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A TERMINOLOGY

Nodes and edges. We define a graph G = (V,E) as a
collection of nodes (or vertices) V and edges E. Edges can
be either undirected A−B or directed A→ B. By A∗−∗B
we denote an arbitrary edge, i.e. this serves as a placeholder
for either a directed or undirected edge. Two nodes A,B ∈
V are adjacent in G if {A ∗−∗ B} ∈ E. No node can be
adjacent to itself, and there can be at most one edge between
any pair of nodes. We say that an edge of the formA→ B is
directed out ofA (intoB), and we then say thatA is a parent
of B. If there is an undirected edge between two nodes
A−B, we say thatA andB are neighbours. LetA ∈ V be a
node in a graph G = (V,E), then neG(A)/adjG(A)/paG(A)
is the set of neighbours/adjacent nodes/parents of A in G. A
graph is complete if all its nodes are adjacent. The skeleton
of a graph is the undirected graph obtained by replacing its
directed edges with undirected edges.

Subgraphs. We call G′ = (V′,E′) a subgraph of G =
(V,E) if V′ ⊆ V and E′ ⊆ E. By Gu = (V,Eu) we
denote the undirected subgraph of G, where Eu is obtained
from E by removing all directed edges. Correspondingly,
Gd = (V,Ed) is the directed subgraph of G, where Ed
is obtained from E by removing all undirected edges. Let
A ⊆ V, then the induced subgraph of G over A is GA =
(A,EA) where EA ⊆ E contains all the edges between the
nodes in A.

Paths and cycles. A path π = 〈V1, V2, ..., VK−1, VK〉
from V1 ∈ V to VK ∈ V of lengthK consists of a sequence
of distinct nodes where Vi ∈ adj(Vi+1) for 1 ≤ i < K.
A path from a set A ⊆ V to another set B ⊆ V is a
path from some A ∈ A to some B ∈ B. The subpath
of π from Vi to Vj for 1 ≤ i ≤ j ≤ K is π(Vi, Vj) =
〈Vi, Vi+1, . . . , Vj−1, Vj〉. Let G′ = (V,E′) be a graph with
same skeleton as G = (V,E) but possibly E′ 6= E, then for
a path π in G its corresponding path in G′ is the path π′ in
G′ consisting of the same nodes as π. An undirected path
consists only of undirected edges. A directed path from V1

to VK has all edges oriented towards VK , i.e. Vj → Vj+1

for all 1 ≤ j < K; then V1 is an ancestor of VK (VK is
a descendant of V1). A path from V1 to VK that contains
both directed and undirected edges with at least one edge
Vj → Vj+1 for some 1 ≤ j < K directed towardsB and no
edge Vj ← Vj+1 for any 1 ≤ j < K is a partially directed
path from V1 to VK . An undirected (directed) path from V1
to VK combined with an undirected (directed) path from VK
to V1 we call an undirected (directed) cycle. An undirected
or partially directed path from V1 to VK combined with a
directed or partially directed path from VK to V1 we call a
partially directed cycle.

(Partially) directed acyclic graphs. A graph consisting
of only undirected edges is an undirected graph. An undir-
ected graph is chordal if every cycle of length ≥ 4 has an
adjacent pair of non-consecutive nodes. A directed acyc-
lic graph (DAG) is a graph containing only directed edges
and no directed cycles. A partially directed acyclic graph
(PDAG) is a graph containing both directed and undirected
edges and no directed cycles; DAGs and undirected graphs
are special cases of PDAGs. A chain graph is a PDAG
that does not have any partially directed cycles. The chain
components of a chain graph are the undirected subgraphs.

Colliders, (un-) shielded and v-structures. We call a
triple 〈A,B,C〉 unshielded if A and B are adjacent, B and
C are adjacent, and A and C are not adjacent. We call a
path unshielded if all triples on the path are unshielded. If a
triple of the form A→ B ← C occurs, we call B a collider,
and if the triple is unshielded we call it a v-structure.

d-separation

Definition A.1 (d-connecting). Let π be a path in some
PDAG G = (V,E), and let C ⊂ V. If (i) every collider V
on π, or a descendant of V , is in C, and (ii) no non-collider
on π is in C, then π is d-connecting given C.

