
FLASH: Automating Federated Learning using CASH
(Supplementary Material)

Md Ibrahim Ibne Alam1 Koushik Kar1 Theodoros Salonidis2 Horst Samulowitz2

1Department of ECSE, Rensselaer Polytechnic Institute , Troy, NY, USA - 12180
2IBM T.J. Watson Research Center , Yorktown Heights, NY, USA - 10598

In our analysis, for simplicity we assume that the dataset (or equivalently, its distribution) D has finite discrete support. Our
results generalize when this assumption is relaxed, although the analysis in that case becomes more complex. Also, for
ease of exposition, we are going to use A ∈ (A(1), · · · , A(J)) to denote a generic Algorithm, and ∗ to denote the optimum
algorithm A∗.

Proof of Lemma 1: We define the true loss projection for an algorithm A as LP (A, an) = ℓ(A, an)+(1−an) · ℓ′(A, an),
where ℓ represents the true training loss function (assuming cross-validation), and ℓ′ its derivative. Similarly LP (A, an) is
defined as the loss projection calculated from ℓ(A, an) and computed as ℓ(A, an) + (1− an) · ℓ′(A, an). where ℓ is the loss
function computed by FLASH and ℓ′ its discrete derivative (defined later). Hence we can use Taylor series expansion on true
loss function ℓ with 0 < an, am ≤ 1, to get the following equations;

ℓ(∗, 1) = ℓ(∗, am) + (1− am) · ℓ′(∗, am)

+
1

2
(1− am)2 · ℓ′′(∗, ām),

or, ℓ(∗, 1) = LP (∗, am) +
1

2
(1− am)2 · ℓ′′(∗, ām) (3)

and, ℓ(A, 1) = ℓ(A, an) + (1− an) · ℓ′(A, an)

+
1

2
(1− an)

2 · ℓ′′(A, ān),

or, ℓ(A, 1) = LP (A, an) +
1

2
(1− an)

2 · ℓ′′(A, ān). (4)

Where am ≤ ām ≤ 1, an ≤ ān ≤ 1, ∗ is the optimum algorithm ensuring that minimized (1), and A ∈ A is any other
algorithm. We know from the definition of ℓ∗ = ℓ(∗, 1) ≤ ℓ(A, 1). Hence we can write the following using (3) and (4);

LP (∗, am) +
1

2
(1− am)2 · ℓ′′(∗, ām)

≤ LP (A, an) +
1

2
(1− an)

2 · ℓ′′(A, ān)

or, LP (∗, am) ≤ LP (A, an) +
1

2
(1− an)

2 · ℓ′′(A, ān)

or, LP (∗, am)− LP (A, an) ≤ B/2. (5)

The last line in (5) comes from the fact that ℓ′′(A, ān) < B. We recall that σ is defined in the following way,

|ℓ(A, a)− ℓ(A, a)| ≤ σ (6)

Since, ℓ is calculated at discrete points (i.e., am−1, am, ..) hence the discrete derivative of ℓ, ℓ′ is defined as

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<alamm2@rpi.edu>?Subject=Your UAI 2023 paper

ℓ(A,am)−ℓ(A,am−1)
δm

, for some value of am and δm = am − am−1. Hence we have the following using (6);

ℓ′(A, am) =
ℓ(A, am)− ℓ(A, am−1)

δm

≤ℓ(A, am) + σ − ℓ(A, am−1) + σ

δm

=
ℓ(A, am)− ℓ(A, am−1) + 2σ

δm
. (7)

Using Taylor series expansion we get,

ℓ(A, am−1) = ℓ(A, am)− δmℓ′(A, am) +
δ2m
2
ℓ′′(A, ā)

or, ℓ(A, am)− ℓ(A, am−1) = δmℓ′(A, am)− δ2m
2
ℓ′′(A, ā),

for some ā ∈ [am−1, am]. From which we get the following two inequalities;

ℓ(A, am)− ℓ(A, am−1)

δm
≤ ℓ′(A, am), (8)

and,
ℓ(A, am)− ℓ(A, am−1)

δm
≥ ℓ′(A, am)− δm

2
·B. (9)

Comparing (7) with (8) we get the following:

ℓ′(A, am) =
ℓ(A, am)− ℓ(A, am−1)

