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Abstract

Equivalence classes of DAGs (represented by CP-
DAGs) may be too large to provide useful causal
information. Here, we address incorporating tiered
background knowledge yielding restricted equi-
valence classes represented by ‘tiered MPDAGs’.
Tiered knowledge leads to considerable gains in
informativeness and computational efficiency: We
show that construction of tiered MPDAGs only
requires application of Meek’s 1st rule, and that
tiered MPDAGs (unlike general MPDAGs) are
chain graphs with chordal components. This en-
tails simplifications e.g. of determining valid ad-
justment sets for causal effect estimation. Further,
we characterise when one tiered ordering is more
informative than another, providing insights into
useful aspects of background knowledge.

1 INTRODUCTION

We consider equivalence classes of DAGs represented by
completed partially directed acyclic graphs (CPDAGs), oc-
curring as outputs of causal discovery algorithms. A first
characterisation of equivalent DAGs was given by Verma
and Pearl [1990] and a full characterisation of CPDAGs by
Andersson et al. [1997]. Often, domain expertise provides
additional information about shared features of the graphs
in a class. Restricting the equivalence class by background
knowledge yields a type of partially directed acyclic graph
(PDAG) that is potentially much more informative due to
more induced edge orientations. Meek [1995] provided a
set of orientation rules to obtain a graph encoding the max-
imal implied information, and the resulting graph is then
a maximally oriented partially directed acyclic graph (MP-
DAG) [Perković et al., 2017]. While a CPDAG represents
an independence model common to all DAGs in the equival-
ence class, an MPDAG represents an independence model

as well as additional causal or directional information that
is common to all DAGs in a restricted equivalence class.
DAGs and CPDAGs are special cases of MPDAGs; DAGs
are MPDAGs with full (or sufficient) background know-
ledge, while CPDAGs are MPDAGs with no (or redundant)
background knowledge. A general characterisation of MP-
DAGs was given by Fang et al. [2022]. The interpretation of
MPDAGs was described in detail by Perković et al. [2017]
and is considerably more involved than that of CPDAGs.

Background knowledge can be induced by, e.g., well-
established causal or logical relations. Some kinds of know-
ledge, e.g. temporal or sequential structures, imply that the
nodes can be partitioned into ordered tiers. This is the case
in many settings where longitudinal data is collected, e.g.
cohort or panel studies, common in sociology, epidemiology
etc. In particular, this kind of data structure is used in the
field of life course epidemiology [Kuh and Ben-Shlomo,
2004]. Tiered background knowledge is typically unambigu-
ous and it is intuitively obvious that it must be useful. Indeed,
implementations of algorithms for constraint-based causal
discovery with a given tiered structure exist (e.g. Scheines
et al. [1998]), and have been applied to cohort data for life
course analyses [Petersen et al., 2021, Foraita et al., 2022],
but the general properties of these restricted model classes
have not yet been investigated. Here, we provide the first
formal in-depths analysis of equivalence classes restricted
by tiered knowledge. We show that there are several de-
sirable properties, distinguishing tiered from other kinds
of background knowledge. Thus, we focus on MPDAGs
arising from imposing a tiered ordering, which we term
‘tiered MPDAGs’. We show that under the key properties of
completeness and transitivity, tiered background knowledge
cannot induce partially directed cycles, and, moreover, that
tiered MPDAGs are chain graphs with chordal chain com-
ponents. This allows us to, e.g., apply common methods for
identifying causal effects using CPDAGs to tiered MPDAGs
without any additional processing.

While temporal structures will often be the main source
for tiered background knowledge, tiers are slightly more
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general. Information about logical causal directions may be
available, for instance between environment and individual
or between cells and molecules. When eliciting such back-
ground knowledge, there may be more effort involved to
achieve more detail; or it may be possible but more costly
to achieve more detail by the design of a, say, cohort study
with finer waves. Existing data from cohort studies are or-
ganised in a readily available tiered structure. But within
the same wave it may be possible to further subdivide the
nodes using logical, temporal or similar expertise; e.g. the
first wave of a children’s cohort may be composed of vari-
ables before and after birth, pertaining to mother or child
etc. With view to eliciting such details or designing a cohort
study, it is therefore interesting to characterise when differ-
ent tiered restrictions are redundant versus when they are
most informative.

In Section 2 we formalise the concepts of (tiered) back-
ground knowledge and restricted equivalence classes. We
then provide a formal characterisation of tiered MPDAGs:
Section 3 describes some of their properties, and Section
4 compares different tiered orderings in terms of informat-
iveness. In Section 4.3, we illustrate which types of tiered
knowledge are particularly informative via simulation, and
in Section 4.4 we provide a practical example. Section 5
addresses how tiered information structurally differs from
other types of background knowledge. Throughout, we rely
on standard notation for (causal) graphical models, an over-
view of relevant definitions can be found in Section A of the
Supplement; all proofs can be found in Sections D and E of
the Supplement.

