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Abstract

In this paper, we present FLASH, a framework
which addresses for the first time the central Au-
toML problem of Combined Algorithm Selection
and HyperParameter (HP) Optimization (CASH)
in the context of Federated Learning (FL).
To limit training cost, FLASH incrementally adapts
the set of algorithms to train based on their pro-
jected loss rates, while supporting decentralized
(federated) implementation of the embedded hyper-
parameter optimization (HPO), model selection
and loss calculation problems. We provide a theo-
retical analysis of the training and validation loss
under FLASH, and their tradeoff with the train-
ing cost measured as the data wasted in training
sub-optimal algorithms. The bounds depend on the
degree of dissimilarity between the datasets of the
clients, a result of FL restriction that client datasets
remain private. Through extensive experimental
investigation on several datasets, we evaluate three
variants of FLASH, and show that FLASH per-
forms close to centralized CASH methods.

1 INTRODUCTION

Motivation. Federated learning (FL) is a distributed learn-
ing framework that enables training a model from decentral-
ized data located at client sites, without the data ever leaving
the clients. Compared to a centralized model, in which train-
ing requires all the data to be transmitted to and stored in
a central location (e.g., a data center), FL has the benefits
of preserving data privacy while avoiding transmission of
large volumes of raw data from the client sites.

FL has two key challenges; first, the data across clients
can be highly heterogeneous. Second, the communication
overhead can be prohibitive during training as model pa-
rameters are exchanged in multiple global rounds between

the clients and an aggregation server. Therefore there has
been significant research effort on FL techniques that re-
duce communication overhead during model training. Such
techniques typically assume that the clients agree on a com-
mon algorithm and hyperparameters (HPs) before training
occurs, i.e. do not provide AutoML capabilities.

Recently the problem of HyperParameter Optimization
(HPO) in FL has been addressed in several works. HPO
in FL is an important problem as the choice of HPs can
dramatically affect FL system performance. The FL setting
poses unique challenges in addressing HPO, due to non-iid
data, limited processing power at clients, and function eval-
uations for an HP set being much more communication and
computation intensive than the centralized setting because
they require FL training. Solving the algorithm selection
along with HPO (popularly known as CASH) in an FL set-
ting inherits the aforementioned challenges of HPO in FL
and adds the additional layer of complexity of algorithm
selection, where different algorithms have different perfor-
mance as well as different HP sets. In this paper, we propose
(for the first time) a way to solve the CASH problem for
an FL setting without performing any FL in the solution
process (i.e., only using FL after solving CASH). In prior
literature, the CASH problem has only been addressed in
the centralized setting, and most approaches treat it as a
more complex HPO problem that merges the HPs of all
algorithms and adds the algorithm type as a new HP. Ex-
tending the HPO algorithms to use this approach would not
be adequate due to the explosion on HP dimensionality and
computation complexity; in addition it is not evident how
to aggregate these new CASH HPs to an single optimal HP
set.

FLASH overview. In this paper, we propose and evaluate
FLASH, a framework which solves the CASH problem in
an FL setting by viewing it as bi-level optimization problem:
the algorithm selection problem being solved at the outer
level requires solving the embedded HPO problem at the
inner level. FLASH solves the algorithm selection problem
using a multi-fidelity approach, where, for each algorithm,
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the inner level HPO method (which we term FL-HPO) runs
on increasing subsets of the clients’ data, providing data
increments to a subset of best performing algorithms ac-
cording to a projected loss curve and subject to a tolerance
threshold. This avoids wasting training resources on poorly
performing algorithms. We analyze and evaluate the FLASH
framework under three FL-HPO methods: Local Best Model
(LBM), Local K-Best Model (LKBM), and Regression based
Model (RM). These FL-HPO approaches allow the clients
to run HPO separately on their private data, but differ in
how the results from the individual clients are aggregated
at the central server and further re-validated at the clients,
before the final HP choice is determined for the algorithm
choice made at the outer level algorithm selection problem.
Instead of expensive FL training, each HP configuration
is evaluated using an approximation metric modeled as a
linear combination of the clients’ local loss functions. This
in turn enables FLASH to reduce communication and com-
putation overhead by first performing CASH search for the
best algorithm-hyperparameter (Alg-HP) configuration in
only a few rounds of communication between the clients and
the central server, and then performing a single FL training
to reach the final model for this configuration.

We provide a theoretical analysis of the worst-case loss per-
formance and the wasted training cost measured as the data
allocated for training sub-optimal algorithms. The perfor-
mance bounds are expressed in terms of the dissimilarity
between the client dataset distributions and other key param-
eters. Our extensive experimental study investigates these
trade-offs and shows that FLASH can achieve a performance
that is close to that of centralized CASH.

Summary of contributions. To summarize, the key novel
contributions of this work are as follows.