If there exists a path from a set of nodes A to another set of
nodes B, where A ∩B = ∅, that is d-connecting given C,
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we say that A and B are d-connected given C. If no such
path exists, we say that A and B are d-separated given C,
and we denote this by

A ⊥d B | C

We define an independence model I(G) induced by a graph
G as the collection of all d-separations in G:

(A ⊥d B | C) ∈ I(G)⇔ A and B are d-sep. by C in G

Markov equivalence and CPDAGs. We say that two
graphs G1 and G2 are Markov equivalent if they induce the
same independence model: I(G1) = I(G2); an equivalence
class is a class of Markov equivalent graphs. A completed
partially directed acyclic graph (CPDAG) represents an
equivalence class of DAGs, and can consist of undirected as
well as directed edges: Undirected edges represent edges for
which there exists at least one DAG in the equivalence class
where the edge is oriented in one direction, and at least one
DAG, where it is oriented in the opposite direction. Directed
edges represent edges that must be identical in every DAG
contained in the equivalence class. Two DAGs belong to
the same equivalence class if and only if they have the
same skeleton and the same v-structures [Verma and Pearl,
1990]. A graph is maximally informative if no additional
edge can be oriented without restricting the equivalence
class. A restricted equivalence class is a class of Markov
equivalent graphs, that encode some additional common
information. A maximally oriented partially directed acyclic
graph (MPDAG) represents a restricted equivalence class.

B PREVIOUS RESULTS

B.1 MEEK’S RULES

An equivalence class of DAGs is uniquely characterised by
the skeleton and v-structures [Verma and Pearl, 1990], but
more directed edges might be shared among the DAGs in the
class. Meek [1995] introduced a set of four orientation rules
(Figure B.1), often referred to as Meek’s rules, for which
the graphical output will be maximally informative. Given
the correct skeleton and v-structures of some equivalence
class, repeated application of rules 1-3 outputs a CPDAG.
Given the correct skeleton and v-structures, and additional
background knowledge, repeated application of rules 1-4
outputs an MPDAG.

B.2 ADJUSTMENT CRITERION

In a CPDAG C = (V,E), a path π = 〈V1, . . . , VK〉 is
possibly causal from V1 to VK if it does not contain an edge
Vi ← Vi+1 with 1 ≤ i < K. Otherwise it is non-causal
from V1 to VK .

Rule 1
=⇒

Rule 2
=⇒

Rule 3
=⇒

Rule 4
=⇒

(i) (i’)

(ii) (ii’)

(iii) (iii’)

(iv) (iv’)
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Figure B.1: Meek’s rules. If (i), (ii), (iii) or (iv) occur as an
induced subgraph of some PDAG, then orient them as (i’),
(ii’), (iii’) or (iv’), respectively.



Definition B.1 (b-possibly causal [Perković et al., 2017]).
Let G = (V,E) be an MPDAG and let π = 〈V1, . . . , VK〉
be a path in G. Then π is b-possibly causal from V1 to VK
in G if and only if no edge Vi ← Vj , 1 ≤ i < j ≤ K is in G.
Otherwise, π is b-non-causal path in G.

B.3 IDA-ALGORITHM

Let G = (V,E) be a graph, and let X ⊆ V. Then we denote
the set of parents of X in G by paG(X) = ∪

X∈X
paG(X).

Let G = (V,E) be an MPDAG, let X ∈ V and let S ⊆
neG(X). Then GS→X is the PDAG obtained by orienting
all undirected edges Z − X to Z → X if Z ∈ S and
Z ← X if Z ∈ neG(X)\S. A set of nodes P ⊆ V is a
valid (jointly valid) parent set ofX (X) if there exists a DAG
D in the class represented by G for which paD(X) = P
(paD(X) = P).

Algorithm 1: Locally obtaining valid parent sets from a
tiered MPDAG using local IDA [Maathuis et al., 2009]
input :Tiered MPDAG G = (V,E), node X ∈ V
output :Multiset PAlocal

G (X)

1 PAlocal
G (X) = ∅

2 forall S ⊆ neG(X) do
3 if GS→X has no new v-structure with X as collider

then
4 add paG(X) ∪ S to PAlocal

G (X)

5 end

Algorithm 2: Semi-locally obtaining jointly valid parent
sets from a tiered MPDAG using joint IDA [Nandy et al.,
2017]
input :Tiered MPDAG G = (V,E), set of nodes

X ⊆ V, X = {X1, . . . , Xk}
output :Multiset PAjoint

G (X)

1 Obtain Gu and Gd from G
2 Obtain the connected components of Gu that contain at

least one node of X: Gu,1, . . . ,Gu,l for l ≤ k
3 for i = 1, . . . , l do
4 Let PAi be the multiset of all jointly valid parent

sets of the nodes of X in Gu,i obtained by
constructing all DAGs in the (restricted)
equivalence class represented by Gu,i.

5 end
6 Construct PAu by taking all possible combinations of

PA1, . . . ,PAl

7 PAjoint
G (X) =

{PA′1 ∪ paGd
(X1), . . . ,PA

′
k ∪ paGd(Xk)}

8 where (PA′1, . . . ,PA
′
k) ∈ PAu.

