Robust Gaussian Process Regression with the Trimmed Marginal Likelihood (Supplementary Material)

Daniel Andrade
${ }^{1}$ Education and Research Center for Artificial Intelligence and Data Innovation, Hiroshima University, Hiroshima, Japan
${ }^{2}$ Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
${ }^{3}$ Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

A PROOFS

A. 1 CONVERGENCE GUARANTEE OF THE PROPOSED PROJECTED GRADIENT DESCENT METHOD

Optimization problem (P1) from the main paper is given by

$$
\begin{equation*}
\min _{\mathbf{b}} f(\mathbf{b}) \text { s.t. }\|\mathbf{b}\|_{0}=n-m . \tag{1}
\end{equation*}
$$

This problem can be expressed as an unconstrained optimization problem by using the indicator function \square as follows:

$$
\begin{equation*}
\min _{\mathbf{b}} F(\mathbf{b}), \tag{2}
\end{equation*}
$$

with

$$
F(\mathbf{b}):=f(\mathbf{b})+\delta_{C}(\mathbf{b}), \text { where } C=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid\|\mathbf{b}\|_{0}=n-m\right\} .
$$

Recently, for analyzing the convergence rate of first-order methods for nonconvex objective functions, the so-called Kurdyka-Lojasiewicz (KL) property is often used. If the objective function of $F(\mathbf{b})$ satisfies the KL property with an exponent of $\alpha=1 / 2$ and the sequence $\left\{b_{k}\right\}$ generated by the proximal gradient algorithm is bounded, then it was proven that $\left\{b_{k}\right\}$ converges locally and linearly to a stationary point of F (see, for example, Attouch et al. [2010, 2013], Li and Pong [2018]). Therefore, here, we only need to prove that $F(\mathbf{b})$ is a KL function with exponent $1 / 2$.

The definition of KL functions encompasses broad classes of functions, and it is known that a proper closed semi-algebraic function is a KL function with a suitable exponent $\alpha \in[0,1)$. The above function F is also a KL function.

Theorem 1. Any sequence $\left\{b_{k}\right\}$ generated by projected gradient algorithm for Problem (1) globally converges to a stationary point with locally linear convergence rate.

Proof. First, we show global convergence. Bolte et al. [2014] implies that the objective function F of (2] is a proper lower semi-continuous KL function. Considering that F is lower bounded and ∇f is Lipschitz continuous, we can confirm the global convergence of the proximal gradient method from [Attouch et al. 2013, Theorem 5.1 and Remark 5.2]. Now for proving the convergence rate, we will check the KL exponent of F. F can be further rewritten as

$$
F(\mathbf{b})=\min _{S \subseteq\{1, \ldots, n\},|S|=m} f(\mathbf{b})+\delta_{\Omega_{S}}(\mathbf{b}),
$$

where $\Omega_{S}:=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid b_{i}=0, \forall i \in S\right\}$. Here, for all possible $S, \delta_{\Omega_{S}}(\mathbf{b})$ are proper closed polyhedral functions. Then [Li and Pong 2018 , Corollary 5.2] implies that $F(\mathbf{b})$ is a KL function with an exponent of $1 / 2$. From this, and the boundedness of $\left\{b_{k}\right\}$, [Li and Pong, 2018, Proposition 5.1] implies that $\left\{b_{k}\right\}$ achieves linear convergence locally.
${ }^{1}$ The indicator function is defined as $\delta_{C}(\mathbf{b}):= \begin{cases}0 & \text { if } \mathbf{b} \in C, \\ \infty & \text { else } .\end{cases}$

A. 2 PROOF OF ASYMPTOTICALLY CORRECT OUTLIER REJECTION

Here we prove Proposition 1. Note that ignoring constants, we may write the negative marginal log-likelihood (NLL) as

$$
\begin{aligned}
\mathrm{NLL}\left(\sigma^{2}, \eta, \mathbf{l}\right) & :=-2 \log p\left(\mathbf{y} \mid X, \sigma^{2}, \eta, \mathbf{l}\right)-n \log 2 \pi \\
& =\mathbf{y}^{T}\left(K_{\eta, \mathbf{l}}+\sigma^{2} I\right)^{-1} \mathbf{y}+\log \left|K_{\eta, \mathbf{l}}+\sigma^{2} I\right| \\
& =\frac{1}{\eta} \mathbf{y}^{T}\left(K+\frac{\sigma^{2}}{\eta} I\right)^{-1} \mathbf{y}+\log \left(\eta^{n}\left|K+\frac{\sigma^{2}}{\eta} I\right|\right),
\end{aligned}
$$

where $K:=K_{1,1}$ (that means K is $K_{\eta, 1}$, with η being set to 1).
First, we establish a lower bound on NLL. Let λ_{0} denote the smallest possible eigenvalue of $K_{1,1}$, i.e.

