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A THE Kinf PROBLEM AND RELATED REFORMULATIONS

A.1 DUAL FORM OF Kinf

The following well-known Lemma gives the dual representations of KU
inf (., .) and KL

inf (., .). We follow the approach used
in Honda and Takemura [2010], Agrawal et al. [2020].

Lemma 2. Consider any discrete distribution η with a finite support {yj}j∈[n] and an upper bound B. We assume yj ≥ 0,∀j
and 0 < x < B.

a) The dual representation of KU
inf (η, x) is

KU
inf (η, x) = max

λU∈
[
0, 1

B−x

] n∑
j=0

ηj log(1 + λU (x− yj)).

The optimal λ∗
U in the dual maximization above is characterised by:

λ∗
U = 0, if x < µη ,

λ∗
U = 1

B−x , if x > µη and
∑ni

j=0 ηj
(

B−x
B−yj

)
< 1,∑

j
yjηj

1+λ∗
U (x−yj)

= x, If x > µη , and
∑n

j=0 ηj
(

B−x
B−yj

)
≥ 1.

The support of the primal optimizer κ∗ satisfies supp(η) ⊆ supp(κ∗) ⊆ supp(η)∪{B}. The constraint is tight at optimality:

µκ∗ = x.

Further for yj ∈ supp(η):

κ∗(yj) =
nj

1 + λ∗
U (x− yj)

.

b) The dual representation of KL
inf (η, x) is

KL
inf (η, x) = max

λL∈
[
0, 1x

] n∑
j=0

ηj log(1− λL(x− yj)).

The optimal λ∗
L in the dual maximization above is characterised by:{

λ∗
L = 0, if x ≥ µη ,∑
j

(yj−x)ηj

1−λ∗
L(x−yj)

= 0, If x < µη .
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The support of the primal optimizer κ∗ satisfies supp(η) = supp(κ∗). The constraint is tight at optimality:

µκ∗ = x.

Further for yj ∈ supp(η):

κ∗(yj) =
nj

1− λ∗
L(x− yj)

.

Proof. See sections A.2 and A.3.

A.2 PROOF OF LEMMA 2A

Define the set D := {0} ∪ [b, B]. Suppose a probability distribution η has finite support (say {0, y1, ..., yn} for some n)
from D. Let M+(D) denote the set of positive finite measures on D. We want to find KU

inf (η, x), which is defined as

KU
inf (η, x) = min

supp(κ)⊆D
E[κ]≥x

KL(η, κ).

We shall develop a Lagrangian duality for the above quantity in the space M+(D). The Lagrangian with multiplier
λ = (λ1, λ2) and κ ∈ M+(D) is:

L(κ, λ) := KL(η, κ) + λ1(x−
∫
D
ydκ(y)) + λ2(1−

∫
D
dκ(y)).

Then the dual objective becomes
L(λ) := inf

κ∈M+(D)
L(κ, λ).

Let us define two quantities useful in the analysis:

h(y, λ) := −λ2 − λ1y,

Z(λ) := {y ∈ D : h(y, λ) = 0}.

We define the set
R2 := {λ ∈ R2 : λ1 ≥ 0, λ2 ∈ R, λ ̸= 0, inf

y∈D
h(y, λ) ≥ 0}

= {λ ∈ R2 : λ1 ≥ 0, λ2 ∈ R, λ ̸= 0,−λ2 ≥ λ1B ≥ 0}.

The lemma below shows that in maximising the dual objective L(λ), it is enough to restrict ourselves to the set R2.

Lemma A.1.a.
max
λ1≥0,
λ2∈R

L(λ) = max
λ∈R2

L(λ)

Proof. Suppose λ /∈ R2. Then, there is a y0 ∈ D such that h(y0, λ) < 0. We know that for any M > 0, we have a measure
κM ∈ M+(D) such that

κM (y0) = M,
dκM

dη
(y) = 1,∀y ∈ supp(η)\{y0}

So, we must have that supp(κM ) = {y0} ∪ supp(η).

L(κM , λ) =

∫
D
log

(
dη

dκM
(y)

)
dη(y) +

∫
D
h(y, λ)dκM (y) + λ1x+ λ2

= η(y0) log

(
η(y0)

M

)
+Mh(y0, λ) +

∫
supp(η)

h(y, λ)dκM (y) + λ1x+ λ2.

Now as M → ∞ the first two terms tend to −∞ while the other terms remain bounded and gives the result.



The next lemma characterises the minimizer κ∗ in the dual objective L(λ). The support of κ∗ is contained in supp(η)∪Z(λ)
and its density wrt η (wherever it is well-defined) is 1/h(y, λ).

Lemma A.1.b. For λ ∈ R2, κ∗ ∈ M+(D) that minimizes L(κ, λ) satisfies supp(η) ⊆ κ∗ ⊆ supp(η) ∪ Z(λ).
Also, for y ∈ supp(η), h(y, λ) > 0, and

dκ∗

dη
=

1

−λ1 − λ2y
.

Proof. Given λ ∈ R2, the inner optimization problem is strictly convex in κ. This means that a unique minimizer κ∗ must

exist. This κ∗ must satisfy for any arbitrary κ1, κt := (1− t)κ∗ + tκ1, ∂L(κt,λ)
∂t

∣∣∣∣
t=0

≥ 0.

Let us define L(t) := L(κt, λ) which is∫
supp(η)

log

(
dη

dκt
(y)

)
dη(y) +

∫
D
h(y, λ)dκt(y) + λ1x+ λ2.

Then,
dL(t)
dt

=

∫
supp(η)

dη

dκ∗ (y)(dκ
∗(y)− dκ1(y)) +

∫
D
h(y, λ)(dκ1(y)− dκ∗(y)).

So,
dL(t)
dt

∣∣∣∣
t=0

= −
∫
D\supp(η)

h(y, λ)dκ∗(y)) +

∫
D\supp(η)

h(y, λ)(dκ1(y)).

Now, λ ∈ R2 guarantees that L′
(0) ≥ 0. This completes our proof.

Remark A.1.1. If y ∈ Z(λ), then y can only be −λ2

λ1
. Therefore, we get that Z(λ) =

{
− λ2

λ1

}
, if λ1 ≥ 0,−λ2

λ1
∈ D and

Z(λ) = ∅, otherwise.

It now remains to find max
λ∈R2

L(λ) in order to characterise the Lagrangian dual of KU
inf (η, x).

If Z(λ) = Φ, supp(κ∗) = supp(η). We can then say from the characterization of κ∗ that

KU
inf (η, x) = max

λ∈R2

n∑
j=0

ηj log(−λ2 − λ1yj)

The first order conditions tell us that
∑

j
ηj

λ2−λ1yj
= 1 and

∑
j

yjηj

λ2−λ1yj
= x. Multiplying the first equation by −λ2 and the

second by −λ1 and then adding the two would give us that λ2 − λ1x = 1. And λ2 ≥ λ1B ⇒ 1 + λ1x ≥ λ1B ⇒ λ1 ∈[
0, 1

B−x

]
. We can therefore conclude that

KU
inf (η, x) = max

λ1∈
[
0, 1

B−x

] n∑
j=0

ηj log(1 + λ1(x− yj))

If Z(λ) ̸= Φ, then −λ2

λ1
≤ B. But λ ∈ R2 implies that −λ2

λ1
≥ B. Hence, −λ2

λ1
= B. Then, we can say that

KU
inf (η, x) = max

λ1≥0

n∑
j=0

ηj log(λ1(B − yj)).

Let λ∗
U denote the maximizing λ1, κ∗(B) denote the mass that κ∗ puts at B. Then, we get from the first order conditions

that
∑

j
ηj

λ∗
U (B−yj)

+ κ∗(B) = 1 and
∑

j
yjηj

λ∗
U (B−yj)

+Bκ∗(B) = x. Multiplying the first equation by B and adding to the

second gives us that B − x = 1
λ∗
U
⇒ λ∗

U = 1
B−x . Therefore, in this case,

KU
inf (η, x) =

n∑
j=0

ηj log

(
B − yj
B − x

)
.



Note that this can happen iff
∑n

j=0 ηj log

(
B−x
B−yj

)
≤ 1.

Irrespective of whether or not Z(λ) = Φ, we can say that

KU
inf (η, x) = max

λ1∈
[
0, 1

B−x

] n∑
j=0

ηj log(1 + λ1(x− yj))

. Let us define p(λ1) :=
∑n

j=0 ηj log(1 + λ1(x − yj)), λ1 ∈
[
0, 1

B−x

]
. Then, p

′
(λ1) =

∑n
j=0

ηj(x−yj)
1+λ1(x−yj)

and

p
′′
(λ1) = −

∑n
j=0

ηj(x−yj)
2

(1+λ1(x−yj))2
. The expression for p

′′
leads us to conclude that p is always concave in λ1 and hence,

must have a unique maximizer.

If x ≤ Eη, note that p
′
(0) = x −

∑n
j=0 ηjyj ≤ 0, i.e., p decreases in

[
0, 1

B−x

]
. Hence, we must have

KU
inf (η, x) = max

λ1∈
[
0, 1

B−x

] p(λ1) = p(0) = 0. Since the maximizer is λ∗
U = 0, we know from the definition

of Z(λ) that Z(λ) = Φ, and therefore, supp(κ∗) = supp(η).