C SIMULATION STUDY

Simulations were done in R version 4.2.1 using the pcalg
package version 2.7-8, and random DAGs were simulated us-
ing the randDAG function. We simulated 8 different types
of DAGs: The DAGs had either 10, 25, 50 or 100 nodes,
and the structure was either dense or sparse. Sparse graphs
had an expected number of adjacent nodes of 2, while dense
graphs had an expected number of adjacent nodes of 5. Each
DAG type was simulated three times, using either the Erdös-
Rényi method, power-law method or geometric method.

We assumed that the full tiered ordering of the nodes as-
signed them to 5 tiers of equal size; hence, the tier size was
either 2, 5, 10 or 20 depending on the number of nodes
in the graph. We compared the full knowledge of the five
tiers to four combinations of early or late, and more or less
detailed knowledge. An overview of the tiered orderings can
be found in Figure C.1. For each DAG, we constructed its
CPDAG, and for each combination of DAG and tiered or-
dering τfull (full knowledge), τearly1 (early simple), τearly2
(early detailed), τlate1 (late detailed) or τlate2 (late detailed),
we constructed the tiered MPDAG. For each MPDAG, the
number of additional directed edges compared to its cor-
responding CPDAG was counted. The above was repeated
1000 times for each combination of DAG type and simula-
tion method; i.e. a total of 24,000 simulations.

The differences between the tiered MPDAGs and the corres-
ponding CPDAGs are visualised in the boxplots in Figure
C.2 and in Figure 5 in the main text. In Figure C.2 and Fig-
ure 5 we consider the number of new directed edges divided
by the total number of edges in the graphs; the raw numbers
are depicted in Figure C.3.

τfull = 0 τfull = 1 τfull = 2 τfull = 3 τfull = 4

τearly2 = 0 τearly2 = 1 τearly2 = 2

τlate2 = 0 τlate2 = 1 τlate2 = 2

τearly1 = 0τearly1 = 1

τlate1 = 0 τlate1 = 1

Figure C.1: Overview of the tiered orderings used for the
simulation study. The tiered ordering τfull is the full order-
ing of the nodes. The orderings τearly1 and τlate1 assign the
nodes to two tiers: The main difference between these two
is that τearly1 is able to distinguish the earliest tier, while
τearly2 is able to distinguish the latest tier. The tiered order-
ings τearly2 and τlate2 assign the nodes to three tiers: While
τearly2 contains knowledge of early tiers, τlate2 contains
knowledge of later tiers.
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Figure C.2: Results of the simulation study. 24,000 random
DAGs with 10, 25, 50 or 100 nodes were generated; half of
them sparse, the other half dense. For each random DAG
and each tiered ordering, the tiered MPDAG was construc-
ted and the difference in number of directed edges to its
corresponding CPDAG was computed and divided by the
total number of edges.

10 nodes

Dense Sparse

0

10

20

25 nodes

Dense Sparse

0

10

20

30

50 nodes

Dense Sparse

0

10

20

30

100 nodes

Dense Sparse

0

20

40

60

Tiered
 ordering

τfull τearly2 τlate2

τearly1 τlate1

N
um

be
r 

of
 n

ew
ly

 d
ire

ct
ed

 e
dg

es

Figure C.3: Results of the simulation study. 24,000 random
DAGs with 10, 25, 50 or 100 nodes were generated; half of
them sparse, the other half dense. For each random DAG
and each tiered ordering, the tiered MPDAG was construc-
ted and the difference in number of directed edges to its
corresponding CPDAG was computed.



D PROOFS FOR SECTION 3

D.1 PROOF OF LEMMA 1

Proof. Since the MPDAG is unambiguously defined by the
equivalence class and tiered ordering, if G is an MPDAG,
then by construction it is the MPDAG of C relative to τ .
Hence, we need to show that it is in fact an MPDAG.

We proceed in two steps: (1) We show that in Cτ an induced
subgraph like in Figure B.1 (i) can occur, while no induced
subgraphs like in Figures B.1 (ii)-(iv) can occur. (2) Let
Cτ,n be the graph obtained by applying Meek’s 1st rule to
Cτ n times. We will show that Figure B.1 (i) can occur
as an induced subgraph of Cτ,n, while Figures B.1 (ii)-(iv)
cannot occur as induced subgraphs of Cτ,n. This means
that the resulting graph G is maximally informative, and we
conclude that it is an MPDAG.

(1) Rule 1: Assume that there is an undirected induced
subgraph of C over {A,B,C} ⊆ V with adjacencies as
in Figure B.1 (i). We can obtain a triple with orientations
identical to Figure B.1 (i) in Cτ if we have A−B −C in C
and τ(A) < τ(B) = τ(C); then τ will force A→ B.