• We present FLASH, a framework that solves for the
first time the CASH problem in a FL setting by de-
composing it into algorithm selection (outer level) and
FL-HPO (inner level) problems. FLASH minimizes
communication and communication overhead during
CASH search using a multi-fidelity incremental data
approach at the algorithm selection level and by avoid-
ing expensive FL training-based evaluations at the FL-
HPO level. Only a single FL training is needed for the
Alg-HP configuration found during CASH search.

• We provide a theoretical analysis of the convergence
and worst-case loss performance of all three FLASH
variants, and the wasted training cost measured as
the data allocated for training sub-optimal algorithms.
These performance bounds are expressed in terms of
the dissimilarity between the client dataset distribu-
tions and other key parameters.

• We provide numerical evaluation of FLASH on eight
large data sets with seven algorithm choices, for all
three FL-HPO variants and several baseline approaches.
We compare the accuracy and training cost for these

variants, and the performance effects of some of the
parameter choices and options that FLASH provides.

2 RELATED WORK

FL Training. A large number of optimization techniques
have been devised to address the communication and compu-
tation overhead during FL training Li et al. [2020a]. These
techniques assume that algorithm and HPs are known. Since
FLASH decouples CASH search from FL training, these
techniques can be viewed as complementary and could be
applied during the FL training after CASH search.

Centralized CASH approaches. A popular approach is to
view the CASH problem as an extended HPO problem by
merging the HPs of all algorithms and introducing the algo-
rithm type as a new HP Komer et al. [2014], Kotthoff et al.
[2017] . Then, iterative Bayesian Optimization methods
(BO) for HPO are used to solve this HPO problem Shahriari
et al. [2015]. BO avoids expensive model training/validation
evaluations by estimating the shape of the loss landscape
with a surrogate model and suggesting the HP configuration
to be evaluated in the next iteration. A major challenge is
that the explosion on the HP space introduced by CASH
limits the efficiency of BO. Existing solutions include us-
ing different surrogate models (random forests Lindauer
et al. [2022], trees Olson and Moore [2016]), combining
BO with Hyperband Li et al. [2017](a bandit strategy that
dynamically allocates resources to a set of random configu-
rations and uses successive halving Jamieson and Talwalkar
[2016] to stop poorly performing configurations) Falkner
et al. [2018], and multi-fidelity optimization which uses
subsets of the data to perform and project on faster training-
based evaluations Klein et al. [2017]. Apart from treatment
as HPO problem some recent approaches have used rein-
forcement learning Efimova et al. [2017], adaptive allocation
of HPO iterations to algorithms Li et al. [2020b], and al-
ternating direction method of multipliers Liu et al. [2020].
Implementing these approaches to an FL setting directly can
be computation and communication exhaustive.

HPO approaches for FL. Most HPO approaches for
FL focuses on finding local client HPs such as learning
rates [Koskela and Honkela, 2019, Mostafa, 2019, Reddi
et al., 2020], number of local SGD iterations [Wang et al.,
2019] or global HPs common to all clients such as network
architectures [He et al., 2020, Garg et al., 2020, Xu et al.,
2020], for SGD training algorithms and deep neural net-
works (DNNs). Fedex [Khodak et al., 2020, 2021] uses the
NAS technique of weight sharing combined with successive
halving to tune local HPs at clients to build personalized
models. FLoRA Zhou et al. [2022] extends the above works
beyond SGD/DNNs to any training algorithm and provides
a framework for tuning global HPs. HPO algorithms for FL
cannot apply the approach of viewing CASH as an HPO
problem: the exploded HP search space would be too vast for
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each client (which is more processing limited than server)
to execute CASH. Furthermore, each client would result in
a different Alg-HP configuration and it is not evident how to
aggregate this information to a single Alg-HP configuration.
In contrast, FLASH addresses this problem using an outer
algorithm selection layer and an inner HPO layer, which are
solved in a decentralized manner.

3 CASH FORMULATION IN FL

We first define the CASH problem in an FL setting. Similar
to the standard CASH problem considered in a centralized
setting Thornton et al. [2013], Zöller and Huber [2021],
we are given a set of algorithms A = (A(1), · · · , A(J)),
where each algorithm A(j) is associated with hyperparam-
eters (HPs) that belong to domain Λ(j). Each algorithm
choice A(j) and HP setting λ ∈ Λ(j), compactly written
as A(j)

λ , is associated with a model class W(j)
λ , from which

a model (parameter vector) w ∈ W
(j)
λ must be chosen so

as to minimize a predictive loss function L(w,D′) over a
validation dataset D′.

In an FL setting McMahan et al. [2017], Yang et al. [2019],
the training dataset D is partitioned into several subsets
Di, i ∈ C that are owned individually by a set of N = |C|
clients. Thus D = ∪i∈CDi. We assume that Di is private to
client i, and cannot be shared or aggregated due to privacy
or complexity reasons. Given an algorithm and HP choice,
A

(j)
λ , an FL algorithm F aims to determine a modelw using

the training dataset, F(A
(j)
λ ,∪iDi) −→ w ∈W

(j)
λ , where

the training dataset D is written as ∪iDi to emphasize its
distributed (partitioned) nature. Usually,w is chosen to mini-
mize the training error, modeled with the given loss function
L but computed over the training dataset D. That is, the FL
algorithm F typically aims to minimize L(w,∪iDi) over
w ∈W

(j)
λ , using iterative methods that involve local model

training at the individual clients (using their private datasets)
and sharing information on models and their accuracies (but
not data) with a central aggregator.