If x > Eη, then we have that p
′
(0) > 0, meaning that p is increasing at λ1 = 0 and therefore, may take the

maximum value at either λ∗
U = 1

B−x or λ∗
U ∈

(
0, 1

B−x

)
. Let us first compute p

′( 1
B−x

)
.

p
′( 1

B − x

)
=

n∑
j=0

ηj
(x− yj)(B − x)

(B − yj)

=(B − x)

n∑
j=0

ηjx− ηjB + ηjB − ηjyj
B − yj

=− (B − x)2
n∑

j=0

ηj
B − yj

+ (B − x)

=(B − x)

[
1−

n∑
j=0

ηj
( B − x

B − yj

)]

If p
′( 1

B−x

)
≤ 0, then p must reach its maximum in

(
0, 1

B−x

)
. This happens iff

∑n
j=0 ηj

(
B−x
B−yj

)
≥ 1.

If p
′( 1

B−x

)
> 0, then p must reach its maximum at 1

B−x . This happens iff
∑n

j=0 ηj
(

B−x
B−yj

)
< 1.

Remark A.1.2. For the rare event setup, it is now easy to check that mass will be put at Biγ
−αi in KU

inf (pi, x) iff x > F0(γ),
where F0(γ) :=

Bi(∑n
j=1

aijpij
Bi−aij

)−1
+γαi

.

A.3 PROOF OF LEMMA 2B

We want to find
KL

inf (η, x) = min
supp(κ)⊆D
E[κ]≤x

KL(η, κ)

Just as in section A.2, we shall develop a Lagrangian dual for KL
inf (η, x). The Lagrangian with multiplier λ = (λ1, λ2) is:

L(κ, λ) := KL(η, κ)− λ1(x−
∫
D
ydκ(y))− λ2(1−

∫
D
dκ(y))

Similar to section A.2, define the quantities

L(λ) := inf
κ∈M+(D)

L(κ, λ),



h(y, λ) := λ2 + λ1y,

Z(λ) := {y ∈ D : h(y, λ) = 0}

and the set
R2 := {λ ∈ R2 : λ1 ≥ 0, λ2 ∈ R, λ ̸= 0, inf

y∈D
h(y, λ) ≥ 0}

= {λ ∈ R2 : λ1 ≥ 0, λ2 ≥ 0, λ ̸= 0}.

As in section A.2 we have the following lemmas:

Lemma A.2.a.
max
λ1≥0,
λ2∈R

L(λ) = max
λ∈R2

L(λ)

Proof. Suppose λ /∈ R2. Then, there is a y0 ∈ D such that h(y0, λ) < 0. We know that for any M > 0, we have a measure
κM ∈ M+(D) such that

κM (y0) = M,
dκM

dη
(y) = 1,∀y ∈ supp(η)\{y0}

So, we must have that supp(κM ) = {y0} ∪ supp(η).

L(κ, λ) =
∫
D
log

(
dη

dκM
(y)

)
dη(y) +

∫
D
h(y, λ)dκM (y)− λ1x− λ2

= η(y0) log

(
η(y0)

M

)
+Mh(y0, λ) +

∫
supp(η)

h(y, λ)dκM (y)− λ1x− λ2

Now as M → ∞ the first two terms tend to −∞ while the other terms remain bounded and we obtain the desired result.

Lemma A.2.b. For λ ∈ R2, κ∗ ∈ M+(D) that minimizes L(κ, λ) satisfies supp(η) ⊆ κ∗ ⊆ supp(η) ∪ Z(λ).
Also, for y ∈ supp(η), h(y, λ) > 0, and

dκ∗

dη
=

1

λ1 + λ2y
.

Proof. Given λ ∈ R2, the inner optimization problem is strictly convex in κ. This means that a unique minimizer κ∗ must

exist. This κ∗ must satisfy for any arbitrary κ1, κt := (1− t)κ∗ + tκ1, ∂L(κt,λ)
∂t

∣∣∣∣
t=0

≥ 0.

Let us define L(t) := L(κt, λ) which is

L(t) =
∫
supp(η)

log

(
dη

dκM
(y)

)
dη(y) +

∫
D
h(y, λ)dκt(y)− λ1x− λ2.

Then,
dL(t)
dt

=

∫
supp(η)

dη

dκ∗ (y)(dκ
∗(y)− dκ1(y)) +

∫
D
h(y, λ)(dκ1(y)− dκ∗(y)).

So,
dL(t)
dt

∣∣∣∣
t=0

= −
∫
D\supp(η)

h(y, λ)dκ∗(y)) +

∫
D\supp(η)

h(y, λ)(dκ1(y)).

Now, λ ∈ R2 guarantees that L′
(0) ≥ 0. This completes our proof.

Note that if y ∈ Z(λ) then y = −λ2

λ1
if −λ2

λ1
∈ D. But because λ ∈ R2 we have −λ2

λ1
< 0 and hence Z(λ) = ϕ. This

implies supp(κ∗) = supp(η) with the mean and probability conditions

1 =
∑
j

ηj
(λ2 + λ1yj)

x =
∑
j

yjηj
(λ2 + λ1yj)



These imply 1 = λ2 + λ1x. As λ2 ≥ 0, we have λ1 ≤ 1
x . Thus, denoting the optinal λ1 by λ∗

L, we get that

KL
inf (η, x) =

∑
ηj log(1− λ∗

L(x− yj))

with 0 ≤ λ∗
L ≤ 1/x and the mean equation

x =
∑
j

yjηj
(1− λ∗

L(x− yj))
.

A.4 REFORMULATION OF THE LOWER BOUND

We can now use lemma 1 to simplify Pi (see 7 of the main body) in the rare event setting. We observe that the objective
in Pi is a smooth and strictly convex function. The optimizer, x∗

i,e, is therefore given by first-order stationarity conditions.
Using the dual representation, we can write this as

w1λ
∗
L1i

(x∗
i,e)− wiλ

∗
Ui
(x∗

i,e) = 0

where λ∗
Ui
, λ∗

L1i
are as in lemma 1 and are functions of x∗

i,e. Now let us define quantities that are useful in reformulating P
to a form suitable for further analysis. Define

K1i := 1− x∗
i,eλ

∗
L1i

(x∗
i,e),

C1i := λ∗
L1i

(x∗
i,e)γ

−α1 ,

Ki := 1 + x∗
i,eλ

∗
Ui
(x∗

i,e),

Ci := λ∗
Ui
(x∗

i,e)γ
−αi .

These quantities will turn out to have bounded limits as γ → 0. The stationarity condition may now be rewritten as

C1iw1γ
α1 = Ciwiγ

αi . (1)

In the rare event setup, the tightness of the constraint in lemma 1 gives us that

x∗
i,e =

n1∑
j=1

a1jp1j
K1i + C1ia1j

=

ni∑
j=1

aijpij
Ki − Ciaij

+Biγ
−αi

[
1−

n∑
j=1

pij
Ki − Ciaij

γαi −
1−

∑n
j=1 pijγ

αi

Ki

]
. (2)

Since the primal optimizer has the same support as the underlying distribution in part (b) of lemma 1, we must have

n∑
j=1

p1j
K1i + C1ia1j

γα1 +
1−

∑n
j=1 p1jγ

α1

K1i
= 1. (3)

From their definitions and from the stationarity condition, we have the following relationship between K1i and Ki:

w1(1−K1i) = wi(Ki − 1). (4)

Let Pi = inf
x∈[µi,µ1]

Ki(w1, wi, x) (see (7) from the main body). We know from the Envelope Theorem that

dKi(w1, wi, x)

dx
= −w1λL∗

1i
+ wiλU∗

i
.

The first order stationarity condition dKi(w1,wi,x)
dx = 0 implies that w1λL∗

1i
= wiλU∗

i
= ϕi, (say). Let us define x∗

i :=

argminx∈[µi,µ1] Ki(w1, wi, x). It is easy to infer from our derivations of the KL
inf and KU

inf expressions that

KL
inf (p1, x

∗
i ) = KL(p1, p̃

(i)
1 )

KU
inf (pi, x

∗
i ) = KL(pi, p̃i)

(5)



where
p̃
(i)
1j =

p1j
1− λL∗

1i
(x∗

i − a1jγ−α1)
=

p1j(
1− ϕi

w1
x∗
i ) +

ϕia1j

w1γα1

p̃ij =
pij

1 + λU∗
i
(x∗

i − aijγ−αi)
=

pij(
1 + ϕi

wi
x∗
i )−

ϕiaij

wiγαi

(6)

We note that E
p̃
(i)
1

= Ep̃i
= x∗

i .

We can now express K1i = 1 − ϕi

w1
x∗
i − i, Ki = 1 + ϕi

wi
x∗
i , C1i = ϕi

w1γα1
, Ci = ϕi

wiγαi
. The following obvious

equations will be helpful.

K1i =
1−

∑n
j=1 p1jγ

α1

1−
∑n

j=1 p̃
(i)
1j γ

α1

Ki =
1−

∑n
j=1 pijγ

αi

1−
∑n

j=1 p̃ijγ
αi

w1(1−K1i) = wi(Ki − 1) = ϕix
∗
i

We also claim that

1−
n∑

j=1

p1jγ
α1 ≤ K1i ≤ 1,

1 ≤ Ki ≤
[

1

1− γα1µ1

maxj aij(1−
∑n

j=1 p1jγα1 )

]
.