2 BACKGROUND KNOWLEDGE

While the DAGs in an equivalence class have exactly the
same conditional independencies, they can still have vastly
different causal implications. In this section we introduce a
smaller, and possibly more informative, subclass of causal
graphs using background knowledge.

We define that background knowledge K = (R,F) consists
of a set of required edgesR and a set of forbidden edges F .

Definition 1 (Encoding background knowledge). A graph
G encodes background knowledge K = (R,F) if all of the
edges inR and none of the edges in F are present in G.

2.1 RESTRICTED EQUIVALENCE CLASSES

In our setup we only consider correct background know-
ledge in the sense that it agrees with an underlying (un-
known) true DAG:

Assumption 1. The given background knowledge is correct.

Let C be a CPDAG, then by [C] we denote the equivalence
class of DAGs represented by C.

Definition 2 (Meek [1995]). A CPDAG C and background
knowledge K = (R,F) are consistent if and only if there
exists a DAG D ∈ [C] such that all of the edges in R and
none of the edges in F are in D.

Since our focus is on equivalence classes, we will assume
throughout:

Assumption 2. The given CPDAG is correct.

Combining Assumption 1 and 2, background knowledge
will be consistent with the CPDAG. In actual practice, in-
consistencies might occur, e.g. due to statistical errors when
first learning the CPDAG. These are separate issues which
we address elsewhere.

Algorithm 1: Constructing CK

input :CPDAG C = (V,E) and consistent
background knowledge K = (R,F).

output :PDAG CK = (V,E′)
1 E′ = E
2 forall {Vi − Vj} ∈ E do
3 if {Vi → Vj} ∈ F then
4 replace {Vi − Vj} with {Vi ← Vj} in E′

5 else if {Vi → Vj} ∈ R then
6 replace {Vi − Vj} with {Vi → Vj} in E′

7 end

Consistent background knowledge is imposed on a CPDAG
by orienting the corresponding undirected edges. In turn,
this may allow us to orient further undirected edges, e.g. to
avoid directed cycles. Meek [1995] showed that maximal
edge orientations implied by given background knowledge
are obtained under a set of four orientation rules, also known
as Meek’s rules (see Figure B.1 in the Supplement). The
resulting graph then no longer represents an equivalence
class, but rather a restricted equivalence class.

More formally, the construction is as follows: Let C =
(V,E) be a CPDAG and let K = (R,F) be background
knowledge consistent with C. First, orient edges in C accord-
ing to K as in Algorithm 1, and let CK denote the PDAG ob-
tained from this procedure. Second, orient additional edges
by repeated application of Meek’s rules 1-4 until no further
change; let G denote the resulting PDAG. Then G is the max-
imally oriented partially directed acyclic graph (MPDAG)
obtained from C relative to K [Meek, 1995].

For a given CPDAG C and background knowledge K, the
MPDAG obtained from C relative to K is unique. However,
the origin of an MPDAG is not unique: Let C be a CPDAG,
and K1 and K2 two distinct sets of background knowledge.
If repeated applications of Meek’s rules to CK1 and CK2 lead
to the same MPDAG, then K1 and K2 are equivalent given
C. We say that K2 is redundant relative to K1 if K1 ⊆ K2

and K1 and K2 are equivalent. We say that a PDAG G1
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is contained in another PDAG G2 if they have the same
skeleton and every directed edge in G2 is also in G1. We say
that K1 is more informative than K2 if the MPDAG relative
to K1 is contained in the MPDAG relative to K2

2.2 TIERED BACKGROUND KNOWLEDGE

In this work we focus on background knowledge about
tiered structures.

Definition 3 (Partial tiered ordering). Let G be a PDAG
with node set V of size p, and let T ∈ N, T ≤ p.
A (partial) tiered ordering of the nodes in V is a map
τ : V 7→ {1, . . . , T}p that assigns each node V ∈ V
to a unique tier t ∈ {1, . . . , T}.

A tiered ordering is partial if multiple nodes are assigned to
the same tier. The following properties are implied by the
definition and reflect what kind of background knowledge
is encoded in a tiered ordering:

(Uniqueness) A node is assigned to no more than one tier.

(Completeness) Every node belongs to a tier.

(Transitivity) If τ(A) ≤ τ(B) and τ(B) ≤ τ(C) then
τ(A) ≤ τ(C).

A tiered ordering imposes background knowledge on a
graph by demanding that no directed edges point from later
tiers into earlier tiers, i.e. specifying the forbidden edges
accordingly F = {{A← B} : τ(A) < τ(B), A,B ∈ V}.
Thus, a tiered ordering provides information on the absence
of ancestral relations, but not on their presence. Combin-
ing tiered knowledge with a PDAG, it might be possible to
construct some ancestral relations which allow us to orient
undirected edges as illustrated in Example 1.

Example 1. Assume that we are given V = {A,B} and
tiered ordering τ with τ(A) < τ(B). This corresponds to
the background knowledgeK with forbidden setF = {A←
B} and no required edges: In this case it could be possible
that A is a parent of B or that there is no edge between
them. However, if we additionally knew that A and B are
adjacent, then our background knowledge would result in
the edge orientation {A→ B}.

