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A OMITTED PROOFS

A.1 PROOF OF THEOREM 1

Observe that by definition, we have for any v, w ∈ V that P(ω = v) = P(ω = w). Thus, by Bayes’ rule and the law of total
probability we get

P(ω = v | X⋆ = X) =
P(X⋆ = X | ω = v)P(ω = v)

P(X⋆ = X)

=
P(X⋆ = X | ω = v)P(ω = v)∑

ω∈V

P(X⋆ = X | ω = ω)P(ω = w)
=

P(X⋆ = X | ω = v)∑
ω∈V

P(X⋆ = X | ω = ω)
.

As
∑

ω∈V P(X⋆ = X | ω = ω) is independent from v, we have

argmax
v∈V

P(ω = v | X⋆ = X) = argmax
v∈V

P(X⋆ = X | ω = v)

and the theorem follows.

A.2 PROOF OF PROPOSITION 8

Proof. The recurrence x̄t = exp(−λp(1− x̄t−1)) can be easily calculated by the probability generating function of the
Poisson distribution. Indeed, let fPo(λ)(s) = E

[
sPo(λ)

]
be the probability generating function of the Poisson distribution. It

is well known that

fPo(λ)(s) = exp(−λ(1− s)).

We refer to [Grimmett and Stirzaker, 2020] for a detailed explanation of the connection between the probability generating
function and the extinction probability of branching processes.

Now, for brevity, suppose that v = ωc. Let V0 be the event that v has exactly k ≤ d0 ≤ d children that get activated by
v. Similarly as before, P(V0) = P(Po(λp) = d0) and of course, d0 needs to be at least k as differently, the probability of
having k active sub-trees was zero.

Given V0, we again start d0 independent Galton-Watson processes with offspring distribution Po(λp) in the children.
Therefore, the probability of observing exactly k active sub-trees is the probability that exactly k out of d0 of those processes
are not extinct after tX

⋆

v steps. Of course, the number of such active sub-trees at time t is distributed as Bin(d0, x̄t) given
V0 and the first part of the formula follows.

As in the d-regular case, if on contrary v is not the closest candidate but a node further apart from X⋆, we observe that from
the originally 1 ≤ d0 ≤ d Galton-Watson processes originated in the children of v, exactly one process needed to survive
and d0 − 1 needed to be extinct at time tX

⋆

v .
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A.3 PROOF OF THEOREM 3 (I)

Proof of Theorem 3 (i). As in the d-regular case, the first part of Theorem 3 follows by the first part of Proposition 8. If
λp ≤ 1, the smallest fixed-point of x̄ 7→ exp−λp(1− x̄) is x̄ = 1. Therefore, x̄t = 1 − ot(1) describes the probability
that the underlying spreading process died out until time-step t. More precisely, by the recurrence equation, we find the
following. Suppose that εt = ot(1) denotes the convergence speed towards 1. Then, by the recurrence equation and a Taylor
approximation we have

1− εt = 1− λp

(
εt−1 +

λ2p2ε2t−1

2

)
+O

(
ε3t−1

)
.

If λp < 1, we directly find that εt = O((λp)t) decays exponentially fast in t. If λp = 1, this is much more subtle. Indeed,
we find

εt ≤
(
εt−1 −

ε2t−1

2

)
+O

(
ε3t−1

)
and therefore, we only get εt = O

(
t−1
)

in this case.

Since we assume p to be a constant, clearly λ = O(1) as well. Unfortunately, the Poisson tails are kind of heavy. More
precisely, even if λ is a constant, the probability that a Po(λ) variable becomes large is not negligible. We analyze this by a
careful application of limits. Recall that we assume that the underlying tree-network is infinite. We model this as follows.
Suppose that the tree-network consists of n vertices and we will let n → ∞.

Let C > 0, then the probability that the number of neighbors of a specific node v exceeds C is, for large C, given by
Chernoff bounds as

P(|∂v| > C) ≤ exp

(
− (C − λ)2

2C

)
∼ exp(−C/2).

