Inference of a Rumor's Source in the Independent Cascade Model (Supplementary Material)

A OMITTED PROOFS

A. 1 PROOF OF THEOREM 1

Observe that by definition, we have for any $v, w \in V$ that $\mathbb{P}(\boldsymbol{\omega}=v)=\mathbb{P}(\boldsymbol{\omega}=w)$. Thus, by Bayes' rule and the law of total probability we get

$$
\begin{aligned}
& \mathbb{P}\left(\boldsymbol{\omega}=v \mid \boldsymbol{X}^{\star}=X\right)=\frac{\mathbb{P}\left(\boldsymbol{X}^{\star}=X \mid \boldsymbol{\omega}=v\right) \mathbb{P}(\boldsymbol{\omega}=v)}{\mathbb{P}\left(\boldsymbol{X}^{\star}=X\right)} \\
& \quad=\frac{\mathbb{P}\left(\boldsymbol{X}^{\star}=X \mid \boldsymbol{\omega}=v\right) \mathbb{P}(\boldsymbol{\omega}=v)}{\sum_{\omega \in V} \mathbb{P}\left(\boldsymbol{X}^{\star}=X \mid \boldsymbol{\omega}=\omega\right) \mathbb{P}(\boldsymbol{\omega}=w)}=\frac{\mathbb{P}\left(\boldsymbol{X}^{\star}=X \mid \boldsymbol{\omega}=v\right)}{\sum_{\omega \in V} \mathbb{P}\left(\boldsymbol{X}^{\star}=X \mid \boldsymbol{\omega}=\omega\right)} .
\end{aligned}
$$

As $\sum_{\omega \in V} \mathbb{P}\left(\boldsymbol{X}^{\star}=X \mid \boldsymbol{\omega}=\omega\right)$ is independent from v, we have

$$
\arg \max _{v \in V} \mathbb{P}\left(\boldsymbol{\omega}=v \mid \boldsymbol{X}^{\star}=X\right)=\arg \max _{v \in V} \mathbb{P}\left(\boldsymbol{X}^{\star}=X \mid \boldsymbol{\omega}=v\right)
$$

and the theorem follows.

A. 2 PROOF OF PROPOSITION 8

Proof. The recurrence $\bar{x}_{t}=\exp \left(-\lambda p\left(1-\bar{x}_{t-1}\right)\right)$ can be easily calculated by the probability generating function of the Poisson distribution. Indeed, let $f_{\mathrm{Po}(\lambda)}(s)=\mathbb{E}\left[s^{\mathrm{Po}(\lambda)}\right]$ be the probability generating function of the Poisson distribution. It is well known that

$$
f_{\operatorname{Po}(\lambda)}(s)=\exp (-\lambda(1-s))
$$

We refer to [Grimmett and Stirzaker, 2020] for a detailed explanation of the connection between the probability generating function and the extinction probability of branching processes.
Now, for brevity, suppose that $v=\boldsymbol{\omega}_{c}$. Let \mathcal{V}_{0} be the event that v has exactly $k \leq \boldsymbol{d}_{0} \leq d$ children that get activated by v. Similarly as before, $\mathbb{P}\left(\mathcal{V}_{0}\right)=\mathbb{P}\left(\operatorname{Po}(\lambda p)=\boldsymbol{d}_{0}\right)$ and of course, \boldsymbol{d}_{0} needs to be at least k as differently, the probability of having k active sub-trees was zero.

Given \mathcal{V}_{0}, we again start \boldsymbol{d}_{0} independent Galton-Watson processes with offspring distribution $\operatorname{Po}(\lambda p)$ in the children. Therefore, the probability of observing exactly k active sub-trees is the probability that exactly k out of \boldsymbol{d}_{0} of those processes are not extinct after $t_{v}^{\boldsymbol{X}^{\star}}$ steps. Of course, the number of such active sub-trees at time t is distributed as $\operatorname{Bin}\left(\boldsymbol{d}_{0}, \bar{x}_{t}\right)$ given \mathcal{V}_{0} and the first part of the formula follows.

