i,j → {E(i)}i → Ã → pθ.
Therefore, then it is natural to assess how to compute ∂L

∂φ

from ∂L
∂pθ

, e.g., by backpropagation. However, this is not
trivial. In particular, {E(i)}i appear only in the branching
condition for piecewise Ã (Eq. 18). As such, Ã is not contin-
uously differentiable w.r.t. b(i) ∈ Z+. Hence, the Jacobians{
∂A
∂c

}
c∈φ and therefore∇φL are uninformative to compute.

We derive a continuous approximation
...
A of Ã, such that

the values of
...
A are a function of b’s and therefore c’s.

Moreover,
...
A looks similar to piecewise Ã. Row Ã

(j)
u of

Eq. 18, when re-ordered by ej(u) can be plotted as a step
function, see Fig. 2. To obtain a differentiable function, we
propose to relax the stepwise selection with:

...
A

(j)
uv = 1− σ(β(rjuv − b(j)1 )), (19)

where rjuv equals the position r for which qj(u)r = v,
σ(x) = (1 + e−x)−1, and β is a sharpness hyperparameter
that we set β = 2. Re-ordering rows of

...
A

(j)
uv according to

ej(u) gives a reasonable approximation of the step function
while being continuously-differentiable w.r.t. c. See Fig. 2
for visual comparison between Eq. 18 & 19. Subsequently,
we can calculate∇φL. Constructing

...
A is detailed in Alg. 3.

4Influence should increase with ∂L
∂b

(i)
j

.
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Figure 2: Continuous Approximation. For budget b = 4,
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show our continuous approximation (Eq. 19) each dashed
line with a choice of sharpness constant β. As β increases,
the continuous approximation becomes closer to the discrete
step function.

Table 1: Datasets.

Dataset Nodes Edges

Citeseer 3,327 articles 4,732 citations
Cora 2,708 articles 5,429 citations

Pubmed 19,717 articles 44,338 citations

ogbn-arxiv 169,343 papers 1.2M citations
ogbn-products 2.5M products 61.9M co-purchases

4 EXPERIMENTAL EVALUATION

We conduct experiments using our method on five popular
node classification datasets, summarized in Table 1. We
utilize three datasets open-sourced by Yang et al. [2016]:
citeseer, cora and pubmed, partially-popularized by Kipf
and Welling [2017]. However, we use a larger training set
(we include both training and validation into training) – as
such we train our baselines. In addition, we use two datasets
by OGB [Hu et al., 2020] for node classification: ogbn-
arxiv and ogbn-products. For OGB datasets, we use the
official train:validate:test partitions.

4.1 AGAINST ADVERSARIAL EDGE SOURCES

In these experiments, we assume that we have one
QNOISE(·|u) that has uniform probability over all V , i.e.,

Table 2: Test accuracy of GNN models trained with (left)
subgraphs sampled uniformly at random, against (right)
subgraphs from clustered edge sources, per §4.2

GCN(G̃)

Dataset baseline: Ã ∼ QRAND our-§4.2: Ã ∼ Qφ
Citeseer 74.08 ± 0.47 73.73 ± 0.50

Cora 84.74 ± 0.51 85.79 ± 0.64
Pubmed 83.90 ± 0.16 85.26 ± 0.29
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Figure 3: Robust against noise edge sources. Heuristic sampling negative edges gets ignored when learning φ (see §4.1).
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Figure 4:Qφ distribution among edge clusters: eachQRAND contains about 1
5 of the edges. We freeze the sampling parameters

φ after 25% of training epochs (red dashed line). For pubmed, it is sufficient to train on only 1
5 of the edges while for

citeseer and cora we supplemented with all graph edges but sampled according to greedy algorithm for max graph coverage,
per §6.3.

Algorithm 3 Samples sparse
...
A with continuous approxi-

mation

1: Input: Seed batch: V (0) ⊆ V; sampler heuristics
{qj}j≤J ; per-step sampling budgets: [b(1), . . . , b(h)];

2: Output: Adjacency
...
A of sampled subgraph.

3: // Pair each u ∈ V (0) with producing component:
4: Ṽ (0) ← [(null, u) for u ∈ V (0)]
5: for i← 1 to S do
6: Ṽ (i) ← [ ]

7: for (k, u) in Ṽ (i−1) do
8: for j ← 1 to J do
9: for r ← 1 to bi do

10: v ← qj(u)[r]

11: Ṽ (i).append((j, v))

12: b
(i)
j ← ckj × b(i)

13:
...
Auv ←

...
Auv + 1− σ(β(r − b(j)i ))

it is very likely that v /∈ N (u) for v ∼ QNOISE(·|u). Since
QNOISE favors negative edges, we would hope that our learn-
ing algorithm is able to down-weigh QNOISE. Specifically,
we hope to learn φ = {c} with cNOISE ≈ 0.

