Neural Tangent Kernel at Initialization: Linear Width Suffices
(Supplementary Material)

A NEURAL TANGENT KERNEL AT INITIALIZATION
A.1 PROOF OF LEMMA

We start with a result which explicitly shows that the output ||a(!)||5 is sub-Gaussian for Gaussian random weights. We
recall that we are assuming ¢(0) = 0, and note that the result can be extended to the general case straightforwardly.

Lemma A.l. Let A = [a)(x;)] € R" "™ be the outputs of layer I. For g ~ N (0p,_,,0%I,, ), let 90 =

¢(ﬁA(l Vg) € R™. Then, |91 |4 is a sub-Gaussian random variable with
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In other words, with € =




Now, with & = ZY2181 | AU=1)|| . 4 ¢, for all e > 0 we have
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Then, from Proposition it follows that ||¢( \/7711714(1—1) g)||2 is sub-Gaussian with

H¢ ( ﬁA“‘”g> < M2 LN7 y0o
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for some absolute constant c. This completes the proof. O

Proposition A.1. Let ay,as > 0. If a non-negative random variable Z satisfies P(Z > a1 + €) < 2exp(—¢2/a2), then
| Z|yp, < clar + a2), where c is an absolute constant.

Proof. Notethat Z—a; = [Z—a1]—+[Z—a1]+. Since Z is non-negative, |[Z —a1] | < a1 implying ||[Z—a1]— |4, < c1a1,

where ¢; is an absolute constant. Further, by definition, [Z — a1]4 is sub-Gaussian with ||[Z — a1]+ ||y, < c2ag, where cg is
an absolute constant. Now, by triangle inequality
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where ¢ = max(1 + ¢1, ¢2). That competes the proof. O

We are now ready to prove Lemmaf.1]

Proof of Lemma[@d} Let 9 = qﬁ(\/%A(l*l)g) € R™ If m; < n, then Apin(AD(AM)T) = 0. So, we as-
sume m; > n. Let w; € R™-! denote the j-th row of Wo(l). For a given ¢t > 0, let Al ¢ RrPXmi go that
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we have

min(A(l)(A(l))T) > )\min(A(l)(A(l))T) ,

~ (1 ~ (1
max (A (ANT) <2,

(4)
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where (i) follows immediately by definition of A(!) and (ii) follows since for any unit vector v € R™, ’UTA:(Q (/l(lj) Yo =
(0, AYY? < |JAD)3 < 2.
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From Lemma we know that |92y, < e V2(y l\jg’JH || A=) || . Recall that for any subGaussian random

variable Z, P(Z > t) < exp(1 — ct?/|| Z||2,) for some absolute constant c. For our analysis with [|?)[|,, for a suitable
constant a > 0 we will use
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Note that \; = Amin (Gy).
By Matrix Chernoff bound, for any € € [0, 1), we have
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For € = 1/2, with c3 = 1(1 — log 2), we have
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With m; > ﬁ log %, with probability at least (1 — §) we have
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where (a) follows since for any non-negative random variable Z, E[Z f 0 P(Z > s)ds, (b) follows from Lemma.

and (c) follows from our choice of ¢ in (T) and since for b > 0, [, exp( s/b)ds = b. To simplify further, we consider the
following two exhaustive cases:

Case 1. Assume
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where (a) follows if a > 2 exp(2).
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Then,
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Then, for m; > Qt ~log %, with probability at least (1 — &) we have
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where (a) follows from (2) and (b) from (3). Finally, note that we have used m; > n and m; > t?
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analysis. Then, with v =
analysis holds if we have

m; > max (n, covmax(1,log(15v)) log %) .

for some constant ¢; > 0. Choosing § = % completes the proof. O

A.2 PROOF OF LEMMA

Proof of Lemma@.2} We do the proof by induction. Let x € {x;,4 € [n]}. Forl =0, |[a(?(x;)||3 = ||zi||? = ¢4.0,d. For
[ = 0 and mg = d, so the result is satisfied at [ = 0 almost surely.