δm
≤ ℓ′(A, am) +

2σ

δm
. (10)

Hence, we can write,

LP (∗, am) = ℓ(∗, am) + (1− am) · ℓ′(∗, am)

≤ℓ(∗, am) + σ + (1− am)(ℓ′(∗, am) +
2σ

δm
)

or, LP (∗, am) ≤ LP (∗, am) + σ +
2σ

δm
. (11)

On the other hand, from the definition of LP and (10) we have,

LP (A, am) = ℓ(A, am) + (1− am)ℓ′(A, am)

≥ ℓ(A, am)− σ + (1− am) ·
(
ℓ(A, am)− ℓ(A, am)

δm

)
= ℓ(A, am)− σ

+ (1− am)

(
ℓ(A, am)− ℓ(A, am)− 2σ

δm

)
≥ ℓ(A, am)− σ + (1− am)

(
ℓ′(A, am)− δm

2
B − 2σ

δm

)
= ℓ(A, am) + (1− am)ℓ′(A, am)

− σ − (1− am)

(
δm
2
B +

2σ

δm

)
≥ LP (A, am)−

(
σ +

δm
2
B +

2σ

δm

)
. (12)

Now, we are ready to bound the value of LP (∗, am)− LP (A, am) using (11) and (12).

LP (∗, am)− LP (A, am)

≤ LP (∗, am) + σ +
2σ

δm
−

LP (A, am) + σ +
δmB

2
+

2σ

δm

=LP (∗, am)− LP (A, am) + 2σ +
4σ

δm
+

δm
2
B

≤B/2 + 2σ +
4σ

δm
+

δm
2
B [using (5)]

≤B + 2σ +
4σ

δ
. (13)

This implies that for any algorithm (A), the LP (A, am) cannot be less LP (∗, am) by a value greater than B + 2σ + 4σ
δ .

Thus, if B + 2σ + 4σ
δ ≤ ∆, it ensures the training of the optimum algorithm (∗), which proves Lemma 1.

Proof of Theorem 2: Let A† be the Algorithm chosen by the FLASH, and ∗ is the optimum algorithm. We know from
Lemma 1 that if B + 2σ + 4σ

δ , then ∗ will be in the final choice of algorithms alongside A† (when a = 1). Since, A† was
chosen by FLASH instead of ∗,

ℓ(A†, 1) ≤ ℓ(∗, 1). (14)

Since, ℓ(A†, 1) ≥ ℓ(∗, 1), hence we need to bound the value of ℓ(A†, 1)− ℓ(∗, 1) to prove Theorem 2.

ℓ(A†, 1)− ℓ(∗, 1)
=ℓ(A†, 1)− ℓ(A†, 1) + ℓ(A†, 1)− ℓ(∗, 1)
≤σ + ℓ(A†, 1)− ℓ(∗, 1)
=σ + ℓ(∗, 1)− ℓ(∗, 1) [using (14)]
≤σ + σ = 2σ. (15)

In the calculation above, at the third line from the top, we have bounded ℓ(A†, 1)− ℓ(A†, 1) by σ which is true for all cases.
However, for the case of RM and LKBM , since A† is chosen over ∗ in the revalidation step, ℓ(A†, 1) ≤ ℓ(∗, 1) = ℓ(∗, 1).
Hence, the bound in (15) reduces to σ from 2σ for those two FL-HPO methods.

Proof of Theorem 3: Consider any round n is which an Algorithm A is allocated additional data for training. Since,
∆ > B + 2σ + 4σ

δ , the optimum algorithm ∗ is included for training in that round as well. We use (11) and (12) to get the
following upper bound for LP (A, an)− LP (∗, am),

LP (A, an)− LP (∗, am)

≤LP (A, an) + σ +
δnB

2
+

2σ

δn
− LP (∗, am) + σ +

2σ

δm

=LP (A, an)− LP (∗, am) + 2σ +
2σ

δn
+

2σ

δm
+

δnB

2
.