As illustrated, the cross-tier edges play an important role
and are defined as follows.

Definition 4 (Cross-tier edge). Let G = (V,E) be a PDAG
and τ a tiered ordering of V. An edge {A→ B} ∈ E is a
cross-tier edge (relative to τ ) if τ(A) < τ(B).

With tiered knowledge τ , all cross-tier edges of a PDAG will
be directed. Conversely,A−B only occurs if τ(A) = τ(B).
Since a tiered ordering τ of a node set V unambiguously
implies a forbidden edge set we can refer to the MPDAG

obtained from a CPDAG relative to a tiered ordering τ ,
rather than referring to the forbidden edges implied by τ .
In view of Assumption 1 and 2, any tiered ordering that
does not contradict the directed edges of the CPDAG will
be consistent; to establish that there is no contradiction we
therefore only need to verify the cross-tier edges.

We will refer to MPDAGs relative to exclusively tiered back-
ground knowledge as ‘tiered MPDAGs’. This is in contrast
to general MPDAGs, which can arise from any kind of back-
ground knowledge.

A

B

C

D

E

F

G

τ = 1 τ = 2 τ = 3

Figure 1: DAGD = (V,E) with tiered ordering τ and three
tiers: A and B are assigned to tier 1, while C, D and E are
assigned to tier 2, and F and G are assigned to tier 3.

Example 2 (Equivalence class restricted by tiered order-
ing). Figure 1 shows a DAG D and a tiered ordering τ of
the nodes in D. The differences between the equivalence
class of D and the restricted equivalence class of D relative
to τ are illustrated in Figure 2. The CPDAG C represents
the equivalence class of D; as only two out of seven edges
are directed the conditional independencies alone do not
contain much causal information. Meanwhile, the restricted
equivalence class represented by tiered MPDAG G relative
to τ is much smaller, here six out of seven edges are ori-
ented. G will naturally contain the same adjacencies and
v-structures as C, the dashed cross-tier edges A→ C and
C → F are implied by the forbidden directions, and the
dotted edges C → D and F → G are consequences of
Meek’s 1st rule which prohibits new v-structures. Due to
these last additionally implied orientations of previously un-
directed edges, restricted equivalence classes given tiered
background knowledge might be even smaller, and thus more
informative, than one might initially expect.

3 PROPERTIES OF TIERED MPDAGS

When incorporating general background knowledge into
a CPDAG, it might be necessary to apply all of Meek’s
rules 1-4 in order to obtain a maximally informative graph.
Meek’s 1st rule ensures that no new v-structures are created,
while rules 2-4 all concern preventing directed cycles. By
construction, tiered knowledge imposes an ordering of the
nodes; using that this ordering is transitive and complete,
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Figure 2: The CPDAG C representing the equivalence class
of D, and the tiered MPDAG G representing the restricted
equivalence class of D relative to τ .

the following lemma shows that Meek’s 1st rule is sufficient
to construct a maximally informative graph. This is a strong
result, which will help us prove further results in this and
the following sections.

Lemma 1. Let C = (V,E) be a CPDAG and let τ be
a tiered ordering of the nodes V. Let Cτ be the PDAG
obtained according to Algorithm 1 and let G be the PDAG
obtained by repeatedly orienting edges in Cτ according to
Meek’s rule 1 until no further change occurs. Then G is the
MPDAG obtained from C relative to τ .

Note that so far we have taken a given CPDAG as the start-
ing point to which tiered background knowledge is added.
Alternatively, we can start at an earlier stage with a PDAG
G that contains directed edges only if they belong to v-
structures with other edges being undirected. In this case,
the tiered ordering can be incorporated into G by orienting
the cross-tier edges and then applying all four of Meeks
rules to achieve maximality. Lemma 1 therefore highlights
the extra orientations implied by tiered knowledge on top of
the usual orientations.

While general MPDAGs might contain partially directed
cycles, it turns out that when background knowledge arises
from tiered structures the completeness and transitivity of
tiered orderings ensure that no partially directed cycles can
occur:

Theorem 1. Let G = (V,E) be a tiered MPDAG, then G
does not have any partially directed cycles.

The implications of Theorem 1 allow us to work with tiered
MPDAGs in a similar way as with CPDAGs. The same does
not hold for MPDAGs in general [Perković et al., 2017]; we
will elaborate on this in the section below.

It was shown by Andersson et al. [1997] that CPDAGs
are chain graphs with chordal chain components, which is
useful for many purposes. Given Theorem 1 it becomes
straightforward to show that the the same holds for tiered
MPDAGs:

Corollary 1. Let G = (V,E) be a tiered MPDAG, then G
is a chain graph with chordal chain components.

Similarly, Wang et al. [2022] obtain graphs with chordal
undirected components under a different type of background
knowledge: Local background knowledge for a nodeA ∈ V
is defined as the knowledge of whether A is a cause of V ,
for each V ∈ adj(A). Although not explicit, this induces a
transitivity among the nodes in adj(A).