Assume that the result holds for a certain [, so that for any ¢ € [n]
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where (a) follows from ().
Combining (6) and (7), we have
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Conditioned on {W(gl I e € [L]}, since a(l+ )( ). j € [my41], are independent, from Bernstein’s inequality we have
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for some absolute constant ¢ > 0. Then, by union bound
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Applying union bound over all layers completes the proof. O

Proposition A.2. Let ¢y, := E. pnr(0,02) [#2(2)]. Then,
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This completes the proof. O



A.3 PROOF OF LEMMA

We start with a specific consequence of the Schur product theorem (Oymak and Soltanolkotabi, 2020, Lemma 6.5) applied
to r-th order Hadamard product of positive definitive matrices.

Proposition A.3. Let B = AA" where A € R"*P. Let by = min;e[,) Byi. Then, for any r > 1 Amin((AAT)®7) >
by Amin (AAT).

Proof. Recall that for PSD matrices P, @, it holds that Apin (P © Q) > min;e(,) Qi - Amin(P). Further, note that B;; > 0

and by > 0 by construction. Then,
Amin((AATOT) = A\pin(B™Y @ B) > min (BT D), - Apin(B) < b " Auin(AAT) .

1€[n]
That completes the proof. O

Now, we are ready to prove Lemma[d.3]

Proof of Lemma For convenience, let

1 1
vt e ) s}

a® . . . .
Let U; € R™*™ have ith row Uy ;. = ﬁ, so that U; is a row normalized version of A1), Let C; = diag(c; ;) where
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with probability at least 1 — 2n 3/, ;L. Let M\ (¢) = diag (NL‘:?"Q] (¢)), and let (1{"))2 = min,epy (Mﬁ v ](¢)) .
Then, for any integer > 0, we have
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for any r > 0; (b) follows since for a diagonal matrix M with 2 = min; ¢y M? and a compatible matrix U,
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(c) follows from Proposition[A.3} and (d) follows from Lemmaf4.1]

2
Proceeding recursively, using 0% = v = —7%— we have
Cp,o0

That completes the proof. O

A4 BACKGROUND ON HERMITE POLYNOMIALS AND HERMITE SERIES EXPANSIONS

Let L2(R, w(x)) denote the set of all functions f : R — R such that

/jo FA(x)w(x)dz < oo . 9)

Probabilist’s and Physicist’s Hermite Polynomials. The normalized probabilist’s Hermite polynomials are given by:

(=1)" w2 d” 22
\//,T! e 2 dl,re P (10)

H.(x)=

_z?

The polynomials are orthogonal with respect to the weight function w(x) = e~ = in the sense that

/ h H, (x)Hyo (x)w(x)de = V210, (11)

where 0,,» = 1,if r =1/, aﬁnd 0 otherwise, i.e., the Kronecker delta. The corresponding unnormalized probabilist’s Hermite
polynomials are given by H,.(x) = v/r!H,(x).

The normalized physicist’s Hermite polynomials are respectively
] _ ( -1 ) " 22 d’ —z?
H.(x) = Ve et et (12)

The polynomials are orthogonal with respect to the weight function w(x) = e~

@? in the sense that

| ) ()i = VBT 6 3

where 4, is the Kronecker delta. The corresponding unnormalized physicist’s Hermite polynomials are given by I;'r (x) =
VrlH, (x).

Generalized Hermite Polynomials. Our analysis of potentially inhomogeneous activation functions will need the substan-
tially more flexible notion of normalized generalized Hermite polynomials H ,[fI] (x), for a given g > 0, which are orthogonal

with respect to wl? (x) = ﬁe‘ﬁ/%, and are given by

—1)" 2 d" a2
Hl(x) = (762@ e % . (14)
" V! dx”




1 ~
It is easy to see that H}" (x) = H,(x), the probabilist’s Hermite polynomial in (I0), and a2 = H,(x), the physicist’s
Hermite polynomial in (I2)). Furthermore, the generalized Hermite polynomials can be written as scaled versions of
probabilist’s Hermite polynomials as

HY(x) = a? H, () : (15)

—z2/2
V2

Hermite Series. The polynomials { H,.(x)}2°, form an orthonormal basis for L? (R, = ) which is a Hilbert space

with inner product

e—w2/2

V2r

(¢1,P2) = /_OO $1(x) P2 (x) dx . (16)

2
Lo —22/2 . . .
Thus, any function in L? (R, £ NeT ) can be represented as a Hermite series expansion

$(x) =Y pr(¢) Hp(x) (17)
r=0

where p1,.(¢) is the r-th Hermite coefficient given by

6—22/2

Ver

i) = [ " () H () (18)