$$
\lambda_{0}:=\min _{1 \in \mathbb{D}} \lambda_{\min }\left(K_{1,1}\right),
$$

where $\lambda_{\min }(A)$ denotes the smallest eigenvalue of a matrix A. Note that $1 \geq \lambda_{0}>0$. Analogously, let λ_{1} denote the largest possible eigenvalue of $K_{1,1}$, i.e.

$$
\lambda_{1}:=\min _{1 \in \mathbb{D}} \lambda_{\max }\left(K_{1, \mathbf{1}}\right),
$$

where $\lambda_{\max }(A)$ denotes the largest eigenvalue of a matrix A. Note that $1 \leq \lambda_{1}<n$. Therefore, for any $\mathbf{l} \in \mathbb{D}$, all eigenvalues of K are bounded. In particular, we have

$$
\lambda_{\min }\left(K+\frac{\sigma^{2}}{\eta}\right) \geq \lambda_{0}+\frac{\sigma^{2}}{\eta}
$$

and

$$
\lambda_{\min }\left(\left(K+\frac{\sigma^{2}}{\eta}\right)^{-1}\right) \geq\left(\lambda_{1}+\frac{\sigma^{2}}{\eta}\right)^{-1}
$$

Define

$$
g_{2}\left(\sigma^{2}, \eta\right):=\frac{1}{\eta}\left(\lambda_{1}+\frac{\sigma^{2}}{\eta}\right)^{-1}\|\mathbf{y}\|_{2}^{2}+\log \left(\eta^{n}\left(\lambda_{0}+\frac{\sigma^{2}}{\eta}\right)^{n}\right)
$$

then we have

$$
g_{2}\left(\sigma^{2}, \eta\right) \leq \operatorname{NLL}\left(\sigma^{2}, \eta, \mathbf{l}\right)
$$

Since the function g_{2} is still slightly difficult to analyze, we establish another lower bounding function g_{1}.
First note that g_{2} can be written as follows

$$
g_{2}\left(\sigma^{2}, \eta\right)=\left(\eta \lambda_{1}+\sigma^{2}\right)^{-1}\|\mathbf{y}\|_{2}^{2}+n \log \left(\eta \lambda_{0}+\sigma^{2}\right)
$$

Noting that

$$
\begin{aligned}
n \log \left(\lambda_{0}\right)+n \log \left(\eta+\sigma^{2}\right) & =n \log \left(\lambda_{0} \eta+\lambda_{0} \sigma^{2}\right) \\
& \leq n \log \left(\eta \lambda_{0}+\sigma^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{1}^{-1}\left(\eta+\sigma^{2}\right)^{-1} & =\left(\lambda_{1} \eta+\lambda_{1} \sigma^{2}\right)^{-1} \\
& \leq\left(\lambda_{1} \eta+\sigma^{2}\right)^{-1}
\end{aligned}
$$

we have

$$
g_{1}\left(\sigma^{2}, \eta\right) \leq g_{2}\left(\sigma^{2}, \eta\right)
$$

where we defined

$$
g_{1}\left(\sigma^{2}, \eta\right):=\lambda_{1}^{-1}\left(\eta+\sigma^{2}\right)^{-1}\|\mathbf{y}\|_{2}^{2}+n \log \left(\lambda_{0}\right)+n \log \left(\eta+\sigma^{2}\right)
$$

Therefore, we have

$$
\begin{equation*}
\min _{\sigma^{2}, \eta} g_{1}\left(\sigma^{2}, \eta\right) \leq \min _{\sigma^{2}, \eta} g_{2}\left(\sigma^{2}, \eta\right) \leq \min _{\sigma^{2}, \eta, \mathbf{l}} \operatorname{NLL}\left(\sigma^{2}, \eta, \mathbf{l}\right) \tag{3}
\end{equation*}
$$

Next, we will show that, if $\|\mathbf{y}\|_{2}^{2} \rightarrow \infty$, then

$$
\min _{\sigma^{2}, \eta} g_{1}\left(\sigma^{2}, \eta\right) \rightarrow \infty
$$

First, note that g_{1} depends only on the sum $\eta+\sigma^{2}$, rather than the individual values. Therefore, we can re-parameterize g_{1} as follows

$$
g_{1 *}(z):=\lambda_{1}^{-1} z\|\mathbf{y}\|_{2}^{2}+n \log \left(\lambda_{0}\right)-n \log z
$$

where $z:=\left(\eta+\sigma^{2}\right)^{-1}$, and we have

$$
\min _{z} g_{1 *}(z)=\min _{\sigma^{2}, \eta} g_{1}\left(\sigma^{2}, \eta\right)
$$