Although not necessary for the validity of our analysis or
results, for ease of exposition we assume that the validation
dataset D′ is partitioned across the clients as well. Thus
D′ = ∪iD′i, where D′i is the validation dataset of client i.
Then given the underlying FL algorithm F for finding the
model (for any Alg-HP setting), the CASH problem for FL
involves finding A?λ? that minimizes a global loss function,
computed as the aggregation of loss functions at the clients
(over their validation datasets)

A?λ? = arg min
A(j)∈A,λ∈Λ(j)

∑
i

αi L(F(A
(j)
λ ,∪iDi),D

′
i), (1)

where αi are appropriately defined client weights, such as
αi = 1

N or αi = |Di|
|D| , and the FL function (F) also uses

these weights for computing the loss in the training process.

While solving this CASH problem, we seek to: (1) adhere to
the core FL requirement that the datasets Di remain private;
(2) minimize the number of communication rounds between
the server and the clients, including the rounds needed by
the federated learning (model training) algorithm F. The
development of the FLASH framework, described next, is
guided by these practical requirements.

4 FLASH FRAMEWORK

Even in a centralized setting, solving the CASH problem of
finding the best Alg-HP pair A?λ? is computationally expen-
sive due the large number (set) of Alg-HP combinations over
which the loss function must be minimized. This is more
complex (i.e., communication intensive) in an FL setting,
as the loss evaluation for any specific A(j)

λ requires solving
the underlying FL (model training) problem that may take
multiple (possibly many) rounds of communication between
the clients and the central server. To address this complexity
issue, FLASH adopts three broad principles or approxima-
tions, as listed below. These approximations introduce a
degree of sub-optimality in the solving the CASH problem
in FL, which is quantified through our theoretical analysis
in the next section.

Firstly, in FLASH the global loss for any A(j)
λ setting is

computed by aggregating the losses computed at the clients
on their individual datasets. In other words, in comparing
the Alg-HP settings in FLASH, the loss function in FLASH
(compare with (1)) is calculated as∑

i

αi L(F(A
(j)
λ ,Di),D

′
i). (2)

We note that ∪iDi within the model training function F in
(1) is replaced by Di in (2). This implies that in FLASH,
model training (and therefore loss computation) happens
locally in each client, avoiding the communication-intensive
procedure of computing the global model through FL. This
allows FLASH to compute the global loss function (albeit
approximately), for a given A(j)

λ and training dataset, in a
single round of communication.

Secondly, FLASH divides up the CASH problem in FL into
two levels (see Algorithm 1): the outer level (‘for’ loop
in Step 2) which requires finding the optimal algorithm
A(j) ∈ A (for their best HP setting), and the inner level
problem that requires finding the best HP λ ∈ Λ(j) for any
given A(j). However, finding the best (global) HP λ for a
givenA(j), even for the separable loss function in (2), can be
computation and communicative intensive in an FL setting.
For this reason, FLASH approximates it using decentralized
FL-HPO approaches (Step 9 of Algorithm 1, described later
in this section) that work by aggregating the HPs (and their
corresponding loss values) computed/validated separately
by the clients on their individual datasets.
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Finally, since training all algorithms on entire client datasets
could be wasteful (particularly when the client datasets are
large, or there are a large number of algorithm choices),
FLASH allocates training data to the algorithms incre-
mentally, focusing only the best performing algorithms
at any time. More specifically, FLASH works in rounds,
i.e., 0, 1, 2, ...,M (Step 2 in Algorithm 1), and keeps a
running set of best performing algorithms Ã ⊆ A that
it updates after each round. In round m, FLASH evalu-
ates the training loss on fraction am of the data (randomly
chosen) at each client (by calling Algorithm 2 in Step 9),
where 0 < a0 < a1 < . . . < aM = 1, and projects
the loss curve to the entire data set, in a manner simi-
lar to that described in some of the prior work on cen-
tralized algorithm selection Sabharwal et al. [2016], Li
et al. [2020b]. More precisely, denoting `(A(j), am) as
the loss rate for algorithm A(j) calculated in round m by
FLASH, the loss projection (LP ) for A(j) is computed by
linearly extrapolating `(A(j), am) from am to aM = 1,
i.e. LP (A(j)) = `(A(j), am) + (1 − am) · `′(A(j), am)
(Step 11). Here, `′(A(j), am) is an estimate of the deriva-
tive of the loss rate curve based on the loss rates cal-
culated by FLASH so far, `(A(j), a′m),m′ ≤ m. Also,
LP ∗(am) = minj LP (A(j), am) is the minimum projected
loss computed at stepm for allA(j) (Step 6). Then for a cho-
sen tolerance factor ∆ (an input parameter), in any round
FLASH selects all algorithms (for training in the next round)
whose projected loss is within ∆ of the best projected loss in
that round (Step 6). Note that to calculate the loss projection
(LP ) for each algorithm at least two values (m = 2) are
needed. However, due to the small (fractional) datasets used
in the initial steps, m = 2 may lead to a very noisy loss
projection. Hence, we chose to go up to 3 iterations (m = 3)
to estimate the initial LP of all algorithms (Steps 3 to 4) and
start choosing algorithms (to allocate training data to) from
m = 4.