As in the d-regular case, if on contrary v is not the closest candidate but a node further apart from \boldsymbol{X}^{\star}, we observe that from the originally $1 \leq \boldsymbol{d}_{0} \leq d$ Galton-Watson processes originated in the children of v, exactly one process needed to survive and $\boldsymbol{d}_{0}-1$ needed to be extinct at time $t_{v}^{\boldsymbol{X}^{\star}}$.

A. 3 PROOF OF THEOREM 3 (I)

Proof of Theorem 3 (i). As in the d-regular case, the first part of Theorem 3 follows by the first part of Proposition 8. If $\lambda p \leq 1$, the smallest fixed-point of $\bar{x} \mapsto \exp -\lambda p(1-\bar{x})$ is $\bar{x}=1$. Therefore, $\bar{x}_{t}=1-o_{t}(1)$ describes the probability that the underlying spreading process died out until time-step t. More precisely, by the recurrence equation, we find the following. Suppose that $\varepsilon_{t}=o_{t}(1)$ denotes the convergence speed towards 1 . Then, by the recurrence equation and a Taylor approximation we have

$$
1-\varepsilon_{t}=1-\lambda p\left(\varepsilon_{t-1}+\frac{\lambda^{2} p^{2} \varepsilon_{t-1}^{2}}{2}\right)+O\left(\varepsilon_{t-1}^{3}\right)
$$

If $\lambda p<1$, we directly find that $\varepsilon_{t}=O\left((\lambda p)^{t}\right)$ decays exponentially fast in t. If $\lambda p=1$, this is much more subtle. Indeed, we find

$$
\varepsilon_{t} \leq\left(\varepsilon_{t-1}-\frac{\varepsilon_{t-1}^{2}}{2}\right)+O\left(\varepsilon_{t-1}^{3}\right)
$$

and therefore, we only get $\varepsilon_{t}=O\left(t^{-1}\right)$ in this case.
Since we assume p to be a constant, clearly $\lambda=O(1)$ as well. Unfortunately, the Poisson tails are kind of heavy. More precisely, even if λ is a constant, the probability that a $\operatorname{Po}(\lambda)$ variable becomes large is not negligible. We analyze this by a careful application of limits. Recall that we assume that the underlying tree-network is infinite. We model this as follows. Suppose that the tree-network consists of n vertices and we will let $n \rightarrow \infty$.
Let $C>0$, then the probability that the number of neighbors of a specific node v exceeds C is, for large C, given by Chernoff bounds as

$$
\mathbb{P}(|\partial v|>C) \leq \exp \left(-\frac{(C-\lambda)^{2}}{2 C}\right) \sim \exp (-C / 2)
$$

As the number of spawned children is independent for all vertices, the number of vertices of degree at least C is stochastically dominated by $\operatorname{Bin}(n, \exp (-C / 2))$. Thus, with probability $1-o_{n}(1)$, there are no more than $O(n \sqrt{\ln (n)} \exp (-D))$ vertices of degree $D>0$ for a sufficiently large constant D (independent of n) if $n \rightarrow \infty$.
We denote by \mathcal{D} the event that this is actually true. Thus, conditioned on \mathcal{D}, there are only $O(n \sqrt{\ln (n)} \exp (-D))$ vertices of degree at least D. Now, we chose $\boldsymbol{\omega}$ uniformly at random out of all vertices. Therefore, given \mathcal{D}, the probability that $\boldsymbol{\omega}$ has small degree is

$$
\mathbb{P}(|\partial \boldsymbol{\omega}|>D \mid \mathcal{D})=1-O\left(\frac{\sqrt{\ln (n)}}{\exp (-D)}\right)
$$

Clearly, this becomes only a high probability event if $D=\Omega(\ln \ln n)$. In the worst case, we find that a union bound over all activated children of $\boldsymbol{\omega}$ leads only to ultimate extinction of all processes, if $O\left(\frac{\ln \ln n}{t}\right)=o_{t}(1)$, or, differently, that $t=\omega(\ln \ln n)$. As in the theorem, we only claim the assertion in the limit $t \rightarrow \infty$ and we assume the underlying tree-network to be infinite. This proves the claim of the theorem. We remark at this point that the assumption that t depends slightly on n does no harm to applications as, on real networks, $\ln \ln n$ can be seen as a constant.