Since $g_{1 *}$ is a convex function, the minimum value of $g_{1 *}$ is attained for \hat{z} with

$$
\frac{\partial g_{1 *}}{\partial z}(\hat{z})=\frac{\|\mathbf{y}\|_{2}^{2}}{\lambda_{1}}-\frac{n}{\hat{z}}=0
$$

and therefore

$$
\hat{z}=n \frac{\lambda_{1}}{\|\mathbf{y}\|_{2}^{2}}
$$

and

$$
\min _{z} g_{1 *}(z)=n+n \log \left(\lambda_{0}\right)-n \log \left(\lambda_{1} n\right)+n \log \left(\|\mathbf{y}\|_{2}^{2}\right)
$$

Therefore, if $\|\mathbf{y}\|_{2}^{2} \rightarrow \infty$,

$$
\min _{z} g_{1 *}(z) \rightarrow \infty
$$

and as a consequence, from Inequalities (3), we have

$$
\min _{\sigma^{2}, \eta, \mathbf{l}} \operatorname{NLL}\left(\sigma^{2}, \eta, \mathbf{l}\right) \rightarrow \infty
$$

Therefore, as long as one or more observations belonging to V are selected, we must have that $\min _{\sigma^{2}, \eta, \mathbf{l}} \mathrm{NLL}\left(\sigma^{2}, \eta, \mathrm{l}\right) \rightarrow \infty$. Since $\operatorname{NLL}\left(\sigma^{2}, \eta, \mathbf{l}\right)$ is bounded from above for observations belonging to U, the trimmed marginal likelihood GP will select only observations from U.

A. 3 ASYMPTOTIC BIAS CORRECTION FOR σ^{2}

Here, we explain the asymptotic correction for estimating the noise variance for Algorithm 2 in the main paper.
The derivation presented here, generalizes the derivation for the correction of the median linear regression Rousseeuw [1984]. Let Q_{f} denote the quantile function for distribution f, and by $Q_{\left\{r_{i}^{2}\right\}_{i=1}^{n}}$ the empirical quantile function of observed squared residuals r_{i}^{2}. We define $Q_{\left\{r_{i}^{2}\right\}_{i=1}^{n}}(p)=r_{(\lfloor p n\rfloor)}^{2}$, where $r_{(1)}^{2} \leq r_{(2)}^{2} \ldots \leq r_{(n)}^{2}$. Let ν be the user-set maximum outlier-ratio, i.e. $1-\nu=\frac{m}{n}$. Furthermore, note that each r_{i}^{2} is distributed according to $\sigma^{2} \chi^{2}(1)$, where $\chi^{2}(1)$ is the χ^{2} distribution with 1 degree of freedom. For $n \rightarrow \infty$, we have, see e.g. Walker 1968],

$$
Q_{\left\{r_{i}^{2}\right\}_{i=1}^{n}}(1-\nu) \xrightarrow{p} Q_{\sigma^{2} \chi^{2}(1)}(1-\nu)
$$

Therefore, for sufficiently large n, we have that

$$
\begin{aligned}
Q_{\left\{r_{i}^{2}\right\}_{i=1}^{n}}(1-\nu) & \approx Q_{\sigma^{2} \chi^{2}(1)}(1-\nu) \\
& =\sigma^{2} Q_{\chi^{2}(1)}(1-\nu)
\end{aligned}
$$

The last line follows from properties of the quantile function (see for example Lemma 1 in this supplement material). Therefore, we set

$$
\sigma^{2}=\frac{r_{(\lfloor(1-\nu) n\rfloor)}^{2}}{Q_{\chi^{2}(1)}(1-\nu)}
$$

Lemma 1. Let Q_{X} be the quantile function of a real valued random variable X, and define $Y:=\alpha X$, where $\alpha>0$. Then the following holds

$$
Q_{Y}=\alpha Q_{X}
$$

Proof. First note that

$$
\begin{aligned}
P(Y \leq y) & =P(X \alpha \leq y) \\
& =P\left(X \leq \frac{y}{\alpha}\right)
\end{aligned}
$$