≤LP (A, an)− LP (∗, am) + 2σ +
4σ

δ
+

B

2
. (16)

Let O the algorithm with the best LP in that round (n). Let n,m and p be the last round in which the LP values of A, ∗ and
O have been updated (n,m, p ≤ M). Then we have,

0 ≤ LP (∗, am)− LP (O, ap) ≤ ∆

and, 0 ≤ LP (A, an)− LP (O, ap). ≤ ∆

From above two inequalities we have,

LP (A, an)− LP (∗, am) ≤ ∆. (17)

Then using (3) and (4) we get,

ℓ(A, 1)− ℓ(∗, 1) = ϵA = LP (A, an)− LP (∗, am)

+
1

2
(1− an)

2 · ℓ′′(A, ān)−
1

2
(1− am)2 · ℓ′′(∗, ām)

or, LP (A, an)− LP (∗, am)

≥ ϵA − 1

2
(1− an)

2 · ℓ′′(A, ān). (18)

Now using (16) and (18), we get,

LP (A, an)− LP (∗, am) + 2σ +
4σ

δ
+

B

2

≥ ϵA − 1

2
(1− an)

2 · ℓ′′(A, ān)

or, LP (A, an)− LP (∗, am) ≥ ϵA − 2σ − 4σ

δ

− B

2
− 1

2
(1− an)

2 · ℓ′′(A, ān). (19)

To finalize the proof, we use (17) and (19) to get,

∆ ≥ ϵA − 2σ − B

2
+

4σ

δ

− 1

2
(1− an)

2 · ℓ′′(A, ān)

or,
1

2
(1− an)

2 · ℓ′′(A, ān)

≥ ϵA − 2σ − B

2
− 4σ

δ
−∆

or, (1− an)
2 ≥

ϵA − 2σ − B
2 − 4σ

δ −∆

B/2

or, an ≤ 1−

√
ϵA − 2σ − B

2 − 4σ
δ −∆

B/2
. (20)

Therefore, Algorithm A does not get any training data greater than 1 −
√

ϵA−2σ−B
2 − 4σ

δ −∆

B/2 in round n. The result in
Theorem 3 easily follows from this.

Preliminaries for Proof of Theorem 4: To prove Theorem 4, we define a new loss function (ℓ̃(A(j)
λ , D̂)) as,

ℓ̃(A
(j)
λ , D̂) =

∑
i

αi L(F(A
(j)
λ ,∪iD̂i), D̂i).

Hence, ℓ̂(A(j), D̂) = min
λ∈Λj

ℓ̃(A
(j)
λ , D̂),

where ℓ̂(A(j)
λ , D̂) is as defined in the Theoretical analysis section. We define the loss rate computed by FLASH for algorithm

A(j) and HP λ on dataset Da as ℓ(A(j)
λ ,Da). Finally, for some Algorithm A and HP λ we make the following assumptions

to prove Theorem 4,

|ℓ̃(Aλ, D̂1)− ℓ̃(Aλ, D̂2)| ≤ β′ν(D̂1, D̂2). (21)

|λ(D̂1)− λ(D̂2)| ≤ β′′ν(D̂1, D̂2). (22)

|ℓ̃(Aλ1
, D̂)− ℓ̃(Aλ2

, D̂)| ≤ β′′′|λ1 − λ2|. (23)

In (23), λ1 and λ2 are two HP settings of Algorithm A. For two different datasets D̂1 and D̂2 we use (22) and (23) to derive
another inequality which will be helpful in the proof of Theorem 4.

|ℓ̂(A, D̂1)− ℓ̂(A, D̂2)|

=|ℓ̃(Aλ∗(D̂1)
, D̂1)− ℓ̃(Aλ∗(D̂2)

, D̂2)|

≤|ℓ̃(Aλ∗(D̂1)
, D̂1)− ℓ̃(Aλ∗(D̂1)

, D̂2)|

+ |ℓ̃(Aλ∗(D̂1)
, D̂2)− ℓ̃(Aλ∗(D̂2)

, D̂2)|

≤β′ν(D̂1, D̂2) + β′′′|λ∗(D̂1)− λ∗(D̂2)|

≤β′ν(D̂1, D̂2) + β′′′β′′ν(D̂1, D̂2)

=βν(D̂1, D̂2), (24)

where β = β′ + β′′β′′′.