Computing the loss function on fraction am of the training
dataset for any algorithm A(j) requires finding the optimum
HP λ ∈ Λ(j) for that dataset. Since this dataset is spread
across the clients, this optimization in done in a federated
manner, by aggregating (at the central server) the HPs and
corresponding losses by running per-client HPOs. This is
referred to as FL-HPO in Algorithm 1 (Step 9), and is de-
scribed below.

FLASH FL-HPO ALGORITHM

Our FL-HPO method is summarized by Algorithm 2. It
provides a way to compute the best HP for a given al-
gorithm A(j) and data size fraction a in a decentralized
manner and can be implemented easily in any FL plat-
form. There are three variants of our FL-HPO method called
LBM,LKBM,RM ; the main difference among them is
how they aggregate local HPs computed by the clients to

Algorithm 1 FLASH

1: Input: Set of all algorithms A, tolerance parameter ∆.
2: for m = 0, 1, . . . ,M do
3: if m < 4 then
4: Ã= A.
5: else
6: Ã = [Algorithms for which LP (A(j), am−1) −

LP ∗(am−1) ≤ ∆].
7: end if
8: for each algorithm A(j) ∈ Ã do
9: Call FL-HPO(A(j), am) to get best HP

λ(A(j), am) and its loss `(A(j), am).
10: Store the best (HP, loss) pair.
11: Update LP of the algorithm: LP (A(j), am) =

`(A(j), am) + (1− am) · `(A
(j),am)−`(A(j),am−1)

am−am−1
.

12: end for
13: LP ∗(am) = minj LP (A(j), am)
14: end for
15: Set A† = argminA(j)`(A(j), aM ) algorithm with min-

imum loss in the last iteration, and λ† = λ(A†, aM ), its
best HP.

16: Output: A†, λ†.

find a globally optimal HP.

Initially, when the FL-HPO method (Algorithm 2) is called,
each client i creates a subset of its dataset by sampling a
fraction a of its rows (Step 1). Then it runs locally an HPO
algorithm (e.g. HyperOpt) on this subset for a given number
of iterations (HPOiter). Each iteration evaluates an HP on
the subset using k-fold cross-validation and yields a loss
value Liter. A set of HPs and their loss values explored by
HPO is then communicated to the server by the client as
(HP, loss) pairs. Then the server aggregates the HPs and
yields a set of candidate global HPs using one of the three
variants described as follows (Step 2):

Local Best Model (LBM): In LBM, each client sends its
best (HP, loss) pair to the server. The aggregator computes
the global HP set by performing max-voting to categorical
HP coordinates (ties broken randomly) and averaging the
numerical HP coordinates across the clients’ HP sets.

Local K-Best Model (LKBM): In LKBM , each client
sends its K-best (HP,loss) pairs explored by its HPO to
the server. Then the server sends these K × N HP pairs
as candidate global HPs to all clients for evaluation (each
client will evaluate the K-best HPs of the others).

Regression based Model (RM): In RM , each client sends
all (HP,loss) pairs explored by its HPO to the server. Then
the server uses all these pairs to train a regressor model (we
used Random Forest). After training, the regressor model, is
used to compute the predicted losses for a large number of
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Algorithm 2 FL-HPO (A(j), a)

1: Run Local HPO: At each client i, run HPO on a frac-
tion of its dataset, and send the best HP(s) and corre-
sponding loss(es) (Liter) to the aggregator.

2: Aggregate Results: Aggregate the results using one of
the following methods:

3:

LBM: Calculate HP by max-voting or averaging
the best HP setting of each client.

LKBM: Take the union of the top K HP settings
of each client for re-evaluation.

RM: Perform regression using κ HPs (and their
losses) collected per client to generate top
K HP settings for re-evaluation.

4: Re-Evaluation (LKBM and RM only): Send the HP
setting candidates back to clients for re-evaluation.

5: Final Aggregation (LKBM and RM only): Average the
re-validated HP settings and corresponding losses.

6: Output: HP λ ∈ Λ(j) and corresponding loss value.

HP settings (generated randomly), and the top-10 perform-
ing ones are kept. These HPs form the global HP set are sent
to the clients for re-evaluation. RM is similar to FLoRA, the
FL-HPO approach presented in Zhou et al. [2022], but with
the additional re-evaluation step.