For any $u \in] 0,1[$, we have

$$
\begin{aligned}
Q_{Y}(u) & =\inf \{y \in \mathbb{R} \mid u \leq P(Y \leq y)\} \\
& =\inf \left\{y \in \mathbb{R} \left\lvert\, u \leq P\left(X \leq \frac{y}{\alpha}\right)\right.\right\} \\
& =\alpha \inf \left\{\frac{y}{\alpha} \in \mathbb{R} \left\lvert\, u \leq P\left(X \leq \frac{y}{\alpha}\right)\right.\right\} \\
& =\alpha \inf \{x \in \mathbb{R} \mid u \leq P(X \leq x)\} \\
& =\alpha Q_{X}(u) .
\end{aligned}
$$

B DETAILS OF GREEDY METHOD

The function starts with the index set of all data points $S:=\{1,2, \ldots, n\}$, and then removes the data point i_{*} which leads to the largest marginal likelihood, i.e.

$$
\begin{equation*}
i_{*}:=\underset{i \in S}{\arg \max }\left(\log p\left(\mathbf{y}_{S \backslash\{i\}} \mid X_{S \backslash\{i\}}, \boldsymbol{\theta}\right)\right) \tag{4}
\end{equation*}
$$

This is repeated until $|S|=\lceil(1-\nu) n\rceil$. Naively solving the optimization in Equation (4) is in $O\left(n^{4}\right)$, since we need to repeat n-times the calculation of the determinant and inverse of $K_{S \backslash\{i\}}$, where $K_{S \backslash\{i\}}$ denotes the covariance matrix (plus $\sigma^{2} I$) of the data points in $S \backslash\{i\}$. However, using the block matrix inversion lemma (together with the Woodbury formula) and the cofactor representation of the determinant, we can solve it in $O\left(n^{3}\right)$ as follows. Without loss of generality assume that sample i corresponds to the last row and column of K_{S} and write

$$
K_{S}=:\left(\begin{array}{cc}
A & \mathbf{b} \\
\mathbf{b}^{T} & c
\end{array}\right), \text { and } \quad K_{S}^{-1}=:\left(\begin{array}{cc}
U & \mathbf{v} \\
\mathbf{v}^{T} & w
\end{array}\right)
$$

Using the block matrix inversion lemma, we have

$$
\begin{aligned}
U & =A^{-1}+A^{-1} \mathbf{b}\left(-\mathbf{v}^{T}\right) \\
& =A^{-1}\left(I-\mathbf{b v}^{T}\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
A^{-1} & =U\left(I-\mathbf{b v}^{T}\right)^{-1} \\
& =U\left(I+\mathbf{b v}^{T} \frac{1}{1-\mathbf{v}^{T} \mathbf{b}}\right)
\end{aligned}
$$

where in the last line we used the Woodbury formula. Since $A=K_{S \backslash\{i\}}$, this allows for an efficient calculation of $K_{S \backslash\{i\}}^{-1}$. Finally, the determinant $\left|K_{S \backslash\{i\}}\right|$ can also be efficiently calculated as follows. Denote the the cofactor matrix of K_{S} as C, therefore we have $C_{n n}=|A|$. Using the cofactor representation of the inverse, we have

$$
K_{S}^{-1}=\frac{1}{\left|K_{S}\right|} C
$$

and therefore

$$
\begin{aligned}
|A| & =C_{n n} \\
& =\left|K_{S}\right|\left(K_{S}^{-1}\right)_{n n} .
\end{aligned}
$$

C COMMENT ON BIAS MODEL FROM PREVIOUS WORKS

The method in [Park et al. 2021] ("Constant Bias Model", Section 3.1) introduces a bias vector $\boldsymbol{\delta} \in \mathbb{R}^{n}$, where n is the number of samples. If $\delta_{i} \neq 0$, then sample i is considered an outlier. Furthermore, introducing a Laplace prior on each δ_{i}, with common scale λ, they propose to jointly estimate δ and λ as follows:

$$
\hat{\boldsymbol{\delta}}, \hat{\lambda}=\underset{\boldsymbol{\delta}, \lambda}{\arg \min } \frac{1}{2}(\mathbf{y}-\boldsymbol{\delta})^{T} A^{-1}(\mathbf{y}-\boldsymbol{\delta})+\lambda\|\boldsymbol{\delta}\|_{1}-\log \lambda,
$$

for some positive definite matrix A, and responses $\mathbf{y} \in \mathbb{R}^{n}{ }^{2}$ They suggest to alternate between the optimization of $\boldsymbol{\delta}$ and λ. However, even only one outlier can lead to a $\hat{\delta}$ which has no zero entry, that is all samples are treated as outliers. To see this, first consider the optimization of $\boldsymbol{\delta}$, leaving λ fixed. Assume that sample i_{*} is an outlier with $y_{i_{*}} \rightarrow \infty$, then we have $\left|\delta_{i_{*}}\right| \rightarrow \infty$. (On the other hand, if $\left|\delta_{i_{*}}\right|$ were bounded, then $y_{i_{*}}$ would have an arbitrarily large influence on the marginal likelihood.) Next, consider the optimization of λ, leaving δ fixed: the problem is convex with the unique minimum at