(7)

For the proof of the first claim, we see that K1i = 1 − λL∗
1i
x ≤ 1 because 0 ≤ λL∗

1i
≤ 1

x ⇒ 0 ≤ λL∗
1i
x ≤ 1.

The lower bound on K1i is trivial.

For the proof of the second claim, we see that Ki = 1 + ϕi

wi
x∗ ≥ 1. We also have that wi(Ki − 1) = ϕix

∗ ≤
ϕix

∗

K1i
≤ ϕix

∗
i

1−
∑n

j=1 p1jγα1
. This implies that Ki − 1 ≤ ϕi

wiγαi
. γαiµ1

1−
∑n

j=1 p1jγα1
≤ Ki

maxjaij
. γαiµ1

1−
∑n

j=1 p1jγα1
. As the final step, we

can conclude from the above chain of inequalities that Ki

(
1− 1

maxjaij
. γαiµ1

1−
∑n

j=1 p1jγα1

)
≤ 1

These bounds tell us that K1i,Ki → 1 as γ → 0. Now, we can write Pi in terms of K1i,Ki, C1i, Ci as

Pi =w1γ
α1

[∑
j

p1j log(K1i + C1ia1j) +
(1−

∑n
j=1 p1jγ

α1)

γα1
log(K1i)

]

+wiγ
αi

[∑
j

pij log(Ki − Ciaij) +
(1−

∑n
j=1 pijγ

αi)

γαi
log(Ki)

]
.

(8)

The advantage of re-writing Pi in terms of K1i,Ki, C1i, Ci is that these quantities have bounded well-defined limits and
using equations (1),(2),(3),(4), we can eliminate the dependence on x∗

i (whose behaviour is not as easy to analyze when
γ → 0). The bounds on K1i and Ki will also help us to define the approximate version Pi,a of Pi (see 9 of main body).

A.5 PROOF OF PROPOSITION 1

Consider i.i.d. draws of the ith arm. Define

τ
(1)
ij := the first time aijγ

−αi is seen in arm i.

τ
(k)
ij := the kth inter-arrival time of aijγ−αi in arm i.

Then, we have that
P(τ (1)ij > n) = (1− γαipij)

n



Clearly, the kth inter-arrival time is independent of all the previous inter-arrival times. Hence

P(τ (k)ij > nk) = (1− γαipij)
nk

Now setting nk = tγ−αi and taking the limit γ → 0 we have

lim
γ→0

P(τ (k)ij > tγ−αi) = lim
γ→0

(1− γαipij)
tγ−αi

= epijt

Now as the inter-arrival times are asymptotically independent exponentially distributed, it follows by the standard argument
that Nij(t) is asymptotically distributed as Poisson(pijt). Note that the same argument could have been repeated while
assuming two or more support points as a set. We would then get that the count process for the set are asymptotically
distributed as sum of the individual Poisson distributions. From computing the Poisson mgf this implies asymptotic
independence of these Poisson variables. We omit the arguments as they are standard.

B PROOF OF THEOREM 1

In this section alone, we add the superscript e to Ci, C1i to prevent any confusion, since exact and approximate versions
are used simultaneously. Let Ce

1i, C
e
i , x

∗
i,e denote solutions inner minimization problem Pi(w), and Ca

1i, C
a
i , x

∗
i,a denote

solutions to the approximate inner minimization problem Pi,a(w). We have already established bounds on K1i and Ki in
A.4. It is straightforward to see from equation 2 of the supplementary material and equations 10 of the main body, that
0 ≤ Ce

1i, C
a
1i ≤

∑
j p1j

µi
, 0 ≤ Ce

i ≤ Ki

Bi
, Ca

i ≤ 1
Bi

. Using these bounds, one can easily use the definitions of mathcalPi,
Pi,a to conclude that Pi, Pi,a = O(min(w1γ

α1 , wiγ
αi)). lim

γ→0

Pi

Pi,a
= 1. becomes an immediate conclusion.

To establish the bound on |Pi − Pi,a|, we’ll follow three broad steps: showing that the solutions to Pi also ap-
proximately solve Pi,a; showing that solutions to Pi and solutions to Pi,a are close; using the Lipschitz property of K̃L

inf

and K̃U
inf along with the triangle inequality to connect the bounds derived in the earlier steps and arrive at the proof. K̃L

inf

and K̃U
inf are defined as follows:

K̃L
inf (z) = γα1

(∑
j

p1j log(1 + za1j)− z
∑
j

a1jp1j
1− za1j

)

K̃U
inf (m, z) = γαi

(∑
j

pij log(1− zaij) + zm

)

Step 1: Solutions to exact problem approximately solve approximate problem

Bounds on K1i (see 7) imply that given any ϵ > 0, we have γ small enough that K1i ≥ 1− ϵ. Then

log

(
1− ϵ+ Ce

1ia1j
1 + Ce

1ia1j

)
≤ log

(
K1i + Ce

1ia1j
1 + Ce

1ia1j

)
≤ 0.

By Mean Value Theorem (MVT), we have that

log
(1− ϵ+ Ce

1ia1j
1 + Ce

1ia1j

)
≥ − ϵ

1− ϵ

and hence,
− ϵ

1− ϵ
≤ log(K1i + Ce

1ia1j)− log(1 + Ce
1ia1j) ≤ 0.

Thus, for small enough γ, log(1 + Ce
1ia1j) ≈ log(K1i + Ce

1ia1j).

Using the fact that K1i = 1− Ce
1ix

∗
i,eγ

α1 , we get

(1− γα1

∑
j

p1j)
log(K1i)

γα1
≤ −(1− ϵ)Ce

1ix
∗
i,e



when γα1
∑

j pij ≤ ϵ. Similarly, we have

(1− γα1

∑
j

p1j)
log(K1i)

γα1
≥

−Ce
1ix

∗
i,e

1− Ce
1ix

∗
i,eγ

α1
= −Ce

1ix
∗
i,e +

−(Ce
1ix

∗
i,e)

2γα1

1− Ce
1ix

∗
i,eγ

α1

Thus, for γ small enough, we have (1− γα1
∑

j p1j)
log(K1i)

γα1
≈ −Ce

1ix
∗
i,e. In KL

inf (from Lemma 1b), p̃ has no probability
mass on the upper bound Bi and hence

x∗
i,e =

∑
j

a1jp1j
1− Ce

1ia1j
.

This gives us

|K̃L
inf (C

e
1i)−KL

inf (K1i, C
e
1i)| ≤ 2γ2α1

(
∑

j p1j)
2

1−
∑

j p1jγ
α1

Bounds on Ki, imply that for any ϵ > 0, we can choose γ (again independently of w) so that Ki ≤ 1 + ϵ.
Then,

0 ≤ log(Ki + Ce
i aij)− log(1 + Ce

i aij) ≤ log

(
1 + ϵ+ Ce

i aij
1 + Ce

i aij

)
.

Now, from MVT we have

log(1 + ϵ+ Ce
i aij)− log(1 + Ce

i aij) ≤
ϵ

1 + Ce
i aij

≤ ϵ.

Thus, log(Ki + Ce
i aij) ≈ log(1 + Ce

i aij) when γ is small. From Ki = 1 + Ce
i x

∗
i,eγ

αi , we have

(1− ϵ)
Ce

i x
∗
i,e

1 + Ce
i x

∗
i,eγ

αi
≤ (1− γαi

∑
j

pij)
log(Ki)

γαi
≤ Ce

i x
∗
i,e

when γαi ≤ ϵ. Thus when γ small, (1− γαi
∑

j pij)
log(Ki)
γαi

≈ Ce
i x

∗
i,e.

We thus have the following bound:

|KU
inf (Ki, C

e
i )− K̃U

inf (x
∗
i,e, C

(e)
i )| ≤

µ1

max
j

aij
γ2αi

1− µ1

max
j

aij
γαi

(∑
j

pij +
µ1

max
j

aij

)

It may be noted that the bound does not depend on w, which give uniform bounds independent of w.

Step 2: Solutions to exact problem are close to solutions of approximate problem

So far, we have shown that the Ce
1i, C

e
i and x∗

i,e that solve the exact problem are also good solutions for the approximate
problem. However, the solution to our new approximate problem will be Ca

1i, C
a
i and x∗

i,a. We’ll now show that this
set of solutions to the approximate problem indeed approaches the set of solutions to the actual problem at the rate of
γmin(2αi,αi+α1) as γ → 0.

We have that

x∗
i,e =

n∑
j=1

a1jp1j
1− Ce

1ix
∗
i,eγ

α1 + Ce
1ia1j

,

x∗
i,a =

n∑
j=1

a1jp1j
1 + Ca

1ia1j
,

Note that the above two statements imply that Ce
1i and Ca

1i are bounded above by
∑

j p1j

µi
. We collect the following established



results:
Ce

1i

Ce
i

=
Ca

1i

Ca
i

=
wiγ

αi

w1γα1
,

x∗
i,e > F0(γ) ⇒ Ce

i =
1

Bi − x∗
i,eγ

αi
,

x∗
i,a > F0(0) ⇒ Ca

i =
1

Bi
,

x∗
i,e ≤ F0(γ) ⇒ x∗

i,e =

n∑
j=1

aijpij
1 + Ce

i x
∗
i,eγ

αi − Ce
i a1j

x∗
i,a ≤ F0(0) ⇒ x∗

i,a =

n∑
j=1

aijpij
1− Ce

i a1j

where F0(γ) is defined in RemarkA.1.2. In what follows, we shall let bi = min
j

aij . We shall now establish that, for all w,

the solution to the exact and approximate inner optimisations are close when γ is small. We break the analysis into the
following four cases.