B SIMULATION DATA

References

Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Oxford University Press, New York, 4 edition, 2020. ISBN 978-0-198-84760-1.

Table 1: Simulation results for random geometric graphs.

p	number of successes	$\boldsymbol{\omega}_{c} \neq \boldsymbol{\omega}$	$\boldsymbol{X}^{\star}=\emptyset$	average distance	maximum distance
0.00	0	0	100		0
0.05	1	1	98	2.25	4
0.10	5	29	66	2.39	5
0.15	25	59	16	2.02	6
0.20	34	63	3	1.68	5
0.25	51	48	1	1.51	4
0.30	62	36	2	1.40	5
0.35	71	29	0	1.24	5
0.40	86	14	0	1.11	4
0.45	94	6	0	1.04	3
0.50	94	6	0	1.13	5
0.55	95	5	0	1.07	5
0.60	100	0	0	0.97	4
0.65	95	5	0	1.03	6
0.70	99	1	0	0.79	3
0.75	99	1	0	1.03	5
0.80	100	0	0	0.97	5
0.85	100	0	0	0.96	6
0.90	100	0	0	0.66	3
0.95	98	2	0	0.87	5
1.00	100	0	0	0.85	6

Table 2: Simulation results for Erdős-Rényi graphs.

p	number of successes	$\boldsymbol{\omega}_{c} \neq \boldsymbol{\omega}$	$\boldsymbol{X}^{\star}=\emptyset$	average distance	maximum distance
0.00	0	0	100	-	-
0.05	0	0	100	-	-
0.10	0	0	100	-	-
0.15	0	1	99	6.00	6
0.20	0	6	94	7.50	9
0.25	0	14	86	6.63	8
0.30	2	30	68	7.34	10
0.35	11	35	54	7.23	10
0.40	21	49	30	5.87	9
0.45	33	43	24	6.14	9
0.50	42	33	25	1.15	8
0.55	54	31	15	0.54	3
0.60	63	24	13	0.36	3
0.65	74	19	7	0.30	2
0.70	78	17	5	0.21	2
0.75	78	15	7	0.17	2
0.80	82	12	6	0.18	3
0.85	81	15	4	0.17	2
0.90	86	13	1	0.17	2
0.95	85	10	5	0.10	1
1.00	92	5	3	0.05	1

Table 3: Simulation results for random regular graphs (configuration model).

p	number of successes	$\boldsymbol{\omega}_{c} \neq \boldsymbol{\omega}$	$\boldsymbol{X}^{\star}=\emptyset$	average distance	maximum distance
0.00	0	0	100	-	-
0.05	0	0	100	-	-
0.10	0	0	100	-	-
0.15	0	0	100	-	-
0.20	0	0	100	-	-
0.25	0	5	95	7.20	9
0.30	0	16	84	7.53	11
0.35	2	26	72	6.86	12
0.40	19	43	38	5.37	11
0.45	38	40	22	2.70	11
0.50	43	41	16	2.06	9
0.55	70	23	7	0.57	6
0.60	76	21	3	0.34	4
0.65	86	11	3	0.15	3
0.70	87	10	3	0.14	3
0.75	98	2	0	0.02	1
0.80	97	3	0	0.03	1
0.85	99	1	0	0.01	1
0.90	100	0	0	0	0
0.95	100	0	0	0	0
1.00	100	0	0	0	0