Proof of Theorem 4: For any algorithm A and dataset Da, let λ† as the HP setting chosen by FLASH and λ∗ as the
optimum HP setting that minimizes ℓ̃. Then from the definition of σ we have,

σ ≥ |ℓ(Aλ† ,Da)− ℓ(A, a)|

= |ℓ(Aλ† ,Da)− E
D̂a∈D̂

a min
λ

ℓ̂(Aλ, D̂
a)|

= |ℓ(Aλ† ,Da)− E
D̂a∈D̂

a ℓ̃(Aλ∗(D̂a), D̂
a)|

≤ |ℓ(Aλ† ,Da)− ℓ̃(Aλ∗(Da),D
a)|

+ |ℓ̃(Aλ∗(Da),D
a)− E

D̂a∈D̂
a ℓ̃(Aλ∗(D̂a), D̂

a)|

= |X|+ |Y |,

where we denoted the first term in | · | as X and the second term to be Y . Now, we will bound X and Y individually since
X depends on the FL-HPO variant used (as we will observe), whereas Y is independent of that. Since, Y is common for all
HPO-aggregation variants, so we start by bounding the value of Y .

Bounding |Y |: For any specific D̂a we define,

ŷ(D̂a) = ℓ̃(Aλ∗(Da),D
a)− ℓ̃(Aλ∗(D̂a), D̂

a)

= ℓ̂(A,Da)− ℓ̂(A, D̂a)

From (24), |ℓ̂(A,Da)− ℓ̂(A, D̂a)| ≤ βν(Da, D̂a), we get,

− βν(Da, D̂a) ≤ ŷ(D̂a) ≤ βν(Da, D̂a).

Taking expectation with respect to Da on all sides,

− βE
D̂aν(D

a, D̂a) ≤ E
D̂a ŷ(D̂a) ≤ βE

D̂aν(D
a, D̂a)

∴ |Y | ≤ β|E
D̂aν(D

a, D̂a)|. (25)

Note that the distance function ν(Da, D̂a) = f(D̂a) is convex in D̂a, with bounded convexity in the support of Da

(|∇2f ′′| ≤ β̂, with some constant β̂). Also, we denote the variance of D̂a as V (D̂a) with an upper bound of σ2. Then we
have,

E
D̂aν(D

a, D̂a) = E
D̂af(D̂

a)

≤ f(E(D̂a)) + β̂V (D̂a) ≤ ν(Da,Da) + β̂σ2

Hence,

|Y | ≤ β|ν(Da,Da) + β̂σ2| = βν(Da,Da) + µ, (26)

where, ββ̂σ2 = µ. (26) gives us the bound on Y . Now we proceed to bound |X|, since this bound depends on FL-HPO
variant used, we consider each variant seperately.

Bounding |X| for LBM : For LBM we know that λ† =
∑

i αiλ
†
i , where

∑
i αi = 1 and λ†

i is the best HP setting found
by HPO on client i’s data. Also, ℓ̃(Aλ†

i
,Da

i) = ℓ̃(Aλ∗
i (D

a
i)
,Da

i), where λ∗
i (D

a
i) is the HP setting optimized on Da

i data of
client i. Then we can write,

ℓ(Aλ† ,Da) =
∑
i

αiℓ̃(Aλ†
i
,Da

i)

=
∑
i

αiℓ̃(Aλ∗
i (D

a
i)
,Da

i) ≤
∑
i

αiℓ̃(Aλ∗(Da),D
a
i)

=ℓ̃(Aλ∗(Da),D
a). (27)

Hence, we have proved that ℓ̃(Aλ∗(Da),D
a) ≥ ℓ(Aλ† ,Da). Now, under the reasonable assumption that ℓ̃(Aλ,D

a) is
convex in λ, we can write,

ℓ̃(Aλ∗(Da),D
a) ≤ ℓ̃(Aλ† ,Da) ≤

∑
i

αiℓ̃(Aλ†
i
,Da). (28)

Also, since ℓ(Aλ† ,Da) =
∑

i αiℓ̃(Aλ†
i
,Da

i), using (28), we can write,

ℓ̃(Aλ∗(Da),D
a)− ℓ(Aλ† ,Da)

≤
∑
i

αi

(
ℓ̃(Aλ†

i
,Da)− ℓ̃(Aλ†

i
,Da

i)
)

≤ β′
∑
i

αiν(D
a
i ,D

a). (29)

Equation (29) upper bounds the value of ℓ̃(Aλ∗(Da),D
a)− ℓ(Aλ† ,Da), which is also shown to have lower bound of 0 (from

(27)). Hence, |X| ≤ β′ ∑
i αiν(D

a
i ,D

a), and combining this with (26), we get the bound for the LBM case in Theorem 4.