3.1 INTERPRETATION OF UNDIRECTED PATHS

In a CPDAG C = (V,E), an undirected path π between two
nodes A,B ∈ V indicates that there exist a DAG D1 ∈ [C]
and another DAG D2 ∈ [C] such that A is an ancestor
of B in D1 and B is an ancestor of A in D2. This is not
necessarily the case in a general MPDAG G = (V,E′): If
there is an edge A→ B in G not on π, i.e. G has a partially
directed cycle, then there exists a DAGD1 represented in the
class by G in which the path corresponding to π is directed
from A to B, but there cannot be a DAG D2 in the class
represented by G in which B is an ancestor of A since this
would create a cycle. Hence, an undirected path between
two nodes in an MPDAG does not necessarily mean that
the path can be directed either way. Hence it is necessary
to check multiple paths in the graph in order to determine
whether one path can be directed. Since partially directed
cycles do not occur in tiered MPDAGs, the above issue does
not occur and, hence, the interpretation of undirected paths
in tiered MPDAGs is the same as in CPDAGs.

3.2 ADJUSTMENT IN TIERED MPDAGS

The generalised adjustment criterion [Perković et al., 2018]
determines whether a set of nodes in a CPDAG constitutes a
valid adjustment set in every DAG in the equivalence class.
This criterion checks for possibly causal paths, i.e. paths
for which there are DAGs in the equivalence in which these
paths are causal. Hence, any undirected path is possibly
causal. However, as described in Section 3.1, this interpret-
ation does not hold for general MPDAGs, and the notion
of possibly causal does not transfer directly from CPDAGs
to MPDAGs. In order to tackle this issue, Perković et al.
[2017] introduced the notion of b-possibly causal paths,
which is a stronger requirement but ensures that there are
in fact paths in the equivalence class that are causal. With
this notion an adjustment criterion for general MPDAGs,
the b-adjustment criterion, can be given [Perković et al.,
2017]. To determine whether a path is b-possibly causal,
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one needs to check multiple paths in the graph, which can
be computationally heavy for large and dense graphs. For
tiered MPDAGs, the definition of b-possibly causal paths
simplifies to the definition of possibly causal paths, and the
generalised adjustment criterion for CPDAGs is valid for
tiered MPDAGs as well:

Corollary 2. Let G = (V,E) be a tiered MPDAG, and let
X,Y,Z ⊆ V be pairwise disjoint node sets. Then Z satis-
fies the generalised adjustment criterion relative to (X,Y)
in G if and only if it satisfies the b-adjustment criterion
relative to (X,Y) in G.

A related result is shown in van der Zander and Liskiewicz
[2016]: They introduce a class of graphs called restricted
chain graphs, which are chain graphs with (1) chordal chain
components, and (2) no unshielded triples of the form A→
B−C. They give a sound and complete adjustment criterion
for graphs of this type, and they provide an algorithm to
find adjustment sets. Clearly, a tiered MPDAG is a type of
restricted chain graph, and the results of van der Zander and
Liskiewicz [2016] hold for tiered MPDAGs.

3.3 IDA FOR TIERED MPDAGS

Covariate adjustment in a CPDAG (MPDAG) requires an
adjustment set to be a valid in every DAG in the (restric-
ted) equivalence class. The IDA-algorithm [Maathuis et al.,
2009], instead, finds an adjustment set for each DAG in the
class. Enumerating all DAGs in an equivalence class is a
computationally heavy task, but it can be done in polyno-
mial time for chain graphs with chordal chain components
[Wienöbst et al., 2021], hence also for tiered MDPAGs.

The local IDA-algorithm utilises the fact that if a valid
adjustment set exists, then the parent set is always valid
[Pearl, 2009] and considers the possible parents, i.e. all
sets that are parent sets in some DAG in the equivalence
class. However, as general MPDAGs can contain partially
directed cycles, it cannot be verified locally whether a set
of nodes is a possible parent set, and a semi-local version
was introduced to tackle this [Perković et al., 2017]. The
joint IDA-algorithm determines the joint parent sets semi-
locally by orienting subgraphs [Nandy et al., 2017]. Similar
to the local IDA-algorithm, this approach fails for general
MPDAGs due to potential partially directed cycles. To tackle
this issue Perković et al. [2017] introduced an additional
step to check whether the oriented subgraphs are valid. In
contrast, for tiered MPDAGs no additional steps are needed,
and the original local and joint IDA both remain valid:

Corollary 3. Let G = (V,E) be a tiered MPDAG. Let
PAG(X) denote the multiset of parent sets ofX in all DAGs
represented by G, and let PAlocal

G (X) denote the multiset
of parent sets of X obtained from the local IDA algorithm.
Then PAG(X) and PAlocal

G (X) contain the same distinct

elements. Moreover, let PAjoint
G (X) denote the multiset of

parent sets of X obtained from the joint IDA algorithm.
Then PAG(X) and PAjoint

G (X) contain the same distinct
elements and the ratios of multiplicities of any two elements
are the same.