After the candidate set of global HP sets are determined
(from Step 2), these sets are sent to the clients for re-
evaluation. The clients evaluate them using k-fold cross-
validation on their data subsets and send back to the server
the global HP sets and their corresponding loss values (Step
4). Finally, the server averages the losses of each global HP
set sent by the clients and selects the global HP set with the
minimum average loss (Step 5). It is to be noted that Step
4 and 5 are only executed for LKBM and RM variants,
whereas the global best HP is found at step 3 for the LBM
variant. In other words, in LBM the HPs are computed by
just combining the best HPs provided by the clients, i.e.,
the server does not send any HP(s) back to the clients for
re-validation. This makes LBM simpler, but as we will see
later in Section 6, it results in a slightly worse performance
then the other two variants.

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the loss
optimality and training cost of FLASH; proofs of the results
are included in the Supplementary Material (Alam et al.
[2023]).

Preliminaries. Let Da represent a dataset comprising of
a fraction of the training data, and Da

i the corresponding
per-client datasets; from Algorithm 1, recall that a varies as
a0, a1, · · · , aM . For a given algorithm A(j), let `(A(j), a)
represent the true training loss for algorithm A(j) when

using a fraction of the data. Since this training loss depends
on how the dataset Da is chosen, the true training loss can
be estimated by averaging over the losses computed over all
possible datasets Da, denoted by Da = {Da ⊆ D, |Da| =
a|D|}. Therefore, from (1), `(A(j), a) can be expressed as,

`(A(j), a) = EDa∈Da min
λ∈Λ(j)

∑
i

αi L(F(A
(j)
λ ,∪iD

a
i ),Da

i ).

From (1), note that D′i is replaced by Da
i , since `(·, a) de-

notes the training cost on a fraction of the dataset.

Assuming that all dataset sizes |Da
i | are sufficiently large,

and cross-validation is considered, it is reasonable to as-
sume that the true loss function is smooth and convex in
a (since loss functions are usually convex with respect to
training data). We further assume that ` has bounded second
derivatives, i.e., `′′(A(j), a) ≤ B, ∀a,∀A(j).

Let `(A(j), a) represent the training loss computed for al-
gorithm A(j) under FLASH, when using a fraction of the
data. Note that ` will in general differ from the true train-
ing loss ` for several reasons: (i) The FL-HPO algorithm
may calculate the HP sub-optimally; (ii) `(A(j), a) may
be calculated over one (or a few) datasets Da ∈ Da, in-
stead of averaging over all possible datasets in Da. Let
σ represent the maximum difference between `(A(j), a)
and `(A(j), a), i.e., |`(A(j), a)−`(A(j), a)| ≤ σ, ∀a,∀A(j).
The value of σ depends on which of the three FL-HPO
variants is used, and is provided later in this section. Fi-
nally, let δ be the minimum difference between the am, i.e.,
δ = min{a0,minm∈{1,··· ,M}(am − am−1)}.

Loss Optimality Analysis Let `∗ be the minimum train-
ing loss achievable, i.e., the minimum value of `(A(j), 1)
across all algorithms A(j) ∈ A. In the following lemma,
which is key to bounding loss performance and training cost
of FLASH, the optimum algorithm refers to the one that
attains the minimum training loss `∗.

Lemma 1. If ∆ > B+2σ+ 4σ
δ , FLASH ensures the training

of the optimum algorithm (that attains `∗) in every iteration
m = {0, · · · ,M}.

Lemma 1 quantifies how large the tolerance parameter ∆
needs to be so that the optimum algorithm is allocated data
in every round. This leads to the following result, which
shows in terms of training loss, FLASH can be sub-optimal
by at most 2σ.

Theorem 2. If ∆ > B + 2σ + 4σ
δ , then the Alg-HP pair

chosen by FLASH attains a training loss that is within σ
(for LKBM and RM ) and 2σ (for LBM ) of the minimum
training loss, `∗.

Training Cost Analysis Next we try to bound the degree
of wasteful training, measured by the amount of training
data allocated to sub-optimal algorithms. Let εj denotes how
sub-optimal algorithm A(j) is, in terms of the training loss,
i.e., εj = `(A(j), 1)− `∗.

49



Theorem 3. If εj ≤ B
2 + 2σ + 4σ

δ + ∆, then algorithm
A(j) receives the full dataset for training under FLASH;
otherwise, the fraction of the training data allocated in
rounds m ≥ 4 by FLASH to any algorithm A(j) is no more

than max
{

0, 1−
√

εj−B/2−2σ−4σ/δ−∆
B/2

}
.

Theorem 3 implies that the algorithms whose true training
loss is within (B2 +2σ+ 4σ

δ +∆) of `∗ receives full training;
algorithms whose true training loss is beyond (B + 2σ +
4σ
δ + ∆) of `∗ do not receive any training data at all (except

in the initial 3 rounds when all algorithms are trained). If
their true training loss is within these two limits, then those
sub-optimal algorithm incurs a training cost that decreases
monotonically with εj .