Setup: We train GCN of [Kipf and Welling, 2017], with
training examples being subgraphs sampled according to
§3.1&§3.4, with sampling budgets b(1) = 20, b(2) = 10. We
use: {Qj}j = {QPAGERANK, QLOWDEG, QNOISE}. We attempt
Datasets: citeseer, cora, pubmed.

Discussion: We see that, as summarized in Fig. 3, subgraph

sampling parameters φ learn to ignore edges coming from
QNOISE. In all cases, cNOISE goes towards 0. We run each
experiment ten times, and plot the average Qφ through time,
shading up-to the standard deviation.

Hyperparameters: We use GCN model of [Kipf and Welling,
2017] with default hyperparameters, i.e., two GCN layers,
hidden dimension of 32, trained with dropout and Adam op-
timizer using learning rate of 0.01 (but 0.005 for pubmed).
The learning rate for φ parameters is set to 0.05.

4.2 EMPHASIZING FAVORITE EDGES

We test if our method can choose edges that are preferred
for the node classification task. Specifically, we:

1. Partition edges E into Ep
1,E

p
2,E

p
3,E

p
4,E

p
5 – we exper-

iment only with 5 partitions. The partition is based on
the features of edge endpoints (details below).

2. We instantiate QECLUSTERm for partition Ep
m with:

QECLUSTERm(v | u) =
1

|(ṽ, u) ∈ Ep
m|
1[(u, v) ∈ Ep

m],

where 1[·] is the indicator function, evaluating to 1 if
its argument is true and otherwise to 0. Our learning
algorithm should pick among the 5 edge clusters: if
φ = {c} was learned, such that, cm > c`, then, Ep

m

contains better edges than Ep
`, according to the objec-

tive function.

Partitioning algorithm: For each edge (u, v) ∈ E, calculate
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edge feature Xvu = Xuv ∈ Rd as the Hadamard product
of node features: Xuv = Xu ◦Xv. Then, we run k-means
on {Xuv}(u,v)∈E with k = 5. If k-means assigns cluster m
to feature vector Xuv , then edge (u, v) will be in Ep

m. Note
that E = ∪mEp

m and that Ep
m ∩Ep

` = ∅ for all m 6= `.

Datasets and Hyperparameters: same as §4.1.

Setup We compare two GCNs, both of them are trained
with sampling budgets b(1) = 20, b(2) = 10. The first GCN
is baseline, where training examples are subgraphs sam-
pled uniformly at random i.e., only QECLUSTER is used: given
a seed node, a random subtree is sampled by recursively
choosing from neighbors with equal probability. The sec-
ond GCN is our-§4.2, where training examples are sub-
graphs sampled according to §3.1&§3.4. For pubmed, we
use {Qj}j = {QRAND

p
m
}5m=1. For cora and citeseer, we

additionally use QMAXCOVERA, which samples edges due to
greedy algorithm, as detailed in §6.3.

Discussion: According to Table 2, we see that over-
emphasizing edges, based on the cluster of the endpoint
features, helps for two of the three datasets. In addition,
Fig. 4 summarizes the learned c ∈ φ. We see that each graph
indeed chooses some edges to be over-repeated (assigning
remainder edge sources to ≈ 0). For pubmed, we can get
reasonable results while ignoring most graph edges, i.e., φ
learns to discard all but one Ep.

5 MELD INTO DECOUPLED GNN

Many methods train node-wise multi-layer perceptron
MLP(X) : Rd → Rz mapping node features into classes,
where the trainable transformation does not use the graph.
Instead, the graph is used in a non-trainable propagation
[Wu et al., 2019, Frasca et al., 2020, Gasteiger et al., 2019a,
Duan et al., 2022]. Most recently, EnGCN [Duan et al.,
2022] proposes to run the (full-graph) propagation only a
few times during training, e.g., once every 100 epochs on
node-wise MLP. Our generative framework can be utilized
in decoupled GNNs. Since the propagation step is allowed
to consider the full graph, we define a full-graph adjacency

Table 3: Node Classification for OGBN datasets. Method
(a) use external data: text of abstract or product description,
resp., for ogbn-arxiv and ogbn-products. Methods (b) use
only provided feature vectors. Last line is ours.

Method ogbn-arxiv ogbn-products

(a) GLEM+EnGCN 79.66 ± 0.06 90.14 ± 0.12

(b) EnGCN 77.98 ± 0.07 87.98 ± 0.04
Ours: EnGCN(Ã) 82.26 ± 0.09 88.59 ± 0.07

Ã ∈ R|V |×|V |, based on §3, as:

Ãuv = Ej∼πφ [Qj(v | u)]
∆
= Ej∼πφ

[
A(j)uv

]
(20)

where A(j) reshapes Qj into a matrix.