In order to adapt the local IDA-algorithm to general MP-
DAGs, Fang and He [2020] introduced a set of local ori-
entation rules to verify whether a set of nodes is a possible
parent set of a given node, yielding a fully local version
of the IDA that can handle general MPDAGs. While this
reduces computation time for general MPDAGs, it is not
necessary for tiered MPDAGs due to Corollary 3.

Finally, the optimal IDA-algorithm [Witte et al., 2020] is
only semi-local and it includes an additional step to check
other parts of the graph: This algorithm is essentially not
local as the optimal adjustment set is not likely to be the
parent set [Witte et al., 2020, Henckel et al., 2022]. In this
case, tiered MPDAGs do not have an advantage over general
MPDAGs. However, the definition of the optimal adjustment
set does simplify in a similar fashion as in Section 3.2. A
minimal version of the IDA-algorithm is proposed by Guo
and Perković [2021]; like the optimal IDA, this method
is non-local by construction, and tiered MPDAGs do not
provide an advantage in this case.

4 COMPARING TIERED BACKGROUND
KNOWLEDGE

In this section, we investigate how different tiered back-
ground knowledge can be compared. This is relevant in
situations where different experts are consulted or where
eliciting more detailed knowledge may require more ef-
fort. It also provides insights into what kind of background
knowledge is especially valuable. In case of a cohort study
spanning a whole life-time, we have a clear tiered structure
due to the time-ordering, but the tiers might be large, and
we need to consult different experts in order to refine the
tiers depending on their expertise in e.g. children’s health,
life style factors, or diseases common among the elderly.
This can be very costly and time consuming to obtain, and it
is then beneficial to know how to prioritise. Moreover, time-
ordering has the advantage of being correct, whereas other
ways of motivating tiers might be less certain. The results of
this section could therefore also be used at the design stage
of a, say, cohort study: As our results will show, the finer we
can reliably partition early variables into tiers by the design
alone, the more informative it will be for causal structure
learning.

Throughout, we will only compare tiered orderings that are
compatible in the sense that they do not contradict each other
on the ordering of the nodes; this is in line with Assumption
1. Hence, the orderings can only disagree on the status of an
edge being a cross-tier edge, not the direction of it.
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Consider two different tiered orderings τi and τj . If for all
A,B ∈ V : τi(A) < τi(B) ⇒ τj(A) < τj(B), then τj is
finer than τi, and τi is coarser than τj . In this case we have
for the respective sets of forbidden edges that Fi ⊆ Fj .

Note that a finer tiered ordering can be redundant compared
to the coarser one; otherwise it must be more informative.
However, two tiered orderings can be different without one
being finer or coarser than the other. They can then either be
equivalent, or one can be more informative than the other,
or they are incomparable.

To compare tiered orderings on a given CPDAG, we must
compare the resulting tiered MPDAGs. We give a graphical
criterion for their equivalence in Section 4.1. Evidently,
this provides a criterion for redundancy. More interestingly,
this also provides insight into when one ordering is more
informative than another as addressed in Section 4.2.

4.1 EQUIVALENCE OF TIERED MPDAGS

First, we need some further terminology:

Definition 5 (Earlier path). Let G = (V,E) be a PDAG,
let τ be a tiered ordering of the nodes V, and let π1 and
π2 be two arbitrary paths in G. If π1 contains a node V
with τ(V ) < τ(W ) for all nodes W on π2, we say that π1
is earlier than π2; correspondingly, π2 is later than π1. A
path is earliest if it does not contain subpaths of any earlier
paths.

We say that an edge is fully shielded if it does not occur on
any unshielded path. Hence, A∗−∗B is a fully shielded edge
in G iff adjG(A)\{B} = adjG(B)\{A}.

In the following, Cτu refers to the graph obtained by first
omitting every directed edge in a graph C, and then orienting
edges in Cu according to the tiered ordering τ .

Theorem 2. Let C be a CPDAG and let τ1 and τ2 be distinct
tiered orderings. Let G1 be the tiered MPDAG obtained from
C relative to τ1 and G2 the tiered MPDAG obtained from C
relative to τ2. Then G1 = G2 if and only if

(i) Cτ1u and Cτ2u agree on the first cross-tier edge on any
earliest unshielded path and

(ii) Cτ1u and Cτ2u agree on any fully shielded cross-tier edge.

A path can have at most two first cross-tier edges. If a
path contains two first cross-tier edges, the above condition
requires Cτ1u and Cτ2u to agree on both cross-tier edges.

Example 3 (Equivalent tiered orderings). We again con-
sider the DAG D and the tiered ordering τ in Figure 1 from
Example 2. Now we compare τ to the tiered ordering τ ′ with

τ ′(A) = τ ′(B) = 1

τ ′(C) = τ ′(D) = τ ′(E) = τ ′(F ) = τ ′(G) = 2

A

B

C

D

E

F

G

Figure 3: The undirected subgraph Cu of the CPDAG C from
Figure 2.