Case 1. x∗
i,e ≤ F0(γ), x

∗
i,a ≤ F0(0).

We have that

x∗
i,e − x∗

i,a =

n∑
j=1

a1jp1j(1−K1i + a1j(C
a
1i − Ce

1i))

(1 + Ca
1ia1j)(K1i + Ce

1ia1j)

=

n∑
j=1

aijpij(1−Ki − aij(C
a
i − Ce

1i))

(1− Ca
i aij)(Ki − C

(e)
i a1j)

Splitting terms from the numerator and using Ce
1i

Ce
i
=

Ca
1i

Ca
i
= wiγ

αi

w1γα1
, we get the following:

A(1−K1i) +B(1−Ki) = Ã(Ce
1i − Ca

1i) + B̃
w1γ

α1

wiγαi
(Ce

1i − Ca
1i)

where

A :=

n∑
j=1

a1jp1j
(1 + Ca

1ia1j)(K1i + Ce
1ia1j)

Ã :=

n∑
j=1

a21jp1j

(1 + Ca
1ia1j)(K1i + Ce

1ia1j)
≥ b1A

B :=

n∑
j=1

aijpij

(1− Ca
i aij)(Ki − C

(e)
i a1j)

B̃ :=

n∑
j=1

aij2pij

(1− Ca
i aij)(Ki − C

(e)
i a1j)

≥ biB

Therefore,

Ce
1i − Ca

1i = γαi
Awi(1−K1i) +Bwi(Ki − 1)

Ãwiγαi + B̃w1γα1

Using equation (4), we can write that

Ce
1i − Ca

1i =

(
Awi +Bw1

Ãwiγαi + B̃w1γα1

)
γαi(1−K1i).



Following this, we can use the lower bounds on Ã, B̃ and K1i to conclude that

|Ce
1i − Ca

1i| ≤
( ∑

j p1j

min(b1, bi)

)
γmin(α1,αi).

This also tells us that

|x∗
i,e − x∗

i,a| ≤ µ1

( n∑
j=1

p1jγ
α1 +

B1

∑
j p1j

b1 ∧ bi
γα1∧αi

)
.

And using a similar computation, we can also prove that

|Ce
i − Ca

i | ≤
µ1γ

minα1,αi

min(b1, bi)(bi − µ1γαi)
.

Case 2. x∗
i,e ≥ F0(γ), x

∗
i,a ≥ F0(0).

In this case, we can say that

|C(e)
i − Ca

i | =
x∗
i,e

Bi(Bi − x∗
i,eγ

αi)
γαi

We also have that

x∗
i,e =

n∑
j=1

a1jp1j

1 + wiγαi

w1γα1
C

(e)
i (a1j − x∗

i,eγ
α1)

x∗
i,a =

n∑
j=1

a1jp1j

1 + wiγαI

w1γα1
Ca

i a1j
.

Subtracting the two gives us that

|x∗
i,e − x∗

i,a| ≤
n∑

j=1

a1jp1jµi

a1j − µ1γαi
γα1 +

n∑
j=1

a21jp1jµi

Bi(a1j − µ1γαi)
γαi .

The above relation, along with the relation between |Ce
1i − Ca

1i| and |x∗
i,e − x∗

i,a| as outlined under Case I, may be used to
prove that

|Ce
1i − Ca

1i| ≤ Diγ
min(α1,αi)

where Di is constant depending on arm pi.

Case 3. F0(γ) ≤ x∗
i,e, x

∗
i,a ≤ F0(0).

A direct conclusion here would be

|x∗
i,e − x∗

i,a| ≤ |F0(0)− F0(γ)| ≤
Bi

1 + γαi
∑

j
aijpij

Bi−aij

( n∑
j=1

aijpij
Bi − aij

)2
γαi

We have that

x∗
i,e − x∗

i,a =

n∑
j=1

a1jp1j(1−K1i + a1j(C
a
1i − Ce

1i))

(1 + Ca
1ia1j)(K1i + Ce

1ia1j)

whence we can conclude that

|Ce
1i − Ca

1i| ≤
(|x∗

i,e − x∗
i,a|+ C(e)x∗

i,e

∑n
j=1 a1jp1jγ

α1)
b1µi

1+B1C(a)

⇒|Ce
1i − Ca

1i| ≤ Diγ
min(α1,αi)

where Di is again a constant depending on arm pi. Lastly, we can show that

|Ce
i − 1

Bi
| ≤ (1− bi/Bi)

biµi
Bi

(∑
j

aijpij
Bi − aij

)2

γαi

|Ca
i − 1

Bi
| ≤ µ1

Bi(Bi − µ1γαi)
.γαi



to conclude that

|Ce
i − Ca

i | ≤
(1− bi/Bi)

biµi
Bi

(∑
j

aijpij
Bi − aij

)2

γαi +
µ1

Bi(Bi − µ1γαi)
.γαi

Case 4. x∗
i,e ≤ F0(γ) < F0(0) ≤ x∗

i,a.

We first show that 1/Bi < Ce
i . Suppose this is false. Then, Ca

i = 1/Bi ≥ Ce
i . From equation (1) for fixed

w1, wi and γ, we have:

Ca
1i ≥ Ce

1i ⇒ x∗
i,e >

∑
j

a1jp1j
1 + Ce

1ia1j
>

∑
j

a1jp1j
1 + Ca

1ia1j
= x∗

i,a

But this contradicts the hypothesis of this case. Hence we must have have:

1

Bi
< Ce

i <
1

Bi − x∗
i,eγ

αi

As Ca
i = 1

Bi
, from above we have

1 <
Ce

i

Ca
i

=
Ce

1i

Ca
1i

≤ 1 +
x∗
i,eγ

αi

Bi − x∗
i,eγ

αi

And we can conclude that
|Ca

i − Ca
1i| ≤

µ1

Bi − µ1γα1
γαi

|Ca
1i − Ce

1i| ≤
(
∑

j p1j)µ1

µi(Bi − µ1γαi)
γαi

|x∗
i,a − x∗

i,e| ≤
µ2
iB

2
i

Bi − µi
γmin{α1,αi}

This completes the analysis of the four cases and shows that Ca
1i, C

a
i , x

∗
i,a are close to Ce

1i, C
e
i , x

∗
i,e when γ is small.

Step 3: Connecting solutions to exact problem and solutions to approximate problem

We concluded in Step 1 that

|K̃L
inf (C

e
1i)−KL

inf (K1i, C
e
1i)| ≤ 2γ2α1

(
∑

j p1j)
2

1−
∑

j p1jγ
α1

and in Step 2 that |Ce
1i − Ca

1i| is related to |x∗
i,e − x∗

i,a| by the equation

|Ce
1i − Ca

1i| ≤
|x∗

i,e − x∗
i,a|+

∑
j a1jp1jC

e
1ix

∗
i,eγ

α1∑
j

a2
1jp1j

(1+Ca
1ia1j)(1+Ce

1i(a1j−x∗
i,eγ

α1 ))

≤
|x∗

i,e − x∗
i,a|+ µ1

∑
j p1jγ

α1

µ2

(
b1

1+B1
∑

j p1j/µ2

)
We have:

d

dz
K̃L

inf (z) = γαi

(∑
j

a1jp1j
1 + za1j

−
∑
j

a1jp1j
1− za1j

− z
∑
j

a21jp1j

1− za1j

)
Now, the derivative of K̃L

inf can easily be bounded above by µ1γ
α1 . This leads us to the following conclusion.

|K̃L
inf (C

e
1i)− K̃L

inf (C
a
1i)| ≤

µ2
1B1

µib1

[ µ3
1

µib1
γα1 + µ2

1(1 +
B1∨Bi

b1∧bi
) 1
(bi−µ1γαi )γ

α1∧αi

µi

(
bi

1+
µ1B1
µib1

) ]
γα1 = O(γ(2α1)∧(α1+αi))

where we have used the inequalities Ce
1i, C

a
1i ≤

∑
j p1j

µi
and b1

∑
j p1j ≤ µ1.

We thus have,

|KL
inf (K1i, C

e
1i)− K̃L

inf (C
a
1i)| ≤ |KL

inf (K1i, C
e
1i)− K̃L

inf (C
e
1i)|+ |K̃L

inf (C
e
1i)− K̃L

inf (C
a
1i)| ≤ L1iγ

(2α1)∧(α1+αi)



where L1i is a computable constant, and L1iγ
(2α1)∧(α1+αi) can be computed by adding the bounds on

|KL
inf (K1i, C

e
1i)− K̃L

inf (C
e
1i)| and |K̃L

inf (C
e
1i)− K̃L

inf (C
a
1i)|.