We extend EnGCN [Duan et al., 2022] with our framework.
We use our φ-parameterized Ã instead of their proposed
propagation matrix of Â – Gasteiger et al. [2019b,a] show
other plausible choices for propagation matrix. EnGCN uses
propagation as a linear operator:

X(0) ← X; X(i+1) ← ÃX(i) (21)

Naïvely feeding X(i)’s (Eq. 21) into MLP GNN, un-
fortunately, would cast the decoupled GNNs into graph-
consuming variants, as one would have to backpropagate
through the adjacancy values to get∇φL. Nonetheless, we
maintain decoupling by considering linearity of expectation
and of the propagation operation.

X(i+1) = ÃX(i) = Ej∼Qφ
[
A(j)X

(i)
]
. (22)

We then batch-compute: A(1)X
(i−1), . . . , A(J)X

(i−1). For
learning layer (i) and node-wise MLP : Rzi → Rzi+1 , the
input features of MLP can be set to:

X(i) =
∑
j≤J

A(j)X
(i−1)cj (23)

by reading batch-computed values. Now, obtaining ∇φL
becomes trivial as c entries appear in the summation. Yet,
the graph transformation (left-multiplying by A(j)) happens
in a fixed process, maintaining decoupling.

Unfortunately, we incur a cost for increasing the size of the
latent space (linear in O(J)). However, for inference i.e.,
once φ = {c} is learned and fixed, one need only store one
vector per example.

5.1 EVALUATING OUR DECOUPLED GNNS

Datasets. OGB of Hu et al. [2020] open-source many graph
tasks. We run our methods on node classification tasks
(OGBN), specifically, homogeneous5 ones: ogbn-arxiv and
ogbn-products. Baselines. We copy baseline numbers from
the OGBN public leaderboard6. We choose compare En-
GCN variants: (a) using external data and (b) not using
external data. Table 3 summarizes the results.

Our model. we modify the code of EnGCN [Duan et al.,
2022] to import our contribution. We replace their propa-
gation operation, as described in this section.We inherit all
their hyper-parameters, as detailed in [Duan et al., 2022].

5Extending to heterogeneous settings is left as future work.
6After the UAI submission deadline, it was re-

vealed that EnGCN codebase accidently uses labels
in the validation partition: https://github.com/VITA-
Group/Large_Scale_GCN_Benchmarking/issues/5#issue-
1597789310. As such, EnGCN methods were removed from the
leaderboard.
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6 MISCELLANEOUS

6.1 COMPUTATIONAL EFFICIENCY

In our experiments, updating parameters φ introduces a
3x slowdown. To work around the slowdown, we freeze
changing the φ parameters sometime through training, e.g.,
after 1

4 ’th of the total training epochs.

6.2 REPRESENTATIONAL CAPACITY

It is worth noting learning the sampling parameters has a
higher representational capacity compared to fixed heuris-
tics. Specifically, our method should be able to recover the
sampling process of [Hamilton et al., 2017, Ying et al., 2018,
Markowitz et al., 2021, Ferludin et al., 2022] if φ learns to
assign all its mass on QRAND by learning πRAND ≈ 1.

6.3 GREEDY-BASED Q

We now sampling heuristicsQMAXCOVERX,QMAXCOVERA, and
QMAXCOVERAX. These heuristics are not sampled i.i.d. Specif-
ically, when sampling list of neighbors for node u from
QMAXCOVER*(V | u), then sampling some node k ∈ V will
influence the probability of subsequent nodes to be sampled.
In particular, sampling node k ∈ V will encourage that
subseqently-sampled nodes should be far from k.

• QMAXCOVERX: given a node, prefers neighbors with
complimentary features. Specifically, suppose sampled
nodes

Eu ∼ QMAXCOVERX(V | u) (24)

contains nodes Eu = {v1, v2, v3, . . . } ⊆ N (u), then,
with high probability, v1, v2, v3, . . . are far-apart, in the
feature space. In other words, the pairwise Euclidean
distances

||Xv −Xv′ ||, ∀(v 6= v′) ∈ Eu, (25)
are large.
While the Qj’s in §3.3, nodes can be sampled indepen-
dently, the MAXCOVERX heuristics are necessarily
set-based, i.e., the inclusion of one node affects the
probability of sampling another.

• QMAXCOVERA: prefers neighbors with complimen-
tary structural positions. Specifically, sampling
Eu ∼ QMAXCOVERA(V | u) yields edges Eu =
{v1, v2, v3, . . . } ⊆ N (u), such that, the Euclidean
distances

||Uv −Uv′ ||, ∀(v 6= v′) ∈ Eu, (26)
are large, where U is the matrix of orthonormal eigen-
vectors of Â.