In Figure 3 we have the undirected subgraph Cu of the
CPDAG C of D. There are two earliest unshielded paths in
Cu: B−A−C −F −G and B−A−C −D. Clearly, Cτu
and Cτ ′

u agree on the first cross-tier edges on these paths:
On 〈B,A,C, F,G〉 the first cross-tier edge is A→ C, and
on 〈B,A,C,D〉 the first cross-tier edge is A → C. Note
that in these graphs, no edge is fully shielded. Orienting
edges in Cτu and Cτ ′

u repeatedly according to Meek’s 1st
rule results in the same MPDAG. Since τ is finer than τ ′, it
follows that τ is redundant relative to τ ′ given C.

4.2 COMPARING TIERED ORDERINGS

We have now characterised when two tiered orderings pro-
duce the same MPDAG; as a consequence of this, Theorem
2 also gives rise to useful insights concerning when tiered
knowledge is more informative.

Corollary 4. Let C = (V,E) be a CPDAG and let τ1 and
τ2 be two distinct tiered orderings of V. Assume that

(i) every first cross-tier edge on an earliest unshielded
path in Cτ2u is also a cross-tier edge in Cτ1u , and

(ii) every fully shielded cross-tier edge in Cτ2u is also a
cross-tier edge in Cτ1u ,

then τ1 is more informative than τ2 given C if

(iii) Cτ1u has a first cross-tier edge on an earliest unshielded
path, that is not a cross-tier edge in Cτ2u , or

(iv) Cτ1u has more fully shielded cross-tier edges than Cτ2u .

In Corollary 4, (i) and (ii) ensure that the MPDAG G1 re-
lative to τ1 is contained in the MPDAG G2 relative to τ2.
Additional information can be obtained in two ways: Either
directly from the tiered ordering, reflected in condition (iv),
or indirectly through Meek’s 1st rule, reflected in condition
(iii).

Consider first condition (iii). This condition does not men-
tion the number of cross-tier edges, it is only important to
know the earliest.

Example 4. Consider again the DAG D = (V,E) from
Example 2 and Example 3. Consider now the tiered ordering
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τ1 with

τ1(A) = τ1(B) = 1

τ1(C) = 2

τ1(D) = τ1(E) = 3

τ1(F ) = 4, and

τ1(G) = 5

Clearly, τ1 results in the same MPDAG as τ and τ ′; since τ1
is finer than both τ and τ ′ it is redundant given C. Consider
now the tiered ordering τ2 of V with

τ2(A) = τ2(B) = τ2(C) = 1

τ2(D) = τ2(E) = 2

τ2(F ) = 3, and

τ2(G) = 4

Let G′ be the MPDAG relative to τ2 given C. Then G′ has
the same edge orientations as the MPDAG relative to τ ,
τ ′ and τ1, except for {A→ C} which remains undirected
in G′. Here, τ1 is finer than τ2, but τ1 is not redundant. In
fact, τ1 is more informative than τ2 due to condition (iii) of
Corollary 4. In addition, τ and τ ′ are both more informative
than τ2, even though τ2 assigns the nodes to more tiers.

Consider condition (iv) in Corollary 4. This suggests that
every fully shielded cross-tier edge provides unique inform-
ation. Hence, there is an immediate gain in information
from each additional fully shielded cross-tier edge in Cu,
since edges of this type can not be oriented by Meek’s 1st
rule. Hence, in the complete subgraphs of Cu, no tiered
background knowledge is redundant.

Example 5 (Fully shielded edges). Consider the simple case
of a CPDAG C = (V,E) with three nodes V = {A,B,C},
where C is complete: E = {{A − B}, {B − C}, {A −
C}}. Assume that the true ordering τα assigns the nodes to
individual tiers with τα(A) < τα(B) < τα(C). There are
then three types of partial orderings that are compatible with
τα: Orderings that assigns the nodes to the same tier, e.g. an
ordering τβ with τβ(A) = τβ(B) = τβ(C), or orderings
that assigns two nodes to the same tier and the third to an
individual tier, e.g. τγ and τδ with τγ(A) < τγ(B) = τγ(C)
and τδ(A) = τδ(B) < τδ(C).

Figure 4 shows that the MPDAGs Gα (relative to τα), Gβ
(relative to τβ), Gγ (relative to τγ), and Gδ (relative to τδ)
are distinct. All oriented edges are implied by the tiered
background knowledge and no edge has been oriented as
a consequence of Meek’s 1st rule. Here, τδ and τγ are in-
comparable, and they are both more informative than τβ .
Moreover, τα is more informative than the other orderings.