Similarly from Step 1 we have:

|KU
inf (Ki, C

e
i )− K̃U

inf (x
∗
i,e, C

e
i )| ≤

µ1

max
j

aij
γ2αi

1− µ1

max
j

aij
γαi

(∑
j

pij +
µ1

max
j

aij

)

To upper bound |KU
inf (Ki, C

e
i )−K̃U

inf (x
∗
i,a, C

a
i )|, we can follow a procedure similar to how |KL

inf (K1i, C
e
1i)−K̃L

inf (C
a
1i)|

was bounded. We first use the triangle inequality to make the following split.

|KU
inf (Ki, C

e
i )− K̃U

inf (x
∗
i,a, C

a
i )| ≤ |KU

inf (Ki, C
e
i )− K̃U

inf (x
∗
i,e, C

e
i )|+ |K̃U

inf (x
∗
i,e, C

e
i )− K̃U

inf (x
∗
i,e, C

a
i )|

+ |K̃U
inf (x

∗
i,e, C

a
i )− K̃U

inf (x
∗
i,a, C

a
i )|

In the right hand side of the above inequality, the bound to the first summand was already obtained. The second and third
summands can be bounded above by showing that K̃U

inf is Lipschitz in both its arguments, the Lipschitz constants being
computable ones. Thus, we have

|K̃U
inf (x

∗
i,e, C

e
i )− K̃U

inf (x
∗
i,e, C

a
i )| ≤ γαi(µ1 − µi)|Ce

i − Ca
i |

≤ µ1(µ1 − µ2)

(b1 ∧ bi)(bi − µ1γαi)
γ(α1+αi)∧(2αi)

+
(Bi − bi)(µ1 − µ2)

biµi

( n∑
j=1

a1jp1j
Bi − aij

)2

γ2αi ..

The bound in the first step was derived by bounding the partial derivative wrt z of K̃U
inf (m, z). Similarly bounding the

partial derivative wrt m gives

|K̃U
inf (x

∗
i,e, C

a
i )− K̃U

inf (x
∗
i,a, C

a
i )| ≤ γαi

|x∗
i,e − x∗

i,a|
bi

|x∗
i,e − x∗

i,a| is bounded above by the maximum of the upper bounds derived in the four cases of Step 2. We can therefore
conclude that,

|KU
inf (Ki, C

e
i )− K̃U

inf (x
∗
i,a, C

a
i )| ≤ Liγ

(α1+αi)∧(2αi)

where Li can be computed as described above. The upper bounds on |KL
inf (K1i, C

e
1i)− K̃L

inf (C
a
1i)| and |KU

inf (Ki, C
e
i )−

K̃U
inf (x

∗
i,a, C

a
i )| give us the proof of Theorem 3. The upper bound on |V ∗(p)− V ∗

a (p)| can be inferred immediately.

C PROOF OF THEOREM 2

The proof goes through the following steps: first we analyse the behavior of equation (12) and derive some constraints it
imposes on the asymptotic behavior of Ca

1i, C
a
i ; utilising this, we then analyse the behaviour of equation (11) and finally get

the five asymptotic regimes noted in the Theorem.
Step 1: Constraint imposed by equation (12) in the asymptotic behaviours of Ca

1i, C
a
i .

We first observe that Ca
1i → 0, Ca

i → 0 as γ → 0 cannot happen for any i ∈ [K]\{1}, because then equation 10 would
imply that µ1 =

∑n
j=1 a1jp1j =

∑n
j=1 aijpij = µi.

Equation (12) from the main body can be re-written (using envelope theorem) as

w1γ
α1

(∑
j

p1j log(1 + Ca
1ia1j)− Ca

1ix
∗
i,a

)
+ wiγ

αi

(∑
j

pij log(1− Ca
i aij) + Ca

i x
∗
i,a

)

=w1γ
α1

(∑
j

p1j log(1 + Ca
1ka1j) + Ca

1ix
∗
k,a

)
+ wkγ

αi

(∑
j

pkj log(1− Ca
i akj)− Ca

i x
∗
k,a

)



for all i ̸= k, i, k ̸= 1. Using equation w1C
a
1iγ

α1 = wiC
a
i γ

αi , we can simplify this equation to∑
j p1j log(1 + Ca

1ia1j) +
Ca

1i

Ca
i

∑
j pij log(1− Ca

i aij)∑
j p1j log(1 + Ca

1ka1j) +
Ca

1k

Ca
k

∑
j pkj log(1− Ca

kakj)
= 1 (9)

for all i ̸= k. We also re-write (10) from the main body as∑
j

a1jp1j
1 + Ca

1ia1j
=

∑
j

aijpij
1− Ca

i aij
. (10)

Now, we analyze the asymptotic behavior of equation (9) as γ → 0 on a case-by-case basis.

Case 1: Ca
1i → Aa

1(> 0), Ci → 0;Ca
1k → Aa

1k(> 0), Ca
k → 0.

Taking the limit in equation (9) we get

1 = lim
γ→0

∑
j p1j log(1 + Ca

1ia1j) +
Ca

1i

Ca
i

∑
j pij log(1− Ca

i aij)∑
j p1j log(1 + Ca

1ka1j) +
Ca

1k

Ca
k

∑
j pkj log(1− Ca

kakj)

=

∑
j p1j log(1 +Aa

1ia1j)−Aa
1i

∑
j aijpij∑

j p1j log(1 +Aa
1ka1j)−Aa

1k

∑
j akjpkj

Taking γ → 0 in (2), we have that ∑
j

a1jp1j
1 +A1ia1j

=
∑
j

aijpij∑
j

a1jp1j
1 +A1ka1j

=
∑
j

akjpkj

Hence, ∑
j fj(A1i)∑
j fj(A1k)

= 1

where fj(x) := p1j [log(1+ a1jx)− xa1j

1+xa1j
]. It is easy to check that f is a monotonically increasing function, and therefore

the above equation must imply A1i = A1k. But this also means that µi = µk, which is against our assumption of all means
being distinct.

Case 2: Ca
1i → A1i(> 0), Ca

i → 0, Ca
1k → 0, Ca

k → Ak(> 0)

As in Case 1 we take the asymptotic limit on 9 to get

1 = lim
γ→0

∑
j p1j log(1 + Ca

1ia1j) +
Ca

1i

Ca
i

∑
j pij log(1− Ca

i aij)∑
j p1j log(1 + Ca

1ka1j) +
Ca

1k

Ca
k

∑
j pkj log(1− Ca

kakj)

= lim
γ→0

∑
j p1j log(1 +Aa

1ia1j)−Aa
1i

∑
j aijpij∑

j p1j log(1 + Ca
1ka1j)−

Ca
1k

Ak

∑
j pkj log(1−Aa

kakj)

which is impossible, because the denominator of the right hand side approaches 0 as γ → 0.

Case 3: Ca
1i → A1i(> 0), Ca

i → Ai(> 0), Ca
1k → 0, Ca

k → Ak(> 0)

We have that

1 = lim
γ→0

∑
j p1j log(1 + Ca

1ia1j) +
Ca

1i

Ca
i

∑
j pij log(1− Ca

i aij)∑
j p1j log(1 + Ca

1ka1j) +
Ca

1k

Ca
k

∑
j pkj log(1− Ca

kakj)

= lim
γ→0

∑
j p1j log(1 +Aa

1ia1j) +
Aa

1i

Aa
i

∑
j pij log(1−Aa

i aij)∑
j p1j log(1 + Ca

1ka1j)−
Ca

1k

Ak

∑
j pkj log(1−Aa

kakj)



which is impossible, because the denominator of the left hand side approaches 0 as γ → 0. That only leaves us with only the
following three possibilities.

Case 4: Ca
1i → A1i(̸= 0), Ca

i → Ai(̸= 0), Ca
1k → A1k (̸= 0), Ca

k → Ak( ̸= 0)

From 9, we know

lim
γ→0

∑
j p1j log(1 + Ca

1ia1j) +
wiγ

αi

w1γα1

∑
j pij log(1− Ca

i aij)∑
j p1j log(1 + Ca

1ka1j) +
wkγ

αk

w1γα1

∑
j pkj log(1− Ca

kakj)

which cannot be ruled out as an impossibility.

Case 5: Ca
1i → 0, Cia → Ai(̸= 0), Ca

1k → 0, Ca
k → Ak (̸= 0)

Using Ca
1iw1γ

α1 = Ca
i wiγ

αi = λi ∀i ̸= 1 on 9 gives us that

lim
γ→0

Ca
1i

Ca
1k

∑
j p1j

log(1+Ca
1ia1j)

Ca
1i

+
∑

j pij
log(1−Ciaaij)

Ca
i∑

j p1j
log(1+Ca

1ka1j)

Ca
1k

+
∑

j pkj
log(1−Ca

kakj)

Ca
k

= lim
γ→0

Ca
1i

Ca
1k

( ∑
j a1jp1j +

∑
j

pij
Ai

log(1−Aiaij)∑
j a1jp1j +

∑
j

pkj

Ak
log(1−Akakj)

)
= 1

⇒ lim
γ→0

Ca
1i

Ca
1k

=

∑
j a1jp1j +

∑
j

pkj

Ak
log(1−Akakj)∑

j a1jp1j +
pij

Ai
log(1−Aiaij)

⇒ lim
γ→0

Ca
i wiγ

αi

Ca
kwkγαk

=

(∑
j a1jp1j +

∑
j

pkj

Ak
log(1−Akakj)∑

j a1jp1j +
∑

j
pij

Ai
log(1−Aiaij)

)

Case 6: Ca
1i → A1i(̸= 0), Ca

i → 0, Ca
1k → A1k (̸= 0), Ca

k → Ak (̸= 0)

Using Ca
1iw1γ

α1 = Ca
i wiγ

αi = λi ∀i ̸= 1 on 9 gives us that

lim
γ→0

Ca
1i

Ca
1k

∑
j p1j

log(1+Ca
1ia1j)

Ca
1s

+
∑

j pij
log(1−Ca

i aij)
Ca

i∑
j p1j

log(1+Ca
1ka1j)

Ca
1k

+
∑

j pkj
log(1−Ca

kakj)

Ca
k

=

∑
j p1j log(1 +A1ia1j)−A1iµi∑

j p1j log(1 +A1ka1j) +
A1k

Ak

∑
j pkj log(1−Akakj)

= 1

Step 2: Analysis of equation 11 of the main body.