6712/2

Note that ¢ € L2 (R, il ) if and only if [|¢]|2 = (¢, ¢) = 322 12(¢) < oo

For our analysis with inhomogeneous activation functions, we will need to use Hermite series expansions with generalized
~%/2a C o .
) which is a Hilbert

1<

Hermite polynomials. The polynomials {HT[Q] (x)}22, form an orthonormal basis for L2 (R, NorT

space with inner product
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Any function in L? (R, “—— ) can be represented as a Hermite series expansion:
b Tq

o(x) = > pi(¢)HI (%), (20)
r=0

where MLQ] (¢) is the r-th Hermite coefficient given by
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Note that ¢ € L? (R, e\/ﬁ/: ) if and only if ||¢]|? = (¢, ¢) = Zr:o(l“[“q] (¢))? < .

A.5 EXPECTATION OF PRODUCT OF HERMITE POLYNOMIALS

Our NTK analysis for general activation functions, including inhomogeneous functions, depends on the following key
result on expectation of product of Hermite polynomials. The equivalent prior analysis in (Oymak and Soltanolkotabi),
2020; |[Nguyen and Mondelli, [2020; |[Nguyen et al., [ 2021b) only works for homogeneous functions, and uses basic Hermite
polynomials. Our general analysis instead uses generalized Hermite polynomials.



Lemma A.2. Letu,,u, € R? be unit vectors, and let c,, ¢y € Ry be positive constants. Then, for r,r’ =0,1,... and
Oy denoting the Kronecker delta, we have

22]

y 6r 3r 3r

c2o? ~ [ ~ r
Egn(0a,021) | Hi 7 (ea(@ua) ) Hy " ey (8 uy)) | = 0% el (up, 1) 6,00 (22)

Proof. Letg ~ N(0,1;) so that og is identically distributed as g ~ N (0, 0%I;), and consider any s, ¢, € R. Then,
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so that, since [[u,||3 = ||uy||3 = 1, we have

820262 t2 0.2 C2

5 7“) exp (tacy<g,uy> - y)} = exp (sw?czcy<ux,uy>) . (23)
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We consider the functions f, h : R? — R defined as

2 2.2 222
f(s) = exp (sacm<g,uz> -2 ”ﬁ) . h(t) =exp (tocy<g, w) - - 2"@/) . (24)

Consider the Taylor expansion of f(s) with respect to f(0) given by

SH

T 5202c§

0 57" 1 SOCx(8,Ug)— 2
f(S) = ;_Ofr(o)ﬁ ) where ‘fr(o) - ﬁ dsre o

(25)

With z = (g, u,) and Z = _Z-, we have

T 2_2.2
f (0) _ 1 d S0Cyz2— ° ‘ax
T - r
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5 AT
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7! ds” =0
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where (a) follows by the transport or advection equation --1)(Z — s) = (—1)-L¢)(Z — s) and the equality of mixed partial

derivatives for any sufficiently smooth function v, and (b) follows by definition of generalized Hermite polynomials in (T4).



Now, note that

M () o H(oce?)

= o 19
1
= o - ({8, uz))
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where (a) and (b) follow from (T3). Thus,
-y fr(o)\% where fr<o>:UZECQTH[C”<cz<g,um>)- (26)

Similarly, considering the Taylor expansion of h(t) with respect to h(0), we have

> trl 1 [0202] ~
h(t) = Z B (0) Nk where  h,(0) = T H (ey(g,a,) 27

Then, from 23), we have

> 1 202 - s" = 1 [cia‘Q] - t’!"
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Since the equality holds for arbitrary s,? € R, equating coefficients of s"t"" on both sides, we have

c2o? e [cioz] & r 3r 3r r
Egn A (04,0214) [HJ« " enlg W) H ey (8, uy>)} =0 cy e (U, uy) (28)
where §,., is the Kronecker delta. That completes the proof. O

The following result is an important consequence of Lemma[A.2]

Lemma A.3. Let ¢ be an inhomogeneous activation function. Let u,,u, € R? be unit vectors and c,, ¢y be positive
constants. Then, we have