Bounding the Loss Calculation Error We now proceed
to bound σ, as defined earlier, by computing an upper bound
on |`(A(j), a)− `(A(j), a)| over all A(j), a values. To cap-
ture how the training loss rate for a given algorithm A(j)

varies with the distribution of the training dataset D̂, we
define loss function l̂(A(j), D̂) as

ˆ̀(A(j), D̂) = min
λ∈Λ(j)

∑
i

αi L(F(A
(j)
λ ,∪iD̂i), D̂i).

For any algorithm A(j), and any two training datasets
D̂1, D̂2, we assume that ˆ̀ satisfies |ˆ̀(A(j), D̂1) −
ˆ̀(A(j), D̃2)| ≤ β · ν(D̂1, D̂2), for some scalar constant
β, with ν being 1-Wasserstein distance measure between
the distributions of the two training datasets D̂1, D̂2. Fur-
ther, let Da denote the expectation of the distributions of all
the datasets in Da. Let dj(·, ·) denote the 1-norm distance
metric in Λ(j), the hyperparameter space of A(j). Further,
let λik, k ∈ [k] = {1, · · · , κ} denote the κ HP choices of
client i in RM. Define Dj =

∑
i αi mink∈[κ] dj(λ,λ

i
k)],

where mink∈[κ] dj(λ,λ
i
k)] determines the worst case dis-

tance of any HP in the space Λ(j) from the closest initial HP
chosen by client i. Let D̄ be an upper bound on Dj∀j.

The upper bound on σ depends on which FLASH variant is
being used, and can be stated as follows.

Theorem 4. For the training dataset Da, the loss calcula-
tion error for any algorithm A(j) is upper-bounded by σ(a),
given as σ(a) = β0 ν(Da,Da) + σ̂(a), where

σ̂(a) =


β1

∑
i αi ν(Da

i ,D
a) (LBM)

β2 maxi,i′ ν(Da
i ,D

a
i′) (LKBM)

β3

∑
i αi ν(Da

i ,D
a) + γD̄ (RM)

for appropriately defined scalar constants β0, β1, β2, β3,
and γ. Then σ is given by σ = maxa∈[a0,··· ,am] σ(a).

In the above results, LKBM has been analyzed for the con-
servative case of K = 1. Note that the bound for RM de-
pends on κ (through D̄), the number of initial HPs chosen

Table 1: Comparison of CASH-D, CASH-O and Auto-SKL

DataSet CASH-D CASH-O Auto-SKL
EEG - Eye 93.10 94.05 97.42
Electricity 91.04 93.51 93.24
Eye Movement 69.87 73.73 75.58
Diabetic Data 53.36 56.79 51.82
Connect - 4 72.97 75.54 76.01
Higgs 72.18 72.56 72.83
Magic Telescope 86.13 86.66 85.47
Default of Credit 73.91 75.51 70.61

by each client, as it determines the accuracy of the HPO.
The bounds are not directly comparable between the three
FL-HPO models as the constants β1, β2, β3 can be differ-
ent. However, the key takeaway from the bounds is that the
loss calculation errors (and therefore the overall loss perfor-
mance bounds as computed by Theorem 2) depend on the
dissimilarity between the client datasets. This results from
the fact that in these FL-HPO approaches, the HPs (losses)
are optimized (calculated) on the individual client datasets
and then aggregated, instead of being computed globally.

6 EMPIRICAL EVALUATION

Dataset Selection: We initially selected 35 datasets (from
OpenML Vanschoren et al. [2013]) with more than 10000
data-samples (the dataset sizes ranged from about 11k to
about 100k). We split the datasets in a training part and vali-
dation part. We trained models using the training part and
used accuracy on the validation part as performance metric.
We considered seven well performing algorithms: Random
Forest, Decision Tree, Extra Tree, Logistic Regression, XGB,
LGBM and MLP with well defined HP space for simulation.
We define CASH-D and CASH-O as the validation accura-
cies found from the best performing algorithm (in terms of
training accuracy) using default HP settings of scikit-learn
Pedregosa et al. [2011] and with the optimized HP setting
found through HPO, respectively.

As expected, CASH-O attained better accuracy than CASH-
D. However, 23 out of the 35 datasets showed very minor
improvement indicating that HPO does not yield much gain
over the default HPs. However, we observed that the al-
gorithm choice did have a significant impact on the per-
formance. From the remaining 12 datasets we selected 8
datasets (name and accuracies in Table 1) where CASH-O
demonstrated higher gains and are diverse in terms of num-
ber of examples and features. In Table 1 we also provide
the accuracy values attained by centrally solving the CASH
problem with auto-sklearn (Auto-SKL). The higher accura-
cies attained by Auto-SKL compared to CASH-O in some
cases is largely due to the fact that Auto-SKL spans a much
larger algorithm set and HP space.
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Figure 1: RI of FLASH compared to CASH-D

Baselines and Evaluation Metric: CASH-D and CASH-
O are used as the performance evaluation baselines for
FLASH for the 8 datasets that we selected. Let us de-
fine PD and P∗ as the performance (accuracy) of CASH-
D and CASH-O respectively for some dataset. For that
same dataset if FLASH attains accuracy P , we define rel-
ative improvement with respect to CASH-D (CASH-O) as
RID (RI∗, respectively), calculated as P−PD

PD
× 100% (

P−P∗
P∗
× 100%, respectively). The RI reflects how much %

improvement is achieved by FLASH compared to the cen-
tralized baselines. A negative RI value means that FLASH
is performing worse than the baseline.