4.3 SIMULATION STUDY

Corollary 4 shows that in graphs with many unshielded
paths we can potentially obtain a large amount of additional

A B C A B C

A B C A B C

Gα Gβ

Gγ Gδ

Figure 4: Top left: MPDAG Gα relative to τα; note that
this is equal to the underlying DAG. Top right: MPDAG
Gβ relative to τβ ; note that this is equal to the CPDAG
C. Bottom left: MPDAG Gγ relative to τγ . Bottom right:
MPDAG Gδ relative to τδ .

information, and the earlier we are able to identify the direc-
tion of a causal path, the more information we can gain. In
summary: (1) early knowledge is in general more beneficial
than late knowledge, even if the late knowledge is more de-
tailed (c.f. Example 4), and (2) since we expect unshielded
paths to occur more frequently in sparse graphs, the effect
of Meek’s 1st rule is expected to be more pronounced in
sparse than in dense graphs. In order to investigate to which
degree these two features occur in practice, we conducted a
simulation study.

Late simple

Early simple

Late detailed

Early detailed

Full knowledge

Late simple

Early simple

Late detailed

Early detailed

Full knowledge

Dense Sparse

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Proportion of newly directed edges

Ty
pe

 o
f t

ie
re

d 
ba

ck
gr

ou
nd

 k
no

w
le

dg
e

Figure 5: Results of one setting of the simulation. 6000
random DAGs with 25 nodes were generated; half of them
sparse, the other half dense. For each DAG and tiered order-
ing, the tiered MPDAG was constructed and the difference
in number of directed edges to its corresponding CPDAG
was computed, divided by the total number of edges.

To adhere to Assumption 1, we generated random DAGs
and for each random DAG, we considered five different,
consistent tiered orderings: full knowledge, early detailed
knowledge, late detailed knowledge, early simple know-
ledge and late simple knowledge. For each DAG, we con-
structed its CPDAG, and for each combination of DAG and
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tiered ordering, we constructed the tiered MPDAG. To ad-
here to Assumption 2, the CPDAGs and MPDAGs were
constructed based on the independence models encoded by
the DAGs; hence, finite sample issues did not occur. For
each MPDAG, we counted the difference in number of dir-
ected edges between the MPDAG and its corresponding
CPDAG, and divided this by the total number of edges;
this measures the fraction of edges that cannot be oriented
in the CPDAG, but can be oriented in the tiered MPDAG.
Since we compare oracle CPDAGs to oracle MPDAGs, this
measures exactly the (relative) gain in informativeness. A
detailed description of the study can be found in Section C
in the Supplement.

Figure 5 shows that using the full knowledge of the or-
derings unsurprisingly provides most new orientations.
Moreover, we see that early knowledge is more beneficial
than late, even though they are equally detailed, which is
in line with (1) above. Interestingly, in dense graphs early
knowledge can also induce more oriented edges than late
knowledge, even if the later knowledge is more detailed,
which is also in line with (1). Additionally, the advantage of
adding tiered background knowledge is relatively larger in
sparse graphs than dense graphs, which is in line with (2).

We performed the same procedure for random DAGs with
node sets of size 10, 50 and 100, for which we found ana-
logous results. These results are depicted in Figure C.2 in
the Supplement.

4.4 PRACTICAL EXAMPLE

mother’s
age

smoking
during

pregnancy

weeks
pregnant

birth
weight

sleep
quality

insulin
resistance

media
consumption

well being

BMI

wave 1 wave 2

Figure 6: Simplified example of a cohort study. Early life
factors are measured at wave 1, childhood health factors
at wave 2. Edges are oriented by the v-structures, time-
ordering and Meek’s rules. Expert knowledge allows the
first tier to be subdivided into three new tiers.

Figure 6 is a simplified example based on cohort data ana-
lysed in Foraita et al. [2022], it shows the MPDAG ob-
tained from the time-ordering of wave 1 and 2. The corres-

ponding CPDAG only has two fewer directed edges (the
dashed and dotted), so the time-ordering does not provide
much new information. The induced subgraph over the
first wave remains undirected. In order to obtain a more in-
formative graph, we should consult early life experts rather
than children’s life style experts; alternatively, the cohort
study should have been designed such that early life factors
were measured at different time points. While mother’s age
naturally is determined before smoking during pregnancy,
which again occurs before birth, experts could disagree on
the causal order of pregnancy duration and birth weight,
which are defined at the exact same time. However, it is
not necessary to order these particular two nodes, here:
Any ordering τ with τ (mothers age)< τ (smoking during
pregnancy)< τ (remaining nodes) allows for the entire graph
to be oriented in this case.

5 RELATION TO OTHER WORK

Subject matter background knowledge can come from dif-
ferent sources and take different forms, and previous work
provides results for other knowledge than tiered one. A dis-
tinct type of causal background knowledge is, for instance,
obtainable when experimentation is possible, see Hauser
and Bühlmann [2012] for a characterisation of interven-
tional equivalence classes of DAGs. While a tiered ordering
is given before learning a graph, experiments can be per-
formed iteratively, and the choice of most informative inter-
ventions might depend on the given intermediate graphical
structure. It has been shown in Eberhardt [2008] and Hauser
and Bühlmann [2014] that the most informative strategy
is to intervene on nodes in the largest undirected complete
subgraphs: this yields most new edge orientations, including
those following from Meek’s rules. Since the knowledge ob-
tained from an intervention is local, this type of background
knowledge lacks the completeness of tiered knowledge. This
means that all four of Meek’s rules might apply after orient-
ing edges according to interventional knowledge, resulting
in additional orientations within a complete subgraphs, in
contrast to tiered background knowledge.