The Envelope Theorem guarantees that equation 11 of the main body can be rewritten as

K∑
i=2

KL(p1, p̃
(i)
1 )

KL(pi, p̃i)
=

K∑
i=2

γα1(
∑

j p1j log(1 + Ca
1ia1j)− Ca

1i

∑
j a1j p̃

(i)
1j )

γαi(
∑

j pij log(1− Ca
i aij) + Ca

i

∑
j aij p̃ij)

= 1 (11)

because ∂Pi,a(w
∗)

∂w1
= KL(p1, p̃

i
1) and ∂Pi,a(w

∗)
∂wi

= KL(pi, p̃i). We shall use this form of equation 11 to derive expressions
for wi, i ∈ [K]\{1} under the following cases:

Case 1: α1 ̸= αmax,
Case 2: α1 = αmax > αi, ∀i ̸= 1,
Case 3: α1 = α2 = αmax > αi, ∀i ̸= 1, 2,
Case 4: α1 = αk = αmax ≥ αi, i /∈ {1, 2, k}, αmax > α2 and ζ > 1
Case 5: α1 = αk = αmax ≥ αi, i /∈ {1, 2, k}, αmax > α2 and ζ ≤ 1

where αmax := maxi αi. We shall first show that Case 1 is equivalent to Ca
1i → 0, Ca

i → Ai(̸= 0)∀i ̸= 1



For the “if" direction, let us assume that α1 ≥ αi for all i ∈ [K]\{1}. In the limit as γ → 0, we then get
that

K∑
i=2

KL(p1, p̃
(i)
1 )

KL(pi, p̃i)
=

K∑
i=2

γα1(
∑

j p1j log(1 + Ca
1ia1j)− Ca

1i

∑
j a1j p̃

(i)
1j )

γαi(
∑

j pij log(1− Ca
i aij) + Ca

i

∑
j aij p̃ij)

= 1 ⇒ 0 = 1

which is an absurdity.

For the “only if" direction, let us suppose that for some k ∈ [K]\{1}, α1 < αk. If Ca
k → 0, from our analysis

in Step 1, we can conclude that Ca
1k → A1k( ̸= 0). Therefore,

γα1−αk
(
∑

j p1j log(1 + Ca
1ka1j)− Ca

1k

∑
j a1j p̃

(k)
1j )

(
∑

j pkj log(1− Ca
kakj) + Ca

k

∑
j akj p̃kj)

→ ∞ as γ → 0

contradicting
∑K

i=2

γα1 (
∑

j p1j log(1+Ca
1ia1j)−Ca

1i

∑
j a1j p̃

(i)
1j )

γαi (
∑

j pij log(1+Ca
i aij)+Ca

i

∑
j aij p̃ij)

= 1.

From our analysis in Step 1, we can conclude that Ca
k → Ak (̸= 0) implies that Ca

1k → 0 and consequently,
Ca

1i → 0, Ca
i → Ai(̸= 0) ∀i ̸= 1.

Let αmax = αk. Since Ca
1i → 0, Ca

i → Ai(̸= 0) ∀i ̸= 1, we can use Taylor series expansions to write

lim
γ→0

K∑
i=2

γα1(
∑

j p1j log(1 + Ca
1ia1j)− Ca

1i

∑
j a1j p̃

(i)
1j )

γαi(
∑

j pij log(1 + Ca
i aij) + Ca

i

∑
j aij p̃ij)

= 1

⇒ lim
γ→0

K∑
i=2

(Ca
1i)

2 ∑
j a2

1jp1j

2 γα1−αi

(
∑

j pij log(1 + Ca
i aij) + Ca

i

∑
j aij p̃ij)

= 1

We know that Ca
1i = Ca

i
wiγ

αi

w1γα1
. This substitution will give us

lim
γ→0

K∑
i=2

(Ca
i )

2 ∑
j a2

1jp1j

2

(
∑

j pij log(1 + Ca
i aij) + Ca

i

∑
j aij p̃ij)

(
wi

w1

)2

γαi−α1 = 1

⇒
K∑
i=2

lim
γ→0

Mi

(
wi

w1

)2

γαi−α1 = 1;where Mi :=

(Ca
i )

2 ∑
j a2

1jp1j

2

(
∑

j pij log(1 + Ca
i aij) + Ca

i

∑
j aij p̃ij)

If αi < α1, then γαi−α1 must go to ∞ as γ → 0. But Mi being bounded and Mi

(
wi

w1

)2
γαi−α1 ≤ 1 implies that

wi

w1
≤ 1

Mi
γ

α1−αi
2 . Therefore, Mi

(
wi

w1

)2
γαi−α1 = Mi(

Ca
1i

Ca
i
)(wi

w1
) → 0 as γ → 0.

If α1 < αi < αmax, let us suppose Mi

(
wi

w1

)2
γαi−α1 = Mi.

Ca
k

Ca
i
.wkγ

αk

wiγαi
.wi

w1
→ Li ̸= 0 as γ → 0. Let us choose an ϵ > 0

such that Li − ϵ > 0. Then for sufficiently small γ, we get wkγ
αk > (Li − ϵ)w1γ

α1

wi
. But due to Mk

(
wi

w1

)2
γαk−α1 ≤ 1, we

must have (Li − ϵ)2Mk

w2
i
γα1−αk < Mk

(
wi

w1

)2
γαk−α1 ≤ 1. This implies that wi > (Li − ϵ)

√
Mkγ

α1−αk
2 . But we cannot

have wi → ∞ as γ → 0.

We are thus forced to conclude that only those values of i for which αi = αmax will contribute positively to the
sum

∑K
i=2 limγ→0 Mi

(
wi

w1

)2
γαi−α1 .

For i such that αi = αmax, as γ → 0, let Mi

(
wi

w1

)2
γαi−α1 → Li ̸= 0. Therefore, in the limit,

w1 =
√

Mi

Li
γ

αmax−α1
2 wi. This also gives us that as γ → 0, for all s, t such that αs = αt = αmax,

ws

wt
=

√
MtLs

MsLt
=

√
Ls

Lt

√∑
j psj log(1+Asasj)+As

∑
j asj p̃sj∑

j ptj log(1+Atatj)+At
∑

j atj p̃tj
.



To approximately solve our maxmin problem, we do the following:

Let us fix a k with αk = αmax and set wk = 1. Then, w1 =
√

Mk

Lk
γ

αmax−α1
2 . For the other i such that αi < αmax, using

Ca
i wiγ

αi =

∑
j a1jp1j+

∑
j

pkj

Ak
log(1−Akakj)∑

j a1jp1j+
∑

j
pij

Ai
log(1−Aiaij)

Ca
kwkγ

αk , we get that wi =
Ak

∑
j a1jp1j+

∑
j pkj log(1−Akakj)

Ai
∑

j a1jp1j+
∑

j pij log(1−Aiaij)
γαk−αi .

Note that Ai may be obtained by solving µ1 =
∑

j
aijpij

1−Aiaij
. For any other s with αs = αmax, we have

ws =
√

Ls

Lk

√ ∑
j psj log(1+Asasj)+As

∑
j asj p̃sj∑

j pkj log(1+Akakj)+Ak

∑
j akj p̃kj

. We use this to evaluate Lk for each “rarest arm" and finally nor-

malize the weights obtained to lie within [0,1].

Special case: If there is a unique k with αk = αmax, then our analysis tells us that Lk = 1. Our approximate
solution then becomes the normalized form of w1 =

√
Mkγ

αmax−α1
2 , wi =

Ak

∑
j a1jp1j+

∑
j pkj log(1−Akakj)

Ai
∑

j a1jp1j+
∑

j pij log(1−Aiaij)
γαk−αi for

i ̸= k, 1, and wk = 1.

Before starting on rest of the cases, we’ll introduce some additional notation that will be of importance. Let us
revisit the following function introduced in section 3.1.

gi(x) =

{
y :

∑
j

a1jp1j
1 + ya1j

=
∑
j

aijpij
1− xaij

}
Clearly, gi is decreasing in x, and gk(Ak) = A1k. We now define fi(x) as

fi(x) :=
∑
j

p1j log(1 + gi(x)a1j) +
gi(x)

x

∑
j

pij log(1− xaij)

fi(0) := lim
x→0+

fi(x)

fi can also be shown to be decreasing in x and increasing in gi(x). Further, we define hi as follows.

hi(x) :=

∑
j p1j log(1 + gi(x)a1j)− gi(x)

∑
j a1j p̃

(i)
1j∑

j pij log(1− xaij) + xaij p̃ij

It can be showed that hi is a decreasing function of x.

We can now turn our attention to Case 2.