$$
\hat{\lambda}=\frac{1}{\|\boldsymbol{\delta}\|_{1}} .
$$

Note that $\frac{1}{\|\boldsymbol{\delta}\|_{1}}<\frac{1}{\mid \delta_{i_{*}}}$. Since $\left|\delta_{i_{*}}\right| \rightarrow \infty$, we have that $\hat{\lambda} \rightarrow 0$. However, if $\hat{\lambda}$ is close to 0 , the penalty $\lambda\|\boldsymbol{\delta}\|_{1}$ will in effect be switched off, leading to $\hat{\boldsymbol{\delta}}=\mathbf{y}$.

D ADDITIONAL DETAILS AND EXPERIMENTS

For all methods, we initialize all hyper-parameters $\boldsymbol{\theta}$ to $\log 2$, except the variance σ^{2} which is initialized to 10 . For all data, we standardize the response and covariates using the median and and the interquartile range (IQR). For all experiments, we used an Nvidia DGX-2. For the real datasets, for evaluating the predictive performance of all methods, we randomly split the data into training (90%) and test data (10%).

D. 1 ADDITIONAL RESULTS

References

Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz inequality. Mathematics of operations research, 35(2):438-457, 2010.

[^0]Table 1: Estimated upper bound on outlier ratio ν. Except "no extra outliers", the true ratio of added outliers is 0.1.

	no extra outliers	uniform	focused	asym
bow	$0.02(0.01)$	$0.08(0.0)$	$0.09(0.02)$	$0.07(0.0)$
F100	$0.03(0.01)$	$0.07(0.01)$	$0.08(0.03)$	$0.08(0.01)$
F400	$0.02(0.0)$	$0.07(0.0)$	$0.1(0.0)$	$0.07(0.0)$
body	$0.02(0.0)$	$0.06(0.01)$	$0.06(0.02)$	$0.07(0.01)$
house	$0.02(0.0)$	$0.06(0.0)$	$0.06(0.02)$	$0.06(0.0)$
spacega	$0.03(0.0)$	$0.07(0.0)$	$0.08(0.0)$	$0.07(0.0)$

Table 2: Runtime in minutes of each GP regression method.

no extra added outliers					
	$\mathbf{G P}$	γ-GP	t-GP	ν-GP	
bow	$\mathbf{0 . 0 6}(0.0)$	$0.1(0.0)$	$0.1(0.0)$	$5.93(0.76)$	
F100	$\mathbf{0 . 0 9}(0.01)$	$0.13(0.0)$	$0.17(0.0)$	$4.33(3.42)$	
F400	$\mathbf{0 . 1}(0.01)$	$0.25(0.02)$	$0.31(0.03)$	$2.88(0.6)$	
body	$\mathbf{0 . 1}(0.0)$	$0.27(0.0)$	$0.23(0.0)$	$67.3(0.0)$	
house	$\mathbf{0 . 1 2}(0.0)$	$0.25(0.0)$	$0.36(0.0)$	$17.85(0.0)$	
spacega	$\mathbf{1 . 0 2}(0.0)$	$8.88(0.0)$	$8.79(0.0)$	$9.05(0.0)$	
uniform outliers					
bow	$\mathbf{0 . 0 6}(0.0)$	$0.1(0.0)$	$0.1(0.0)$	$3.44(0.44)$	
F100	$\mathbf{0 . 0 9}(0.0)$	$0.13(0.01)$	$0.17(0.0)$	$2.53(1.32)$	
F400	$\mathbf{0 . 1 1}(0.01)$	$0.24(0.01)$	$0.15(0.01)$	$3.04(1.23)$	
body	$0.77(0.48)$	$0.25(0.01)$	$\mathbf{0 . 2 2}(0.0)$	$29.44(15.93)$	
house	$0.41(0.38)$	$\mathbf{0 . 2 4}(0.02)$	$\mathbf{0 . 2 4}(0.03)$	$25.76(29.33)$	
spacega	$\mathbf{0 . 7 6}(0.02)$	$8.8(0.06)$	$8.78(0.07)$	$9.07(0.17)$	
focused outliers					
bow	$\mathbf{0 . 0 6}(0.0)$	$0.1(0.0)$	$0.1(0.0)$	$3.51(0.53)$	
F100	$\mathbf{0 . 0 9}(0.01)$	$0.13(0.0)$	$0.17(0.01)$	$3.24(2.37)$	
F400	$\mathbf{0 . 1}(0.0)$	$0.23(0.0)$	$0.12(0.02)$	$4.71(1.13)$	
body	$\mathbf{0 . 1}(0.0)$	$0.24(0.01)$	$0.22(0.0)$	$55.5(43.44)$	
house	$\mathbf{0 . 1 1}(0.0)$	$0.23(0.01)$	$0.28(0.01)$	$20.09(4.42)$	
spacega	$\mathbf{0 . 8 4}(0.01)$	$8.74(0.11)$	$8.67(0.09)$	$23.81(3.73)$	
asymmetric outliers					
bow	$\mathbf{0 . 0 6}(0.0)$	$0.1(0.0)$	$0.1(0.01)$	$3.33(0.36)$	
F100	$\mathbf{0 . 0 9}(0.0)$	$0.13(0.01)$	$0.17(0.0)$	$3.66(3.32)$	
F400	$\mathbf{0 . 1 2}(0.02)$	$0.23(0.01)$	$0.15(0.02)$	$2.68(0.46)$	
body	$0.46(0.42)$	$0.24(0.03)$	$\mathbf{0 . 2 2}(0.0)$	$26.23(14.72)$	
house	$0.3(0.38)$	$0.24(0.01)$	$\mathbf{0 . 2 3}(0.01)$	$9.58(4.56)$	
spacega	$\mathbf{0 . 7 6}(0.02)$	$8.8(0.06)$	$8.78(0.08)$	$8.92(0.23)$	