Rule 2: Assume that there is an induced subgraph of C over
{A,B,C} ⊆ V with adjacencies as in Figure B.1 (ii). Since
C does not contain any partially directed cycles, this sub-
graph will have either 3, 2 or 0 directed edges. The case
with 3 directed edges is not relevant, as well as any ori-
entation of 〈A,B,C〉 other than A → B → C; however,
the latter cannot occur in C since C is maximally inform-
ative. Hence, only an undirected subgraph in C allows for
a subgraph like Figure B.1 (ii) in Cτ . If there are edges
A→ B and B → C in Cτ they must have been forced by τ
through τ(A) < τ(B) < τ(C). By transitivity this implies
τ(A) < τ(C), and A→ C will be oriented by τ as well.

Rule 3: If B.1 (iii) is an induced subgraph of Cτ , then it is
also an induced subgraph of C, since the v-structure can-
not be newly forced by τ . However, B.1 (iii) cannot be an
induced subgraph of C since C is maximally informative.

Rule 4: Assume that there is an induced subgraph of C over
{A,B,C,D} ⊆ V with adjacencies as in Figure B.1 (iv).
For the case to be non-trivial, we exclude any subgraphs
with other directed edges than A→ B and B → D; since
C does not have any partially directed cycles, the subgraph
must be undirected. If A → B → D occurs in Cτ it must
be forced by τ through τ(A) < τ(B) < τ(D). Either
τ(A) < τ(C), τ(A) = τ(C), or τ(A) > τ(C). If τ(A) <
τ(C) or τ(A) > τ(C) then it follows that A → C or
A← C according to τ . If τ(A) = τ(C), then by transitivity
τ(C) < τ(B) < τ(D), and we orient B ← C → D
according to τ .

(2) Rule 1: Assume that there is an undirected induced
subgraph of C over {A,B,C} ⊆ V with adjacencies as

in Figure B.1 (i). Assume that there is an undirected, un-
shielded path 〈V1, . . . VK = A〉 of length K > 1 in C
with VK−1 /∈ adjC(B). Assume that τ(V1) < τ(V2) such
that V1 → V2 in Cτ and assume that n ≥ K − 1: then
V1 → . . .→ A→ B in Cτ,n, and we obtain B.1 (i).

Rule 2: Assume that there is an induced subgraph of C
over {A,B,C} ⊆ V with adjacencies as in Figure B.1
(ii). By the same argument as above, only an undirected
induced subgraph of C can lead to an induced subgraph
like B.1 (ii) in Cτ,n. Moreover, by the argument above, we
know that Figure B.1 (ii) does not occur as an induced
subgraph of Cτ ; hence, we consider the case where τ(A) =
τ(B) = τ(C) and this subgraph is undirected. The only
way that A→ B can be directed in Cτ,n and not in Cτ is if
there is an undirected unshielded path 〈V1, . . . , VK = A〉
in C of length K > 1 in C with VK−1 /∈ adjC(B) where
τ(V1) < τ(V2) = τ(V3) = . . . = τ(A) and n ≥ K − 1
such that V1 → . . .→ A→ B in Cτ,n. In order forA−C to
remain undirected in Cτ,n, it must be the case that VK−1 ∈
adjC(C). If VK−2 /∈ adjC(C) then VK−1 → C − B and
C → B will be directed by Meek’s 1st rule; hence, assume
VK−2 ∈ adjC(C). Assume now that Vj ∈ adjC(C) for
some 1 ≤ j ≤ K − 2. Either (a) Vj−1 /∈ adjC(C) or (b)
Vj−1 ∈ adjC(C). (a) If Vj−1 /∈ adjC(C) then Vj → C −B
occurs and it must then be the case that Vj ∈ adjC(B) in
order forC−B not to be directed asC → B or create a new
v-structure, such that B → C would have been in C. We
then have A→ B ∗−∗ Vj : this cannot be a v-structure since
then A → B would have been oriented in C and if B →
Vj we would have had cycle; hence Vj ∈ adjC(A). Then
Vj ∈ adjC(VK−1) since otherwise VK−1 → A∗−∗Vj would
have been a v-structure or we would have had a cycle; by
the same argument, Vj ∈ adjC(VK−2), and we can proceed
until we obtain Vj ∈ adjC(Vj+2), which is a contradiction.
(b) Assume instead that Vj−1 ∈ adjC(C) such that Vj −
C remains undirected. If Vj−2 /∈ adjC(C), we obtain a
contradiction as above; hence, assume that Vj−2 ∈ adjC(C).
We can proceed with this until we obtain V1 ∈ adjC(C). By
transitivity, τ(V1) < τ(C) and we obtain V1 → C − A
in Cτ . In order to obtain A − C in Cτ,n, we must have
V1 ∈ adjC(A). By the same reasoning as above, the path
then cannot be unshielded, and we obtain a contradiction.