Since α1 = αmax uniquely, in the sum

K∑
i=2

lim
γ→0

γα1(
∑

j p1j log(1 + Ca
1ia1j)− Ca

1i

∑
j a1j p̃

(i)
1j )

γαi(
∑

j pij log(1− Ca
i aij) + Ca

i

∑
j aij p̃ij)

= 1,

if we do not have Ca
k → 0 as γ → 0 for some k, then the sum on the left becomes equal to 0, which would be a contradiction.

We also note that there will be exactly one arm k where Ca
k → 0 as γ → 0. Let us separately examine this kth summand.

lim
γ→0

(
∑

j p1j log(1 + Ca
1ka1j)− Ca

1k

∑
j a1j p̃

(i)
1j )

(
∑

j pkj log(1− Ca
kakj) + Ca

k

∑
j akj p̃kj)

γα1−αk = lim
γ→0

2(
∑

j p1j log(1 + Ca
1ka1j)− Ca

1k

∑
j a1p̃

(k)
1j )

(Ca
k )

2
∑

j a
2
kjpkj

γα1−αk

Since this term needs to be equal to 1, we must have

lim
γ→0

(Ca
k )

2

γαk−α1
= lim

γ→0

(Ca
1k)

2w2
kγ

αk−α1

w2
1

=

∑
j a

2
kjpkj

2(
∑

j p1j log(1 +A1ka1j)−A1k

∑
j a1j p̃

(k)
1j )

This suggests the following form for wk.

wk =
1

A1k

√√√√ ∑
j a

2
kjpkj

2(
∑

j p1j log(1 +A1ka1j)−A1k

∑
j a1j p̃

(k)
1j )

w1γ
α1−αk

2 (=: Mkw1γ
α1−αk

2 )



We shall now establish that k = 2.

It can be understood that gi(x) is the factor by which the mean of arm 1 is reduced to aijpi

1−xai
. Hence, we con-

clude that g2(0) < ... < gK(0), implying that f2(0) < ... < fK(0).

Observe that (8) can be expressed as (as Ak = 0)

fi(Ai) = fk(Ak) = fk(0)

If k > 2, we have f2(A2) < f2(0) < fk(0), giving us a contradiction. Hence, k = 2.

Since for every other arm i, Ca
1i → A1i(̸= 0) and Ca

i → Ai( ̸= 0) as γ → 0,

wi =
A1i

Ai
w1γ

α1−αi

where A1i and Ai can be obtained by finding the unique solution to∑
j p1j log(1 +A12a1j)−A12

∑
j a2jp2j∑

j p1j log(1 +A1ia1j) +
A1i

Ai

∑
j pij log(1−Aiaij)

= 1

and ∑
j

a1jp1j
1 +A1ia1j

=
∑
j

aijpij
1−Aiaij

the latter equality following from the limit form of the mean equation. We can then use the same normalization technique as
in case 1 to find the optimal weights.

For Case 3, if Ca
12 → A12( ̸= 0), Ca

2 → 0 as γ → 0, we have

lim
γ→0

(
∑

j p1j log(1 + Ca
12a1j)− Ca

12

∑
j a1j p̃

(i)
1j )

(
∑

j p2j log(1− Ca
2a2j) + Ca

2

∑
j a2j p̃2j)

γα1−α2 = lim
γ→0

2(
∑

j p1j log(1 + Ca
12a1j)− Ca

12

∑
j a1j p̃

(2)
1j )

(Ca
2 )

2
∑

j a
2
2jp2

= ∞

which is impossible, thereby guaranteeing Ca
12 → A12(̸= 0), Ca

2 → A2(̸= 0) as γ → 0, and w2 = A12

A2
w1. This will enable

us to find w2 as described under case 2.

As already argued in case 2, Ca
2 → A2(̸= 0) as γ → 0 means that Ca

i → Ai(̸= 0) as γ → 0 for all i ̸= 2.
Therefore, we must have

lim
γ→0

∑
j p1j log(1 + Ca

12a1j)− Ca
12

∑
j a1j p̃

(i)
1j∑

j p2j log(1− Ca
2a2j) + Ca

2

∑
j a2j p̃2j

= 1

where A1i and Ai can be related by∑
j p1j log(1 +A12a1j) +

A12

A2

∑
j p2j log(1−A2a2j)∑

j p1j log(1 +A1ia1j) +
A1i

Ai

∑
j pij log(1−Aiaij)

= 1 (12)

and using the mean equation, ∑
j

a1jp1j
1 +A1ia1j

=
∑
j

aijpij
1−Aiaij

∀i

Let us denote these by A2(A12) and Ai(A1i). Substituting them in 12 and using the defintions of fi, we have
f2(A12) = fi(A1i).

Each of these fi’s is increasing in A1i. Thus we have A1i = f−1
i ◦ (f2(A12)).

Using this, we can solve for A12 from equation 11. We observe that each summand in 11 is an increasing func-
tion of A1i and hence A12. So a simple efficient scheme to find the solution is to first guess an A12 and then use a simple



bisection method to numerically get A1i’s for this guess. The mean equations can be used to get the Ai’s. Finally, we check
if 11 is satisfied (upto tolerance). If LHS of 11 is greater than 1, then we halve our initial guess, and double the guess if
lesser than 1. And repeat the earlier procedure till error tolerance is breached.

It only remains to consider Cases 4 and 5. We have already argued under case 3 that Ca
j → Aj( ̸= 0) as γ → 0

whenever αj = αmax. Corresponding to any such Aj , we can write all other Ai’s in terms of Aj . Let us define ξij(x) as
follows.

ξij(x) :=

{
y :

p1j log(1 + gi(y)a1) + pi
gi(y)
y log(1− yai)

p1j log(1 + gj(x)a1) + pj
gj(x)
x log(1− yai)

= 1

}
Let us now define ζ as

ζ :=
∑

{k:k ̸=1,
αk=αmax}

hk(ξk2(0)).

Equation 11 can now be re-written after taking the limit γ → 0 as∑
{k:k ̸=1,

αk=αmax}

hk(Ak) + lim
γ→0

(γα1−α2h2(C
a
2 )) = 1

The issue now is to determine if Ca
2 → 0 as γ → 0. We have observed earlier that hi(Ai) is a decreasing function of Ai and

the bijective map ξi2 implies hi(Ai) is also a decreasing function of A2. Thus, we have

ζ ≥
∑

{k:k ̸=1,
αk=αmax}

hk(Ak).

If ζ > 1, then equation 11 can be satisfied only when Ca
2 → A2 (> 0). Because otherwise, the first term itself would

contribute more than 1 and we’d have a contradiction. Similarly, when ζ ≤ 1, we must necessarily have Ca
2 → 0.

In the case when ζ > 1, the Ai, A1i’s are determined exactly as in 3. If ζ ≤ 1 then Ai, A1i’s are determined
exactly as in Case 2. This completes our proof.

D THE MEETING POINT OF THE MEANS IN THE APPROXIMATE PROBLEM

Equation (12) in the main body and the Mean Value Theorem together give us the following chain of equalities/inequalities.

n∑
j=1

p1j log(1 + C1sa1j)− C1sµ̃s

≤
n∑

j=1

p1j log(1 + C1sa1j)− C1s

n∑
j=1

asjpsj
1− Csasj

≤
n∑

j=1

p1j log(1 + C1sa1j) +
C1s

Cs

n∑
j=1

psj log(1− Csasj)

=

n∑
j=1

p1j log(1 + C1ta1j) +
C1t

Ct

n∑
j=1

ptj log(1− Ctatj)

≤
n∑

j=1

p1j log(1 + C1ta1j)− C1tµt

Regrouping terms among the first and last quantities of the above chain gives us that

C1t

C1s
µt ≤

1

C1s

n∑
j=1

p1j log

(
1 + C1ta1j
1 + C1sa1j

)
+ µ̃s



Note that log
( 1+C1ta1j

1+C1sa1j

)
= log

(
1 +

(C1t−C1s)a1j

1+C1sa1j

)
≤ (C1t − C1s)µ̃s, and hence, C1t

C1s
µt ≤ C1t

C1s
µ̃s, i.e., µt ≤ µ̃s.

We conclude from the above analysis that ∀s, t ̸= 2, µ̃s ≥ µt ⇒ ∀s ̸= 2, µ̃s ≥ µ2.

E PROOF OF δ-CORRECTNESS OF TS(A).

Let the set of all possible bandit hypotheses be H. We have H = ∪iHi, where Hi denotes all bandit instances with arm i
having the highest mean. Let î(τδ) denote the recommendation of TS(A) at the stopping time. The error probability for a
bandit instance p with arm 1 having the highest mean is given by:

Pp(τδ < ∞, î(τδ) ̸= 1) ≤ Pp(∃t ∈ N : î(t) ̸= 1, Zî(t)(t) > β(t, δ))

= Pp(∃t ∈ N : ∃i ̸= 1A(p̂) ⊆ Hi)

where A(p̂) := {p′ ∈ H| min
b̸=î(t)

Nî(t)(t)KL
inf (p̂î(t)(t), µ

′
î(t)

) +Nb(t)KU
inf (p̂b(t), µ

′
b) ≤ β(t, δ)}. This implies:

Pp(τδ < ∞, î(τδ) ̸= 1) ≤ Pp(∃t ∈ N : p /∈ A(p̂))

= Pp(∃t ∈ N : min
b̸=î(t)

Nî(t)(t)K
L
inf (p̂î(t)(t), µî(t)) +Nb(t)KU

inf (p̂b(t), µb) ≥ β(t, δ))

≤
∑
b̸=1

Pp(∃t ∈ N : Nî(t)(t)K
L
inf (p̂î(t)(t), µî(t)) +Nb(t)KU

inf (p̂b(t), µb) ≥ β(t, δ))

(13)

Now a concentration inequality for the above quantity was shown in Agrawal et al. [2021].