Table 3: Runtime in minutes of each optimization method.

no extra added outliers			
	PGD	Greedy (batch)	Greedy (1-by-1)
bow	$\mathbf{0 . 2}(0.02)$	$10.37(7.07)$	$169.51(32.26)$
F100	$\mathbf{0 . 1 4}(0.12)$	$8.86(7.98)$	$5.01(3.68)$
F400	$\mathbf{0 . 1 2}(0.05)$	$10.89(9.67)$	$173.58(52.01)$
body	$\mathbf{1 . 4 9}(0.0)$	$3.4(0.0)$	$27.17(0.0)$
house	$\mathbf{0 . 2 7}(0.0)$	$7.29(0.0)$	$76.35(0.0)$
spacega	$\mathbf{0 . 8 2}(0.0)$	$23.8(0.0)$	-
uniform outliers			
bow	$\mathbf{0 . 1 4}(0.04)$	$2.37(0.29)$	$160.39(3.15)$
F100	$\mathbf{0 . 1 3}(0.15)$	$1.74(1.85)$	$7.76(5.66)$
F400	$\mathbf{0 . 1 5}(0.06)$	$2.59(1.44)$	$42.53(4.65)$
body	$\mathbf{0 . 7 9}(0.75)$	$5.17(3.97)$	$65.61(59.16)$
house	$\mathbf{0 . 2 1}(0.26)$	$2.82(2.64)$	$150.36(107.69)$
spacega	$\mathbf{0 . 6}(0.15)$	$8.52(0.11)$	-
focused outliers			
bow	$\mathbf{0 . 1 7}(0.01)$	$3.49(0.78)$	$170.7(26.81)$
F100	$\mathbf{0 . 1 4}(0.18)$	$1.37(1.06)$	$8.13(4.43)$
F400	$\mathbf{0 . 1 3}(0.0)$	$2.94(0.62)$	$139.74(19.06)$
body	$\mathbf{0 . 2 1}(0.24)$	$2.03(0.82)$	$33.37(37.42)$
house	$\mathbf{0 . 7 1}(1.19)$	$6.12(7.69)$	$227.69(209.95)$
spacega	$\mathbf{0 . 9}(0.07)$	$9.09(1.44)$	-
asymmetric outliers			
bow	$\mathbf{0 . 0 9}(0.0)$	$2.2(0.07)$	$48.24(1.08)$
F100	$\mathbf{0 . 1 3}(0.15)$	$2.61(3.26)$	$5.23(3.56)$
F400	$\mathbf{0 . 1 3}(0.0)$	$2.13(1.34)$	$42.8(5.34)$
body	$\mathbf{0 . 4 1}(0.48)$	$3.18(4.07)$	$42.09(37.34)$
house	$\mathbf{0 . 1 5}(0.1)$	$1.3(1.0)$	$73.9(69.2)$
spacega	$\mathbf{0 . 5 4}(0.01)$	$8.47(0.35)$	-

Table 4: Marginal likelihood of solution found by different optimization methods.