Implementation: FLASH is implemented with two ma-
jor loops (Algorithm 1), where the outer loop performs the
algorithm selection and the inner loop performs FL-HPO
(Algorithm 2). For each of the 8 datasets we selected, the
generation of the client training and validation datasets was
done as follows: first the dataset was randomly divided in N
subsets, one for each client. Then, each client’s dataset was
divided to training and validation parts with a ratio of 70-30
using stratified sampling on target class. Performance was
measured as the average validation accuracy across clients.
For training and evaluations, we used Hyperopt Komer et al.
[2014], a mainstream and easily configurable HPO algo-
rithm, using 10-fold cross-validation. We also used different
data seeds (which change the client data distributions) and
different HPO seeds (which change the initial HP used by
HyperOpt. Unless otherwise specified, each experiment was
ran 25 times with at different data and HPO seeds. More-
over, the value of am in our empirical evaluation followed
a geometric progression (not necessary for the theoretical
analysis), implying am = a0 · rm. For the results in the pa-
per, we used a0 = 3.75% and a progression rate of r = 1.5.
While there can be other ways of choosing a0, a1, ..., geo-
metric progression was used because we expect the change
of the slope to slow down for larger values of m.

Comparison of different versions of FLASH: We
first perform experiments on all 3 FL-HPO approaches
(LBM,LKBM,RM ) with ∆ = 0, N = 3 clients, and
HPOiter = 50 HPO iterations. We compare the perfor-
mance of all three variants of FLASH (RM, LKBM, LBM)
using their RI with respect to the baselines (i.e., CASH-D,
CASH-O). Fig. 1 shows the value of RI when FLASH is

Figure 2: RI of FLASH compared to CASH-O

Table 2: Robustness of FLASH (Random HP setting)

Value of ∆ Avg. Error (%) Training Cost (norm.)
0 0.441 1.00

0.2 0.427 1.0095
0.4 0.358 1.0995
0.6 0.365 1.2096
0.8 0.343 1.2867
1.0 0.336 1.4394

compared to CASH-D. The improvement in performance
with FLASH is quite prominent and for some datasets RI
is as high as 5%. For ‘Higgs’ dataset the performance was
decreased for some versions of FLASH, but that is less
than 0.1%. We observe that all three variants of FLASH
perform consistently while RM usually yields the best per-
formance. This is an important finding because it shows
that FLASH which performs CASH on distributed client
datasets performs better than an approach using optimal
algorithm selection over default HPs and assuming all data
is available at a central location.

Fig. 2 depicts the RI of FLASH compared to the CASH-
O. In this case it is expected for FLASH to not yield im-
provement as CASH-O uses optimal algorithm selection
and HPO on centralized data. The small negative RI values
(up to -1.5%) indicate that FLASH is performing worse
but very close to the centralized CASH-O solution. A few
cases yield very small positive RI values (less than 0.5%)
which indicate that FLASH slightly outperforms CASH-
O, which sounds counter-intuitive. These cases arise due
to over-fitting in the CASH-O model training which cause
the depicted marginal decrease in validation accuracy. Of
course, CASH-O always performs better than FLASH in
terms of training accuracy.

Run time for all the 3 variants of FL-HPO, normalized with
respect to the average runtime of the slowest variant (RM ),
are provided in table 3, . Although FLASH RM is usu-
ally the better performing FL-HPO technique, however it
consistently takes the longest to run due to the additional
regression analysis. Also, the communication overhead for
FLASH RM and LKBM (not experimentally evaluated in
this study) are twice as of LBM due to the re-evaluation.
Moreover, the runtime for RM and LKBM tend to in-
crease more thanLBM with the increase of clients, possibly
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Table 3: Run-time comparison

# of clients RM LKBM LBM
3 1.00 0.981 0.793
5 1.00 0.985 0.778
10 1.00 0.988 0.76
20 1.00 0.992 0.751

Figure 3: Effect of # of clients (N )

because of the re-evaluation done on the former two.

We now perform an ablation study to evaluate FLASH per-
formance when ∆, N and HPOiter are varied.