As the number of spawned children is independent for all vertices, the number of vertices of degree at least C is stochastically
dominated by Bin(n, exp(−C/2)). Thus, with probability 1−on(1), there are no more than O(n

√
ln(n) exp(−D)) vertices

of degree D > 0 for a sufficiently large constant D (independent of n) if n → ∞.

We denote by D the event that this is actually true. Thus, conditioned on D, there are only O(n
√
ln(n) exp(−D)) vertices

of degree at least D. Now, we chose ω uniformly at random out of all vertices. Therefore, given D, the probability that ω
has small degree is

P(|∂ω| > D | D) = 1−O

( √
ln(n)

exp(−D)

)
.

Clearly, this becomes only a high probability event if D = Ω(ln lnn). In the worst case, we find that a union bound
over all activated children of ω leads only to ultimate extinction of all processes, if O

(
ln lnn

t

)
= ot(1), or, differently,

that t = ω(ln lnn). As in the theorem, we only claim the assertion in the limit t → ∞ and we assume the underlying
tree-network to be infinite. This proves the claim of the theorem. We remark at this point that the assumption that t depends
slightly on n does no harm to applications as, on real networks, ln lnn can be seen as a constant.
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Table 1: Simulation results for random geometric graphs.

p
number of
successes

ωc ̸= ω X⋆ = ∅ average
distance

maximum
distance

0.00 0 0 100 0
0.05 1 1 98 2.25 4
0.10 5 29 66 2.39 5
0.15 25 59 16 2.02 6
0.20 34 63 3 1.68 5
0.25 51 48 1 1.51 4
0.30 62 36 2 1.40 5
0.35 71 29 0 1.24 5
0.40 86 14 0 1.11 4
0.45 94 6 0 1.04 3
0.50 94 6 0 1.13 5
0.55 95 5 0 1.07 5
0.60 100 0 0 0.97 4
0.65 95 5 0 1.03 6
0.70 99 1 0 0.79 3
0.75 99 1 0 1.03 5
0.80 100 0 0 0.97 5
0.85 100 0 0 0.96 6
0.90 100 0 0 0.66 3
0.95 98 2 0 0.87 5
1.00 100 0 0 0.85 6

Table 2: Simulation results for Erdős-Rényi graphs.

p
number of
successes

ωc ̸= ω X⋆ = ∅ average
distance

maximum
distance

0.00 0 0 100 - -
0.05 0 0 100 - -
0.10 0 0 100 - -
0.15 0 1 99 6.00 6
0.20 0 6 94 7.50 9
0.25 0 14 86 6.63 8
0.30 2 30 68 7.34 10
0.35 11 35 54 7.23 10
0.40 21 49 30 5.87 9
0.45 33 43 24 6.14 9
0.50 42 33 25 1.15 8
0.55 54 31 15 0.54 3
0.60 63 24 13 0.36 3
0.65 74 19 7 0.30 2
0.70 78 17 5 0.21 2
0.75 78 15 7 0.17 2
0.80 82 12 6 0.18 3
0.85 81 15 4 0.17 2
0.90 86 13 1 0.17 2
0.95 85 10 5 0.10 1
1.00 92 5 3 0.05 1
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Table 3: Simulation results for random regular graphs (configuration model).

p
number of
successes

ωc ̸= ω X⋆ = ∅ average
distance

maximum
distance

0.00 0 0 100 - -
0.05 0 0 100 - -
0.10 0 0 100 - -
0.15 0 0 100 - -
0.20 0 0 100 - -
0.25 0 5 95 7.20 9
0.30 0 16 84 7.53 11
0.35 2 26 72 6.86 12
0.40 19 43 38 5.37 11
0.45 38 40 22 2.70 11
0.50 43 41 16 2.06 9
0.55 70 23 7 0.57 6
0.60 76 21 3 0.34 4
0.65 86 11 3 0.15 3
0.70 87 10 3 0.14 3
0.75 98 2 0 0.02 1
0.80 97 3 0 0.03 1
0.85 99 1 0 0.01 1
0.90 100 0 0 0 0
0.95 100 0 0 0 0
1.00 100 0 0 0 0
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