• QMAXCOVERAX: prefers neighbors with complimentary
neighborhood features. Similar to the above two –

sampling Eu ∼ QMAXCOVERA(V | u) yields edges
Eu = {v1, v2, v3, . . . } ⊆ N (u), such that, the Eu-
clidean distances
||(ÂX)v − (ÂX)v′ ||, ∀(v 6= v′) ∈ Eu, (27)

are large.

The MAXCOVER heuristics prefer neighbors that increase
diversity. Sampling from QMAXCOVERX(· | u) should yield
neighbors with substantially different features. Sampling
from QMAXCOVERA(· | u) should yield neighbors Eu ⊆
N (u), such that, Eu has maximum vertex cover. Finally,
sampling from QMAXCOVERAX(· | u) should yield b neigh-
bors with substantially different neighboring features.

In general, algorithms for selecting subset that maximize
coverage are NP-hard. However, there are many greedy
approximations. Our greedy approximation is as follows:

1. (DefineH) For MAXCOVERX, let H← X. For MAX-
COVERAX, let H ← ÂX. Finally, for MAXCOVERA,
let H ← UΛ

1
2 were orthonormal matrix U contain

the eigenvectors of Â and diagonal matrix Λ contain
eigenvalues.

2. (Cluster H) Run k-means algorithm on rows of H .
3. (Round-robin) Sampling from QMAXCOVER*(E | u)

should yield target nodes that round-robin the clusters.

7 RELATED WORK

We broadly summarize methods from our directions of in-
terest: subgraph sampling and decoupled GNNs.

Subgraph Sampling: Chiang et al. [2019] partition input
graphs into subgrahs using algorithm for graph clustering
such as METIS [Karypis and Kumar, 1998]. The subgraphs
are computed once and re-used for training. Other methods
sample graphs on-the-fly. For instance, Chen et al. [2018]
sample nodes independently and an edge is only included
if both of its endpoints are sampled. Zou et al. [2019]
then propose to do conditional sampling: nodes sampled at
V (i) would influence nodes sampled at V (i+1). This condi-
tional assumption is also implied by recursive subgraph sam-
pling, such that of [Hamilton et al., 2017, Ying et al., 2018,
Markowitz et al., 2021, Ferludin et al., 2022]. While we fit
into the last mentioned models, as our sampling is also tree-
based, in addition, we learn P(v | u) for all (u, v) ∈ ∪iE(i),
as convex combination of {Qj(v | u)}j≤J . This allows
our method to perform online edge subset selection, where
subsets can be pre-computed by clustering.

Learnable sampling. Yoon et al. [2021] also propose to learn
sampling parameters using gradients. However, they assume
(the original) discrete sampling process and they learn using
reinforcement-learning policy gradients. Instead, we obtain
analytical gradients by relaxing the discrete process. Wang
et al. [2021] also trains a sampler. However, they parame-
terize their sampler in terms of features. In our case, our
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sampler mixes a number of heuristics. Our heuristics are
based on structural properties (e.g., node degree or PageR-
ank) rather than features.

Decoupled GNNs: One of the earliest decoupled GNNs is
SimpleGCN [Wu et al., 2019]. Before learning starts, graph
propagation is applied as a pre-processing step. Learning
only use the graph-transformed information but without us-
ing the graph. On the other hand, Gasteiger et al. [2019a]
also decouples the learned parameters from the graph prop-
agation, however, by applying the propagation after the
node-level model. While these two mentioned methods ap-
ply the fixed graph transformation once (after or before
node-level model), EnGCN [Duan et al., 2022] interleaves
node-level learning with graph propagation. In this work,
we modify EnGCN by replacing its fixed propagation func-
tion, by a function that conducts a variety of propagations
{A(j)} in parallel, each propagation j according to heuristic
j ∈ [J ]. We learn convex combination of precomputed J
graph-transformed features.

For space constraints, we do not discuss other directions for
scaling-up learning of GNNs, including utilizing distributed
compute [Lerer et al., 2019] or using historical embeddings
[Chen et al., 2017, Fey et al., 2021].

8 CONCLUSION

In this work we introduced a method for learning graph sam-
pling while training Graph Neural Networks (GNNs). Our
proposed method parameterizes graph sampling as a convex
combination of different heuristics. We apply our method in
two popular regimes for learning GNNs: (D.1) training on
sampled subgraphs, and (D.2) decoupled GNN: graph prop-
agation step is free from trainable parameters. For (1), we
propose a continuous approximation of the discrete process.
We evaluate our method in three scenarios. (i) our method
can learn to discard edge sources that are noisy; (ii) if edges
are clustered using their endpoint features, then our method
can learn favorite edge clusters; finally, (iii) integrating our
method with decoupled GNNs (D.2) achieves SOTA results
on ogbn-arxiv and ogbn-products.
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