Bounding |X| for LKBM : For LKBM we know the HP setting chosen by FLASH is λ† = λ∗
i′(D

a
i), where λi′ is the HP

setting found by performing HPO at client i that gives the lowest average loss over all clients. Since there is a re-validation
process in LKBM , hence we can directly say that X = ℓ(Aλ† ,Da) − ℓ̃(Aλ∗(Da),D

a) ≥ 0, which means that at some
iteration the loss calculated by LKBM cannot be less than the optimized loss calculation overall (which could have
happened in LBM).

Now for any client i ̸= i′ we have,

ℓ̃(Aλ† ,Da
i)

≤ℓ̃(Aλ† ,Da
i′) + β′ν(Da

i ,D
a
i′) [using (21)]

≤ℓ̃(Aλ∗(Da),D
a
i′) + β′ν(Da

i ,D
a
i′)

≤ℓ̃(Aλ∗(Da),D
a
i′) + β′ max

i ̸=i′
ν(Da

i ,D
a
i′).

Hence,

ℓ(Aλ† ,Da) =
∑
i

αiℓ̃(Aλ† ,Da)

≤
∑
i

αi

(
ℓ̃(Aλ∗(Da),D

a
i′) + βmax

i ̸=i′
ν(Da

i ,D
a
i′)

)
= ℓ̃(Aλ∗(Da),D

a
i′) + βmax

i ̸=i′
ν(Da

i ,D
a
i′). (30)

The last line comes from the fact that
∑

i αi = 1. On the other hand, using (21) again we have,

ℓ̃(Aλ∗(Da),D
a)

≥ℓ̃(Aλ∗(Da),D
a
i′)− β′ν(Da,Da

i′)

≥ℓ̃(Aλ∗(Da),D
a
i′)− β′ max

i ̸=i′
ν(Da

i ,D
a
i′). (31)

Combining (30) and (31) we get,

ℓ(Aλ† ,Da)− ℓ̃(Aλ∗(Da),D
a)

= X ≤ 2β′ max
i̸=i′

ν(Da
i ,D

a
i′).

Combining this with the fact that X ≥ 0 (which we already argued), we have |X| ≤ 2β′ maxi̸=i′ ν(D
a
i ,D

a
i′). Then adding

this bound of |X| with (26), we get the bound for the LKBM case in Theorem 4.

Bounding |X| for RM : RM is very similar to FLoRA which is analyzed in Zhou et al. [2022]. The same analysis as in
Theorem 4.5 of Zhou et al. [2022] applied to our case gives,

|X| ≤ β3

∑
i

αi

[
ν(Da

i ,D
a) + γ min

k∈[K]
dj(λ,λk)

]
, (32)

for algorithm A(j). Combining this with (26), we get the bound for the RM case in Theorem 4.

Note that in Theorem 4, σ is taken to be the max of the upper bounds σ(a) over different values of the fraction a used by
FLASH, namely a ∈ [a0, · · · , am]. When the dataset D is sufficiently large, then for any a ∈ [a0, · · · , am], the datasets Da

can be assumed to have a distribution that is similar (very close) to that of D. In that case, Da and Da in the bound can
both be replaced by (closely approximated by) by D. This implies ν(Da,Da) ≈ 0. Therefore, for large datasets D, the loss
calculation error bound σ is well approximated as

σ̂ = µ+


β1

∑
i αi ν(Di,D) (LBM)

β2 maxi,i′ ν(Di,Di′) (LKBM)

β3

∑
i αi ν(Di,D) + γD̄ (RM)

which is only in terms of the full training dataset D.

References

Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samulowitz, and Heiko Ludwig. Single-shot
hyper-parameter optimization for federated learning: A general algorithm and analysis. arXiv preprint arXiv:2202.08338,
2022. doi: 10.48550/ARXIV.2202.08338. URL https://arxiv.org/abs/2202.08338.

https://arxiv.org/abs/2202.08338