Rule 3: If B.1 (iii) is an induced subgraph of Cτ,n, then it is
also an induced subgraph of C, since the v-structure cannot
be newly forced by Meek’s 1st rule. However, B.1 (iii)
cannot be an induced subgraph of C since C is maximally
informative.

Rule 4: Consider the induced subgraph of C over
{A,B,C,D} ⊆ V with adjacencies as in Figure B.1 (iv).
By the same argument as above, only an undirected induced
subgraph of C can lead to an induced subgraph like B.1 (iv)
in Cτ,n. Moreover, by the argument above, we know that
Figure B.1 (iv) does not occur as an induced subgraph of
Cτ ; hence, we consider the case where τ(A) = τ(B) =



τ(C) = τ(D) and this subgraph is undirected. The only
way that A→ B can be directed in Cτ,n and not in Cτ is if
there is an undirected unshielded path 〈V1, . . . , VK = A〉
in C of length K > 1 with VK−1 /∈ adjC(B). Assume that
τ(V1) < τ(V2) = τ(V3) = . . . = τ(A) such that V1 → V2
in Cτ and n ≥ K − 1 applications of Meek’s 1st rule res-
ults in V2 → . . . → A → B in Cτ,n. If VK−1 /∈ adjC(C)
then A→ C will be forced by Meek’s 1st rule. Hence, we
assume that VK−1 ∈ adjC(C). To obtain Figure B.1 (iv)
in Cτ,n we require C −B to be undirected; hence, we can
proceed the in a similar way as for Rule 2 and obtain a
contradiction.

D.2 PROOF OF THEOREM 1

Proof. Assume that C is the CPDAG of which G is con-
structed, and τ the tiered ordering. Let Cτ denote the graph
obtained by orienting edges in C according to τ , and let Cτ,n
be the graph obtained by applying Meek’s 1st rule to Cτ n
times. By Lemma 1, there exists an N such that for n = N
we have G = Cτ,n; hence, we can without loss of generality
assume Cτ,n to be maximally informative. Since C does not
contain any partially directed cycles, any partially directed
cycle in G must be either (i) forced by τ , or (ii) forced by
Meek’s 1st rule. Hence, any partially directed cycle in Cτ
or Cτ,n must correspond to an undirected cycle in C: Let
〈V1, . . . VK〉 combined with V1−VK be an undirected cycle
in C. We will show that (i) the corresponding cycle in Cτ
cannot be partially directed, and (ii) the corresponding cycle
in Cτ,n cannot be partially directed.

(i) Without loss of generality, assume that τ(V1) < τ(V2)
such that the edge V1 → V2 is oriented in Cτ . If τ(V1) <
τ(VK) we will not obtain a partially directed cycle; there-
fore, assume that τ(VK) ≤ τ(V1). If for any 2 ≤ i ≤ K−1 :
τ(Vi) > τ(Vi+1), again, it is no longer a partially directed
cycle; therefore, assume τ(Vi) ≤ τ(Vi+1) for all 2 ≤ i ≤
K − 1. This then implies that τ(V2) ≤ τ(VK) ≤ τ(V1).
This is a contradiction to transitivity since we assumed
τ(V1) < τ(V2). We conclude that there cannot exist a par-
tially directed cycle in Cτ .

(ii) By the above, there cannot be any partially directed
cycles in Cτ ; hence, if Cτ,n contains a partially directed
cycle, it must be forced through Meek’s 1st rule; then
τ(V1) = τ(V2) = . . . = τ(VK). Assume that there is
an undirected unshielded path 〈W1, . . . ,Wm = V1, V2〉 in
C, m > 1, with τ(W1) < τ(W2) = τ(W3) = . . . = τ(V1)
such thatW1 →W2 in Cτ , and assume that n ≥ m−1 such
that W1 → W2 → . . . → Wm−1 → V1 → V2 is in Cτ,n.
If Wm−1 /∈ adjC(VK) the edge V1 → VK follows from
Meek’s 1st rule and we no longer have a partially directed
cycle; therefore, assume that Wm−1 ∈ adjC(VK). Either
(a) Wm−2 /∈ adjC(VK) or (b) Wm−2 ∈ adjC(VK). (a) In
this case Wm−1 → VK by Meek’s 1st rule. If Wm−1 /∈
adjC(VK−1), then VK → VK−1 and we no longer have