Mooij et al. [2020] considered context variables. These can
be seen as a special case of tiered knowledge: Some of the
variables, the context variables, form an earlier tier, and
others, the system variables, form later tiers. However, there
can be additional knowledge about presence/absence of
relations between context variables, or their causal relations
may not be of interest: In these cases we are no longer in
the tiered framework.

Background knowledge about non-ancestral (pairwise) rela-
tions, considered by Fang and He [2020], can be seen as a
non-complete version of tiered knowledge. They show that
knowledge of non-ancestral relations can be translated to
a set of direct causal relations, i.e. directed edges. In con-
trast, the completeness and transitivity of tiered knowledge
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subsumes such relations through the orientations of cross-
tier edges. A more general representation of background
knowledge is provided in Fang et al. [2022], where ancestral
background knowledge on node pairs is considered; this
is surprisingly different from tiers and cannot necessarily
be encoded graphically. The authors provide a criterion for
checking equivalence of background knowledge, which is
more general than the one provided here since tiered back-
ground knowledge can be considered a complete version
of pairwise causal constraints. However, unlike Fang et al.
[2022], our criterion can be checked on the graph, and due
to the properties of tiered orderings, it is rather simple.

Multivariate time series, as repeated measurements of the
same variables over time [Malinsky and Spirtes, 2018,
Runge et al., 2019], have a very obvious and unambigu-
ous tiered ordering, and in this sense our results extend to
time series. But because time series are observations on a
single unit over a long time instead of multiple i.i.d. obser-
vations, the models typically impose additional structure.
For instance, that each variable depends on its own past,
thus forcing edges, which is a restriction that we have not
considered; and that there is a limited memory (e.g. k-th
order), thus disallowing edges, which we have also not con-
sidered; and importantly, for time series a stationarity or
slow/smooth change of the structure is enforced which is
also not covered by tiered background knowledge. Our res-
ults on the ensuing equivalence classes, such as absence
of partially directed cycles, still apply under these addi-
tional structural assumptions as they restrict the skeleton
of the true CPDAG, and the tiered (in this case temporal)
background knowledge complements them. Considering
informativeness, sometimes it may be possible to impose ad-
ditional tiers within time-slices if there is a known order for
the contemporaneous variables, e.g. due to biological pro-
cesses underlying medical time series; this could be useful
in obtaining more edge orientations.

A different line of work on using background knowledge re-
laxes the assumption of causal sufficiency. Latent variables
can be accommodated in maximal ancestral graphs (MAGs)
(Richardson and Spirtes [2002]), and the corresponding equi-
valence classes are represented by partial ancestral graphs
(PAGs), see characterization by Ali et al. [2009]. Different
orientation rules are needed, and a set of ten rules were intro-
duced by Zhang [2008] ensuring the maximally informative
PAG. For added background knowledge it has not yet been
shown, in general, that these ten rules yield a maximally
informative graph. However, this has been shown for tiered
background knowledge under the extra assumptions of no
cross-tier confounding and no selection bias [Andrews et al.,
2020]. Moreover, in this case it turns out that not all ten
orientation rules are needed, similarly to our Lemma 1. We
therefore conjecture that analogous results to those of sec-
tion 3 extend to PAGs with tiered background knowledge
under the assumptions of no selection bias and no cross-tier

confounding. Further work is still needed to relax the often
implausible assumption of no cross-tier confounding.

6 DISCUSSION

By formalising equivalence classes restricted by tiered or-
derings, we provided some new insights: Tiered MPDAGs
do not have partially directed cycles and are chain graphs
with chordal chain components; this makes them easier to
handle and interpret, e.g. for causal effect estimation. We
have given a characterisation of tiered MPDAGs which cla-
rified what can be gained by adding tiered knowledge and
what will still remain unknown. Sparse graphs, in particular,
will benefit much from edge orientations implied by the
tiered ordering; further, eliciting background knowledge to
separate out early tiers is especially informative. Hence, this
is when we do become ‘wiser with time’.

In summary, we believe that oftentimes background know-
ledge comes in the form of a tiered ordering. Moreover,
tiered knowledge can be expected to be reliable especially
when based on temporal information. A benefit of the tiered
orderings is that in case of doubts or disagreements about
the ordering, these may be resolved by coarsening the tiers
and thus arrive at, say, a consensus among differing expert
opinions. Tiered MPDAGs are, therefore, at least as plaus-
ible as their corresponding CPDAGs without background
knowledge. In addition, tiered MPDAGs will also be at least
as informative as their corresponding CPDAGs – in prac-
tice they will often be much more informative. While it is
self-evident that any background knowledge should be ex-
ploited for causal structure learning, we have illustrated how
specific aspects and how much the background knowledge
results in an information gain that goes well beyond the
orientation of cross-tier edges.
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