Impact of Tolerance Parameter (∆): We ran FLASH
for ∆ ranging between 0 and 1. For each ∆, we performed
100 runs that included different data seed (client data dis-
tributions), HP seed (different initial Hyperopt HPs) and
HPO iterations (HPOiter). Table 2 quantifies FLASH per-
formance in terms of (%) Avg. Error and training cost. For
each ∆, the Avg. Error is computed by averaging the differ-
ence between the accuracy of each run and the best accuracy
over the 100 runs. The training cost is the ratio of the average
training time of a ∆ over the average training time of ∆ = 0
(training time increases with increased ∆), where average
is taken over the 100 runs. We see that ∆ = 0 yields Avg.
Error of 0.44%, which is very low and slightly higher than
that of the higher ∆s. Also training cost increases abruptly
for ∆ > 0.6. Thus, ∆ < 0.6 seems best for our method
and ∆ = 0 is a good value for the datasets we considered.
It should be noted that increasing ∆ ensures a larger set of
algorithms (having higher accuracy projection) to be trained
at each round (m) and therefore a lower chance of pick-
ing a sub-optimal algorithm. Hence with a higher ∆ value,
the average error decreases while the average training cost
increases.

Impact of Number of Clients: Fig. 3 depicts the RI in
performance for FLASHRM compared to CASH-D for dif-
ferent values of N . Notably, 6 of the 8 datasets showed very
consistent results, with the RI values varying over a narrow
range with variation inN . The performance decreases mono-
tonically with increasing N for Eye Movements and shows
a sharp drop at N = 20 for Diabetic data. However, upon
close inspection of Fig. 3, we do see some non-monotonic

Figure 4: Effect of HPO iterations

behavior in the performance of FLASH RM . The overall
performance of FLASH RM is impacted by factors such
as: i) the amount of data per client and ii) the number of
HP settings reported back to the central server to perform
FL-HPO. In our empirical evaluation, we divided the whole
dataset with equal data-samples per client, hence with larger
N each client had fewer data-samples. Usually, less data
per client leads to worse loss estimates, whereas with more
HP settings reported (due to a larger number of clients),
FLASH–RM is able to come up with better HP settings.
Thus, there are two opposing forces in play here as we in-
creaseN , and it is difficult to identify under what conditions
one factor would dominate the other.

Impact of Number of HPO iterations: The HPOiter
was varied from 1 to 50 on each client’s dataset, and for
FLASHRM the accuracy values are plotted against number
of iteration in Figure 4. We observe that accuracy in general
increases when HPOiter goes from 1 to 10 for FLASH
RM (it takes a few more iterations for LBM and LKBM ),
after which it becomes almost flat (or increases slowly).
Reaching the optimal solution in a few iterations justifies
the use of the three proposed FL-HPO algorithms, especially
in the case where HPO iterations at the clients are compute-
intensive.

Accuracy projections with training data: To get more
insight on how FLASH works, the projection of accuracy
(analogous to the loss projection) for a specific dataset (Elec-
tricity) is plotted in Fig. 5. It is worth noting that during the
initial stages of FLASH, when the value of m is small (i.e.,
smaller training data), the Extra Tree and MLP algorithms
exhibit remarkably high accuracy projections. However, as
the training progresses, their accuracy projections decline,
while algorithms like XGBoost and LGBM emerge as the
frontrunners. Consequently, if FLASH had not reintroduced
these algorithms in subsequent rounds and discarded them
solely based on their initial performance, the overall ac-
curacy would have been lower by 10%. These results use
∆ = 100%, so that the projection value of all the algorithms
can be observed in each round.
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Figure 5: Accuracy projections with training data.

Figure 6: Impact of heterogeneity in client data distributions,
depicting RI of FLASH-RM with different Dirichlet con-
stant γ over FLASH with random distribution.

Controlled heterogeneity. We now evaluate the impact
of the degree of heterogeneity on FLASH performance. In
all of the aforementioned results, the label distributions of
the clients were created by randomly dividing the entire
dataset. We refer to FLASH with this random data distri-
bution as FLASH-RANDOM. As in Hsu et al. [2019], we
create several client data distributions by controlling the
heterogeneity of labels of the data points distributed to the
clients using Dirichlet constant γ (smaller γ yields more
heterogeneous non-iid distribution). Fig. 6 depicts the RI
values of FLASH-RM for two values of γ (102 and 104)
over FLASH-RANDOM. RI has a small range (−0.4% to
0.35%) for both values of γ across all datasets, demonstrat-
ing that FLASH performs consistently across heterogeneous
non-iid distributions.

7 CONCLUSION

We presented and evaluated FLASH, which solves the
CASH problem in an FL setting by combining outer-level
algorithm selection with inner-level FL-HPO methods, and
requires the global FL model training problem to be solved
only once, i.e., after the Alg-HP configuration has been se-
lected. FLASH reduces training cost by allocating training

data incrementally to only a subset of all algorithms based
on their loss performances. Specifically, we theoretically
analyzed and evaluated FLASH with three FL-HPO meth-
ods which are simple to implement, and compute the global
HP and loss function by aggregating those computed indi-
vidually by the clients on their private data sets. FLASH is
able to identify near optimal Alg-HP configuration with a
few rounds of communication between the clients and the
central server, and easy to implement in an FL environment.
Extensive simulations show consistent and competitive per-
formance of FLASH upon comparing it with centralized
benchmarks.
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