a partially directed cycle; assume Wm−1 ∈ adjC(VK−1).
We can then proceed until we obtain Wm−1 ∈ adjC(V2),
which is a contradiction. (b) If Wm−3 /∈ adjC(VK), then
Wm−2 → VK by Meek’s 1st rule, and we obtain a contra-
diction as above. Hence, assume Wm−3 ∈ adjC(VK). We
can then proceed until we obtain W1 ∈ adjC(VK). By trans-
itivity τ(W1) < τ(VK) and the orientation W1 → VK is
forced by τ . Assume that W1 → Vi for some 2 < i ≤ K,
then if W1 /∈ adjC(Vi−1), then Vi → Vi−1 and we no
longer have a partially directed cycle. Hence, assume that
W1 ∈ adjC(Vi−1) for all 2 < i ≤ K. Then W1 ∈ adjC(V2)
and for m = 2 we have a contradiction. Assume m > 2,
then W1 ∈ adjC(V1) since otherwise we would have either
a cycle or a v-structure W1 → V2 ← V1, such that V1 → V2
would have been oriented in C. Then W1 ∈ adjC(Wm−1)
since otherwise Wm−1 → V1 would have been oriented
in C. We can proceed with this reasoning until we obtain
W1 ∈ adjC(W3), which is a contradiction.

D.3 PROOF OF COROLLARY 1

Proof. In order to show that G is a chain graph it is sufficient
to show that it does not contain any partially directed cycles,
which is the case due to Theorem 1. Hence, we only need to
show that the chain components are chordal: Assume that C
is the CPDAG from which G is constructed. Assume π is a
chordless undirected cycle of length ≥ 4 in G; then π must
have been an undirected cycle in C. Since C does not have
any chordless undirected cycles, and since the procedure of
orienting edges according to a tiered ordering or Meek’s 1st
rule does not delete edges or create partially directed cycles
(c.f. Theorem 1), this is a contradiction.

D.4 PROOF OF COROLLARY 2

The proof of Corollary 2 follows directly from the following
result:

Corollary D.1. Let G = (V,E) be a tiered MPDAG, and
let π = 〈V1, . . . , VK〉 be a path in G. Then π is b-possibly
causal from V1 to VK if and only if it is possibly causal from
V1 to VK .

Proof. “If” Assume that π is possibly causal from V1 to VK .
Then there is no Vi, Vj on π with i < j with Vi ← Vj in G,
since otherwise 〈Vi, . . . , Vj〉 combined with 〈Vj , Vi〉 would
constitute a partially directed cycle in G, which would be a
contradiction to Theorem 1.

“Only if” Assume instead that π is not possibly causal from
V1 to VK . Then there is an edge Vi ← Vi+1 for some 1 ≤
i ≤ k on π. Then G contains Vi, Vj on π with i < j with
Vi ← Vj and no path in G is then b-possibly causal from V1
to VK ; in particular, π is not b-possibly causal from V1 to
VK .



D.5 PROOF OF COROLLARY 3

The proofs of the validity of the output of the local IDA-
algorithm and the joint IDA-algorithm rely on the fact that
in a CPDAG, no orientation of the undirected edges can
lead to a new v-structure, or a cycle, that includes an edge
that is already directed in the CPDAG [Meek, 1995]. It
is straightforward to show that the same is true for tiered
MPDAGs:

Lemma D.1. Let G = (V,E) be a tiered MPDAG, and let
Gu and Gd be the undirected and the directed parts of G
respectively. No orientation of the edges in Gu can create
either (i) a v-structure in G that includes an edge in Gd, or
(ii) a cycle in G that includes an edge in Gd.

Proof. (i) By Lemma 1 we know that G is maximal relative
to Meek’s 1st rule; this implies that no unshielded triple of
the form Xi → Xj −Xk can occur in G.

(ii) Assume that we could orient the edges in Gu such that we
would create a cycle in G including an edge from Gd. This
would require a cycle in G consisting of at least one directed
part and at least one undirected part; however, this would
constitute a partially directed cycle, which is a contradiction
to Theorem 1.

Proof of Corollary 3. We will first consider the joint IDA,
and we follow the proof of Theorem 5.1 in Nandy et al.
[2017]: Let Gu,1, . . . ,Gu,n denote the chain components
of Gu. Assume that only Gu,1, . . . ,Gu,l contain a node
from X. By Lemma D.1 we can orient each component
Gu,1, . . . ,Gu,l into DAGs independently of the rest of the
graph and obtain all valid parent sets from these. The multi-
plicity statement follows directly from Nandy et al. [2017].