S 02 2 cyo’ r 3r 3r r
Egn(0s.0210) [0(ex (8 w:))o(e, (& w,)] = 3 ul= @)™ (0)0" el (usyu,)" (29)
r=0
Further, let U = [uy,---,u,]" € R™™ be such that |w;|s = 1,i € [n]. Let C = diag(c;) € R™" ¢; > 0, and
2 _2
co = mingepy) ¢; > 0. Let M,.(¢) = diag (MLC“T }(¢)>. Then,
Egn0s.0°1) [$(CUE)G(CUB) ' Za“ 0 (M (9)U") (M ($)U) T (30)

where U*™ € R™ ™" is such that the ith row U;T = (u") T, i.e., r times Kronecker product of u; with itself.
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2
Proof. Consider the generalized Hermite series expansion of ¢(-) in terms of the generalized Hermite functions H, ,[f I

slex(g ) = S ul= ) HI e, (g, u,)) 31)
r=0

Then, we have

EgNN(0d702HJ) [p(cz (8, um>)¢)(cy (8, uy>)}

= K 0ucta KZ WO el u“)) (Z W oy a9 g, uﬁ)ﬂ

r'=0
(2o (262, =~ [ejo®], o
Z Hr Nr/ (¢)Eg~/\/(04,a2ﬂd) Hy (Cz<g»um>)Hr/ (Cy<gauy>)
r,r’'=0
< Z i ()07 6 (g,

where (a) follows from Lemmal[A.2]

2 2
The matrix case result follows by noting that for any 7, j € [n], ¢j"¢}" > ¢f", (u;, u;)" = (u or u;@>, and u[rcig ](¢) form
the diagonal elements of M,.(¢). That completes the proof. O

A.6 ADDITIONAL REMARKS ON )\,

The main result in Theoremestablishes Amin (Kntk(+;00)) > coA1 where
1 1 T
Al = Amin EgN/\/(Od,a'QHd) ¢ ﬁXg ¢ ﬁXg )
where 0% = 1§ = c:

results have been studled in the recent literature (Du et al., 2019; Zou et al., [2020; |Allen-Zhu et al.l 2019; Oymak and
Soltanolkotabi, |2020; Nguyen et al., 2021b). We provide additional details on the topic.

Related to assumptions in Du et al.[(2019), the simplest analysis comes from assuming Apmin (X X ) = ¢4 5, dAo > 0 for

some positive constant Ao, where the scaling is simply because ||x;||3 = ¢4 o, d. With X := \/dcliX so that rows of X
®,00
satisfy ||%;|l2 = 1 and Apin (XX ) = Ag > 0. Let Cy = diag(co,;) where cp; = \/C4.0,- Note that %X = (CpX. Let

2
Mﬁo)(gb) ,u[f‘)] (¢) diag(1) , and let (,ufoog) = (u[fg] (¢)) . From Lemma for any integer r > 0, we have

T
Al = Amin (EgNN(Od,UQJId) |fﬁ (\}ng) ¢ (\}ng> ])

> 0% (¢4,00)"" Aumin (MO (@) (X)) (MO (@)()™)T)
> (190)20 (4.00)”" Aunin (X)7)(X)*)T)

= (15)20% (5.00) " Ammin (XXT)OT)

> (10)20% (C4,00)” Amin (XXT)

> (10)20% (Co.00)™ Mo »

which gives the desired result.

A1 can also be lower bounded by making assumptions on the activation function ¢, e.g., the separability and/or the
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distribution of x; (2Allen-Zhu et al.l|2019;|Oymak and Soltanolkotabi), [2020; Nguyen et al.,2021b)). For any unit vector v,

MO =B o, i) Vo X T

€p,00

=0 Eyn(04,0210) [0(X9)p(Xg) v
= Eyn(0a021) [16(Xg) T0l3] .

Note that with § = Xg , it suffices to show Eg[(#(7),v)?] = Ez_(4(3),,)[Z%] = xo > 0, for some uniform positive
constant xo since A; = inf,, A1 (v). For any ¢ > 0, by Markov’s inequality, we have

X T,U 2
P(l6(Xg) vz > ¢) = P(| (X g)Tv|l3 > ¢?) < w

= E[ll¢(Xg) "3 > P(lo(Xg) Tv]l2 > ).

Thus, the problem boils down to lower bounding P(||¢(X g) "v[|2 > c) for a suitable choice of ¢, or, more conveniently
P(||¢(Xg)Tv]|2 > ¢||v]ls) and using ||v]oo > ﬁ Proceeding further rigorously needs specific assumptions on the
activation ¢, as has been done in recent related work (Oymak and Soltanolkotabil 2020; |Allen-Zhu et al., 2019; ?).
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