Proposition 4.2 in Agrawal et al. [2021].

P
(
∃n ∈ N : Ni(n)KU

inf (p̂i(t), µi) +KL
inf (p̂j(t), µj) ≥ x+ 5 log(n+ 1) + 2

)
≤ e−x.

Substituting this in (13) finishes the proof.

F SAMPLE COMPLEXITY GUARANTEE FOR TS(A).

We follow closely the section C.6.2 in Agrawal et al. [2020]. Let ŵ∗(p) denote the optimal weights obtained as solutions to
the approximate problem described at the beginning of section 3.1 in the main paper. Lemma 14 in Agrawal et al. [2020]
then tells us that TS(A) ensures that for all arms i ∈ [K], Ni(lm)

lm

a.s.→ ŵ∗(p) as l → ∞. Recall from section 4 of the main
paper that l is the batch index and m is the batch size.

Define the following set
Iϵ(p) := Bζ(p1)× ...×Bζ(pK)

where
Bζ(pi) := {p̃i : dW (pi, p̃i) ≤ ζ, |µ̃i − µi| ≤ ζ}.

Here, dW is the Wasserstein-1 metric on probability measures and µ̃i is the mean of p̃i.
Whenever the empirical bandit p̂(lm) ∈ Iϵ(p), arm1 becomes empirically best. For ϵ > 0, choose ζ := ζ(ϵ)(< µ1−µ2

4 )
such that

max
i∈[K]

|ŵ∗
i (p

′)− ŵ∗
i (p)| ≤ ϵ

for all p′ ∈ Iϵ(p). For T ∈ N, T ≥ m, define ℓ0(T ) := max{1, T 1/4

m }, ℓ1(T ) := max{1, T 3/4

m } and ℓ2(T ) := ⌊ T
m⌋. Define

the following set

GT (ϵ) :=

ℓ2(T )⋂
l=ℓ0(T )

{p̂(lm) ∈ Iϵ(p)}
ℓ2(T )⋂

l=ℓ1(T )

{
max
i∈[K]

∣∣∣∣Ni(lm)

lm
− ŵ∗

i (p)

∣∣∣∣ ≤ ϵ

}



Define the quantities:
g̃(p, w) := min

b ̸=1
Pb(w)

C̃ϵ(p) := inf
p′∈Iϵ(p)

{w′
:||w′−ŵ∗(p)||≤ϵ}

g̃(p
′
, w

′
).

where Pb was defined in equation 7 of the main paper. Now the stopping rule (see section 4 in the main paper) is given by:

Zk∗(l) > β(lm, δ)

where
Zk∗(l) :=min

b ̸=k∗
inf
x≤y

Nk∗(lm)KL
inf (p̂k∗(lm), x)

+Nb(lm)KU
inf (p̂b(lm), y).

where k∗ is the empirical best arm and β(t, δ) is the stopping threshold defined as

β(t, δ) := log

(
K − 1

δ

)
+ 5 log(t+ 1) + 2.

Note that in GT (ϵ) we have Zk∗(l) > lm× C̃ϵ(p). Hence, in GT (ϵ),

min{τδ, T} ≤ m.l1(T ) +m

l2(T )∑
l=l1(T )+1

I{lm < τδ}

≤ m.l1(T ) +m

l2(T )∑
l=l1(T )+1

I{Zk∗(l) < β(lm, δ)}

= m.l1(T ) +m

l2(T )∑
l=l1(T )+1

I
{
l <

β(lm, δ)

mC̃ϵ(p)

}

= m.l1(T ) +
β(T, δ)

C̃ϵ(p)

Define T0(δ, ϵ) := inf

{
t : m.l1(T ) +

β(t,δ)

C̃ϵ(p)
≤ t

}
.

On GT (ϵ), for T ≥ max{m,T0(δ, ϵ)}, min{τδ, T} ≤ T , meaning that for such T , τδ ≤ T . Hence, choosing T1(δ, ϵ) :=
max{m,T0(δ, ϵ)+ 1, we get that GT1(δ,ϵ)(ϵ) ⊆ {τδ ≤ T1(δ, ϵ)}. Then, min{τδ, T1(δ, ϵ)} ≤ T1(δ, ϵ) ⇒ τδ ≤ T1(δ, ϵ). This
allows us to conclude that

E(τδ) =
∞∑
t=1

P(τδ ≥ t)

=

T1(δ,ϵ)∑
t=1

P(τδ ≥ t) +

∞∑
t=T1(δ,ϵ)+1

P(τδ ≥ t)

≤ T0(δ, ϵ) +m+

∞∑
t=m+1

P(GC
T (ϵ))

Now in the same manner as in Agrawal et al. [2020] we can show that T0(δ,ϵ)
log(1/δ) →

1
C̃ϵ(p)

as δ → 0. We invoke Lemma 32 in

Agrawal et al. [2020] to observe that
∑∞

t=m+1 P(GC
T (ϵ))

log(1/δ) → 0. Thus we have for small enough ϵ > 0

lim sup
δ→0

E(τδ)
log(1/δ)

≤ 1

C̃ϵ(p)

But we observe that by continuity in ϵ, when ϵ → 0

C̃ϵ(p) → min
b ̸=1

Pb(ŵ
∗).

Note by definition min
b ̸=1

Pb(ŵ
∗) ≤ V ∗(p). This inequality shows that TS(A) suffers an increase in sample complexity but this

is expected to be small when γ is close to zero since then ŵ∗(p) ≈ w∗(p).



G ALGORITHMS IN LITERATURE

The following algorithm as per Even-Dar, Mannor & Mansour (2006) provides a simplistic approach towards solving our
problem, despite being highly expensive in terms of sampling complexity.

Algorithm 1 Succesive elimination (δ)
Input: Confidence level δ, Upper bounds [Biγ

−αi ]i∈[K].
Output: Arm recommendation k∗.

1: Set t = 1, S = [K].
2: For all i ∈ [K], set the empirical means µ̂t

i = 0.
3: while |S|>1 do
4: Sample every arm once, update µ̂t

i.

5: Define µ̂t
max := max

i∈S
µ̂t
i, ξt :=

√
log(4Kt2/δ)

t .

6: For all i ∈ S such that µ̂t
max − µ̂t

i ≥ 2ξt, set S = S\i.
7: t = t+ 1
8: end while
9: Declare the surviving arm as the best arm.

The successive elimination algorithm performs poorly in the rare event setting because a less rare arm which does not have
the largest mean becomes likely to survive the elimination and be declared the winner. This is because the less rare arm is
likely to produce a nonzero sample, thereby raising its empirical mean, while the more rare arms are yet to turn out any
non-zero samples.

Agrawal et al. [2019] describes the following algorithm to meet the lower bound on sampling complexity.

Algorithm 2 Track and Stop
Input: Confidence level δ, Upper bounds [Biγ

−αi ]i∈[K].
Output: Arm recommendation k∗.

1: Generate ⌊m
k ⌋ samples for each arm.

2: Set l = 1. lm denotes the number of samples.
3: Compute the empirical bandit µ̂ = (µ̂){a∈[K].
4: Compute the approximate weights ŵ(µ̂).
5: Let k∗ = argmax

a∈[K]

E[µ̂a].

6: Compute Z(k∗, l, µ̂), β(lm, δ).
7: while l ≤ 2 or Z(k∗, l, µ̂) ≥ β(lm, δ) do
8: Compute sa = (

√
(l + 1)m−Na(lm))+.

9: if m ≥
∑

a sa then
10: Generate sa many samples for each arm a.
11: Generate (m−

∑
a sa)

+ independent samples from ŵ(µ̂). Let Count(a) be occurrence of a in these samples.
12: Generate Count(a) samples from each arm a.
13: else
14: Solve the load balancing problem minimize maxa(sa − ŝa), where sa ≥ ŝa ≥ 0.
15: Generate ŝa samples from each arm a.
16: end if
17: l = l + 1
18: Update empirical bandit µ̂ with new samples.
19: Update Z(k∗, l, µ̂), β(lm, δ) and ŵ(µ̂) .
20: end while
21: Declare k∗ arm as the best arm.

https://jmlr.csail.mit.edu/papers/volume7/evendar06a/evendar06a.pdf 


H LIL-UCB, LUCB DEPENDENCE ON SUB-GAUSSIANITY PARAMETER σ

H.1 LIL-UCB

UCB index in this case is given by

(1 + β)(1 +
√
ϵ)σ

√√√√2(1 + ϵ) log
(

(1+ϵ)Ni(t)
δ

)
Ni(t)

.

We have σ = max
i∈[K]

Biγ
−αi in our setting. Refer to Figure 1 and the discussion following Theorem 2 in Jamieson et al.

[2014] for algorithm and the choice of β and ϵ. Refer to Lemma 1 in Jamieson et al. [2014] for choice of σ.

H.2 LUCB

The UCB index is given by

σ

√
1

2Ni(t)
log

(5Kt4

4δ

)
σ = max

i∈[K]
Biγ

−αi here. Refer to section 3.3 and Theorem 1 in Kalyanakrishnan et al. [2012] for choice of UCB index.
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