We will now turn to the local IDA and we will follow the
proof of Lemma 3.1 in Maathuis et al. [2009], which shows
the following result: Let X ∈ V and let S ⊂ neG(X),
then GS→X does not create new v-structures with X as a
collider if and only if there exists a DAGD in the (restricted)
equivalence class represented by G for which paD(X) =
paG(X) ∪ S. The "if" part is trivial, we show the "only if"
part. As argued above, Lemma D.1 allows us to consider
each connected component of Gu separately. Assume thatX
is in Gu,i, we then need to show that we can orient Gu,i into
a DAG without any new v-structures, where S is the parent
set of X . In order to show that such an orientation exists,
Maathuis et al. [2009] rely on two facts (1) the induced
subgraph over X ∪ S is complete, and (2) Gu,i is chordal.
By Corollary 1 we know that (2) is satisfied. Since orienting
edges from S into X does not create any new v-structures,
all nodes in S must be adjacent in G; since S ⊆ neG(X) it
follows that the induced subgraph over X ∪ S is complete.
The rest follows from the proof of Lemma 3.1 in Maathuis
et al. [2009].

E PROOFS FOR SECTION 4

E.1 PROOF OF THEOREM 2

Proof. We will make use of the following result: Let π =
〈V1, V2, . . . , VK〉 be an unshielded path in Cu, then π is
unshielded in C as well: If for any subpath Vk−1−Vk−Vk+1

of π there were an edge Vk−1 ∗−∗ Vk+1 in C that was not
in Cu, then this edge would be directed; combined with
Vk−1−Vk−Vk+1 this would then create a partially directed
cycle, which cannot occur in C since it is a CPDAG.

“Only if”: (i): Assume that (i) is violated. Let π1 =
〈V1, . . . , VK〉 be an unshielded path in Cτ1u with π2 =
〈V1, . . . , VK〉 being the corresponding path in Cτ2u , and as-
sume that the first cross-tier edge on π1 is not the same as
the first cross-tier edge on π2. Additionally, assume that π1
and π2 are both earliest.

Since π1 and π2 are unshielded and undirected, the cor-
responding paths in the underlying DAGs cannot contain
colliders: They are either directed or they contain a sub-
path of the form Vk−1 ← Vk → Vk+1. In the latter case,
either all cross-tier edges on π1 will be on π1(V1, Vk) or
π1(Vk, VK), or they will both contain cross-tier edges; sim-
ilarly for π2. It will then be sufficient to show that either
π1(V1, Vk) 6= π2(V1, Vk) or π1(Vk, VK) 6= π2(Vk, VK).
Moreover, since we assume all background knowledge to
be correct, the paths must agree on the direction. Hence, we
can without loss of generality assume that the corresponding
paths in the underlying DAGs are directed from V1 to VK .

Assume that the first cross-tier edge on π1 is Vi → Vi+1

for 1 ≤ i ≤ K, while the first cross-tier edge on π2 is
Vj → Vj+1 with i < j ≤ K. Let π′1 be the path in G1 cor-
responding to π1, and let π′2 be the corresponding path in G2.
Since only Meek’s 1st rule applies (c.f. Lemma 1), the sub-
path π′1(V1, Vi) will remain undirected since no new arrow-
heads are oriented into this subpath. Assume for contradic-
tion that for some Vh with 1 ≤ h ≤ i− 1 there were a node
W ∈ adjCu(Vh) with τ1(W ) < τ1(Vh) such that W → Vh
in Cτ1u . Then the path π′ = 〈W,Vh, Vh+1, . . . , VK〉 in
Cτ1u would be earlier than π1, and π1 would contain the
subpath 〈Vh, Vh+1, . . . , VK〉 of π′, which is a contradic-
tion since we assumed π1 to be earliest. The subpath
π′1(Vi, VK) will be directed: Vi → Vi+1 is forced by τ1,
and we will then be able to iteratively orient each node
on 〈Vi+1, . . . , VK〉 in the direction of VK according to
Meek’s 1st rule when constructing G1, c.f. Lemma 1. Ana-
logously, the subpath of π′2(V1, Vj) is undirected, while the
subpath π′2(Vj , VK) is directed in G2. Hence, we have that
π′1(Vi, Vj) 6= π′2(Vi, Vj): It then follows that G1 6= G2.

(ii): Assume that (ii) is violated. Let Vi ∗−∗Vj be an edge for
which Cτ1u and Cτ2u disagree on whether it is directed or not.
Since Vi∗−∗Vj is only contained on shielded paths, it can only
be oriented by background knowledge c.f. Lemma 1, since



Meek’s 1st rule does not apply. It follows that G1 6= G2.

“If”: Since G1 and G2 are constructed from the same CPDAG,
they will agree on every edge that is directed in C; hence, we
will consider Cu. Assume that (i) and (ii) are both satisfied.
By (ii) we know that G1 and G2 will agree on the orientation
of any fully shielded edge, so we need to show that they will
also agree on the orientation of any edge that is not fully
shielded; we will consider the unshielded paths.