no extra added outliers						
	PGD	Greedy (batch)	Greedy (1-by-1)			
bow	$\mathbf{1 . 7 6}(0.09)$	$1.75(0.09)$	$\mathbf{1 . 7 6}(0.08)$			
F100	$\mathbf{0 . 0 7}(0.12)$	$-0.06(0.24)$	$-0.0(0.46)$			
F400	$0.34(0.2)$	$0.36(0.23)$	$\mathbf{0 . 4 2}(0.24)$			
body	$\mathbf{3 . 3 5}(0.0)$	$3.11(0.0)$	$3.23(0.0)$			
house	$0.11(0.0)$	$0.09(0.0)$	$\mathbf{0 . 1 8}(0.0)$			
spacega	$-0.31(0.0)$	$\mathbf{0 . 3 8}(0.0)$	-			
uniform outliers						
bow	$\mathbf{1 . 7 (0 . 0 7)}$	$1.54(0.08)$	$\mathbf{1 . 7}(0.07)$			
F100	$0.01(0.18)$	$-0.1(0.14)$	$\mathbf{0 . 1}(0.17)$			
F400	$0.19(0.12)$	$0.07(0.19)$	$\mathbf{0 . 2}(0.12)$			
body	$\mathbf{- 1 . 3 4 (2 . 3 3)}$	$-1.5(2.02)$	$\mathbf{- 1 . 3 4}(2.3)$			
house	$-1.99(1.13)$	$-2.0(1.11)$	$\mathbf{- 1 . 9 6}(1.16)$			
spacega	$-0.26(0.03)$	$\mathbf{0 . 0 5}(0.07)$	-			
focused outliers						
bow	$\mathbf{1 . 8}(0.05)$				$1.57(0.05)$	$\mathbf{1 . 8}(0.05)$
F100	$0.13(0.13)$	$-0.08(0.25)$	$\mathbf{0 . 2 2}(0.13)$			
F400	$0.15(0.04)$	$-0.0(0.05)$	$\mathbf{0 . 2 2}(0.16)$			
body	$0.72(1.19)$	$0.46(0.91)$	$\mathbf{0 . 7 4}(1.25)$			
house	$0.27(0.18)$	$0.15(0.26)$	$\mathbf{0 . 3 2}(0.25)$			
spacega	$-0.26(0.01)$	$\mathbf{- 0 . 0 2}(0.14)$	-			
asymmetric outliers						
bow	$\mathbf{1 . 6 7}(0.1)$	$1.49(0.11)$	$\mathbf{1 . 6 7}(0.1)$			
F100	$\mathbf{0 . 1 5}(0.13)$	$-0.13(0.21)$	$0.14(0.32)$			
F400	$0.17(0.07)$	$0.03(0.14)$	$\mathbf{0 . 2 3}(0.13)$			
body	$-1.17(2.25)$	$-1.56(1.5)$	$\mathbf{- 1 . 1 4}(2.27)$			
house	$\mathbf{- 1 . 2 3}(0.96)$	$-1.29(0.92)$	$\mathbf{- 1 . 2 3}(0.96)$			
spacega	$-0.25(0.02)$	$\mathbf{- 0 . 0 7}(0.09)$	-			

Table 5: Outlier ranking performance (R-precision) of different optimization methods.

uniform outliers			
	PGD	Greedy (batch)	Greedy (1-by-1)
bow	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
F100	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
F400	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
body	$\mathbf{0 . 8 7}(0.06)$	$0.86(0.06)$	$0.86(0.06)$
house	$\mathbf{0 . 8 6}(0.06)$	$0.85(0.06)$	$\mathbf{0 . 8 6}(0.05)$
spacega	$0.98(0.0)$	$\mathbf{0 . 9 9}(0.01)$	-
focused outliers			
bow	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
F100	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
F400	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
body	$\mathbf{1 . 0}(0.01)$	$0.95(0.11)$	$0.98(0.05)$
house	$\mathbf{0 . 9 1}(0.16)$	$0.55(0.24)$	$0.71(0.32)$
spacega	$\mathbf{0 . 9 7}(0.0)$	$0.31(0.3)$	-
asymmetric outliers			
bow	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
F100	$\mathbf{1 . 0}(0.0)$	$0.99(0.03)$	$\mathbf{1 . 0}(0.0)$
F400	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$	$\mathbf{1 . 0}(0.0)$
body	$\mathbf{0 . 8 6}(0.06)$	$\mathbf{0 . 8 6}(0.06)$	$\mathbf{0 . 8 6}(0.06)$
house	$\mathbf{0 . 8 5}(0.05)$	$\mathbf{0 . 8 5}(0.05)$	$\mathbf{0 . 8 5}(0.05)$
spacega	$0.98(0.0)$	$\mathbf{0 . 9 9}(0.0)$	-

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. Mathematical Programming, 137(1):91-129, 2013.

Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1):459-494, 2014.

Guoyin Li and Ting Kei Pong. Calculus of the exponent of kurdyka-łojasiewicz inequality and its applications to linear convergence of first-order methods. Foundations of computational mathematics, 18(5):1199-1232, 2018.

Chiwoo Park, David J Borth, Nicholas S Wilson, Chad N Hunter, and Fritz J Friedersdorf. Robust gaussian process regression with a bias model. Pattern Recognition, page 108444, 2021.

Peter J Rousseeuw. Least median of squares regression. Journal of the American Statistical Association, 79(388):871-880, 1984.

AM Walker. A note on the asymptotic distribution of sample quantiles. Journal of the Royal Statistical Society: Series B (Methodological), 30(3):570-575, 1968.

Table 6: Root mean squared error (RMSE) on test data of different optimization methods.

no extra added outliers						
	PGD	Greedy (batch)	Greedy (1-by-1)			
bow	$\mathbf{0 . 0 6}(0.0)$	$\mathbf{0 . 0 6}(0.0)$	$\mathbf{0 . 0 6}(0.0)$			
F100	$\mathbf{0 . 3 2}(0.05)$	$0.34(0.08)$	$0.42(0.19)$			
F400	$0.25(0.05)$	$\mathbf{0 . 2 3}(0.06)$	$0.24(0.05)$			
body	$0.08(0.1)$	$\mathbf{0 . 0 5}(0.08)$	$0.08(0.09)$			
house	$0.55(0.12)$	$\mathbf{0 . 4 6}(0.11)$	$0.54(0.13)$			
spacega	$0.49(0.03)$	$\mathbf{0 . 3 7}(0.02)$	-			
uniform outliers						
bow	$\mathbf{0 . 0 5}(0.0)$				$0.06(0.0)$	$\mathbf{0 . 0 5}(0.0)$
F100	$0.31(0.06)$	$0.31(0.07)$	$\mathbf{0 . 2 9}(0.07)$			
F400	$0.25(0.03)$	$\mathbf{0 . 2 3}(0.05)$	$0.24(0.03)$			
body	$\mathbf{0 . 0 5}(0.08)$	$\mathbf{0 . 0 5}(0.07)$	$\mathbf{0 . 0 5}(0.07)$			
house	$0.4(0.14)$	$\mathbf{0 . 3 7}(0.12)$	$0.4(0.13)$			
spacega	$0.4(0.02)$	$\mathbf{0 . 3 6}(0.01)$	-			
focused outliers						
bow	$\mathbf{0 . 0 5}(0.0)$	$\mathbf{0 . 0 5}(0.0)$	$\mathbf{0 . 0 5}(0.0)$			
F100	$0.26(0.06)$	$0.3(0.14)$	$\mathbf{0 . 2 5}(0.05)$			
F400	$0.25(0.01)$	$0.25(0.01)$	$\mathbf{0 . 2 4}(0.03)$			
body	$\mathbf{0 . 0 7}(0.08)$	$0.1(0.09)$	$0.08(0.08)$			
house	$0.4(0.07)$	$\mathbf{0 . 3 4}(0.06)$	$0.39(0.09)$			
spacega	$\mathbf{0 . 4 1}(0.06)$	$0.43(0.04)$	-			
asymmetric outliers						
bow	$\mathbf{0 . 0 6}(0.0)$	$\mathbf{0 . 0 6}(0.0)$	$\mathbf{0 . 0 6}(0.0)$			
F100	$\mathbf{0 . 2 6}(0.05)$	$0.33(0.09)$	$0.3(0.12)$			
F400	$0.25(0.02)$	$\mathbf{0 . 2 4}(0.04)$	$\mathbf{0 . 2 4}(0.03)$			
body	$\mathbf{0 . 1 2}(0.11)$	$0.15(0.11)$	$\mathbf{0 . 1 2}(0.12)$			
house	$0.35(0.13)$	$\mathbf{0 . 3 3}(0.09)$	$0.34(0.12)$			
spacega	$0.4(0.02)$	$\mathbf{0 . 3 7}(0.02)$	-			

[^0]: ${ }^{2}$ The term $\lambda\|\delta\|_{1}-\log \lambda$ is supposed to correspond to a Laplace prior on each component of δ_{i}. However, note that the resulting penalty on λ, should be $-n \log \lambda$ rather than $-\log \lambda$.