Let π1 = 〈V1, . . . , VK〉 be an unshielded path in Cτ1u and
let π2 = 〈V1, . . . , VK〉 be the corresponding path in Cτ2u .
Assume that D1 ∈ [C] is a DAG giving rise to τ1 and D2 ∈
[C] is a DAG giving rise to τ2. By the same argument as
above, we may assume that either (a) the corresponding
paths in D1 and D2 are directed from V1 to VK , or (b) the
corresponding path in D1 contains Vk−1 ← Vk → Vk+1 for
some 2 ≤ k ≤ K − 1; i.e. the subpaths will be directed
from Vk to V1 and from Vk to VK , and the corresponding
path in D2 contains Vl−1 ← Vl → Vl+1 for some 2 ≤ l ≤
K − 1; i.e. the subpaths will be directed from Vl to V1 and
from Vl to VK , or (c) the corresponding path in one DAG
is directed from V1 to VK , and the corresponding path in
the other DAG contains a subpath Vk−1 ← Vk → Vk+1 for
some 2 ≤ k ≤ K − 1. Since (b) is the most general case,
we will only consider this; (a) and (c) can be verified in a
similar way.

Either π1(V1, Vk) and π2(V1, Vl) will have a cross-tier edge,
π1(Vk, VK) and π2(Vl, VK) will have a cross-tier edge, or
they will all have a cross-tier edge. We consider the most
general case where they all have a cross-tier edge, and
assume that the first cross-tier edge on π1(Vk, VK) and
π2(Vl, VK) is Vi → Vi+1 and that the first cross-tier edge
on π1(V1, Vk) and π2(V1, Vl) is Vj → Vj−1. Let π′1 be the
path in G1 corresponding to π1, and let π′2 be the corres-
ponding path in G2. By similar arguments as above, it then
follows that π′1(Vj , Vi) = π′2(Vj , Vi) will remain undirec-
ted, π′1(V1, Vj) = π′2(V1, Vj) will be directed from Vj to V1,
and π′1(Vi, VK) = π′2(Vi, VK) will be directed from Vi to
VK . The case where π1 and π2 only have a single cross-tier
edge is special case of this. Hence, π′1 = π′2.

E.2 PROOF OF COROLLARY 4

Proof. Let G1 be the MPDAG obtained from C relative to
τ1, and let G2 be the MPDAG obtained from C relative to τ2.
Assume that (i) and (ii) are satisfied. If Cτ1u does not have
any additional oriented edges, then G1 = G2 by Theorem 2.

Assume that (i), (ii), and (iii) are satisfied. Let π1 =
〈V1, . . . VK〉 be an earliest unshielded path in Cτ1u and let
Vi → Vi+1 be the first cross-tier edge on π1. Let π′1 be
the corresponding path in G1. Then π′1(V1, Vi) will be un-
directed and π′1(V1, Vi) will be directed, by similar argu-
ments as in the proof of Theorem 2. Let π2 = 〈V1, . . . VK〉
be the path in Cτ2u corresponding to π1 and assume that

Vi − Vi+1 is not a cross-tier edge in Cτ2u . Let π′2 be the
corresponding path in G2. Either π2 will have at least one
cross-tier edge, or it will have no cross-tier edges. If π2
has no cross-tier edges, then π′2 will be undirected: Since
π′1 will be directed from Vi to VK , G1 will be contained in
G2. Assume instead that π2 has at least one cross-tier edge
and that the first cross-tier edge is Vj → Vj+1. Then by
(i) this is also a cross-tier edge on π1. Since Vj → Vj+1

is not the first cross-tier edge on π1 it follows that i ≤ j;
since Vi → Vi+1 is not a cross-tier edge on π2 we con-
clude that i < j. By similar arguments as in the proof
of Theorem 2 we then know that π′1(V1, Vi) = π′2(V1, Vi)
are undirected, π′1(Vj , VK) = π′2(Vj , VK) are directed, and
π′1(Vi, Vj) 6= π′2(Vi, Vj) since π′1(Vi, Vj) is directed and
π′2(Vi, Vj) is undirected. Then G1 will be contained in G2
and τ1 will be more informative than τ2.

Assume that (i), (ii) and (iv) are satisfied. Following the
proof of Theorem 2, the fully shielded edges can only be
oriented by background knowledge and G1 will be contained
in G2, and τ1 will be more informative than τ2.

Assume that (i), (ii), (iii) and (iv) are all satisfied. Then by
the same arguments as above, G1 will be contained in G2,
and τ1 will be more informative than τ2.
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