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Abstract

We consider the Best Arm Identification (BAI)
problem in the stochastic multi-armed bandit
framework, where each arm has a small proba-
bility of realizing large rewards, while with over-
whelming probability, the reward is zero. A key
application of this framework is in online adver-
tising, where click rates of advertisements could
be a fraction of a single percent and final conver-
sion to sales, while highly profitable, may again
be a small fraction of the click rates. Lately, al-
gorithms for BAI problems have been developed
that minimise sample complexity while providing
statistical guarantees on the correct arm selection.
As we observe, these algorithms can be computa-
tionally prohibitive. We exploit the fact that the
reward process for each arm is well approximated
by a Compound Poisson process and arrive at al-
gorithms that are faster, with a small increase in
sample complexity. We analyze the problem in an
asymptotic regime as rarity of reward occurrence
reduces to zero, and reward amounts increase to
infinity. This helps illustrate the benefits of the
proposed algorithm. It also sheds light on the un-
derlying structure of the optimal BAI algorithms
in the rare event setting.

1 INTRODUCTION

Online advertising is ubiquitous in present times. Its users
include e-commerce platforms, mobile application devel-
opers, marketing agents and online retailers. Typically, an
online advertiser has to decide amongst various product
advertisements and choose the one with highest expected re-
ward. Advertisers typically have a period of experimentation
where they sequentially show competing advertisements to
the users to arrive at those that elicit best response from

each customer type (customers maybe clustered based on
available information).

A key feature of online advertising is that while each adver-
tisement maybe shown to a large number of customers, the
click rates on advertisements are usually small. Typically,
these maybe of order one in a thousand 1, and a very small
percentage 2 of the users who click on an advertisement end
up buying the product (known as the conversion rate). The
conversion and click rates can vary significantly depending
on the product category. For example, high-end products of-
ten have higher click rates but much lower conversion rates
compared to standard products. Thus, a key characteristic
of the problem is that rarer conversion rates often have very
high rewards. Further, the seller would have an estimate of
the price that their product(s) may sell for, along with an
estimate of the volume of sales that may take place, it is also
fair to assume that in practice upper bounds on rewards are
known.

We study the problem of identifying the best advertisement
to show to a customer type as a best arm identification (BAI)
problem in the multi-armed bandit framework. The rarity
of the reward probabilities, and the fact advertisements
are shown to a large number of customers, may make the
computational effort of popular existing adaptive algorithms
prohibitive. On the other hand, these properties call for
sensible aggregation based algorithms. In this paper, we
observe that the rewards from large number of pulls from
each arm can be well modelled as a compound Poisson
process, significantly simplifying and speeding up the
existing optimal algorithms.

To illustrate the proposed ideas clearly, we consider
a simple stochastic BAI problem where agent is given a
set of K unknown probability distributions (arms) that
can be sampled sequentially. The agent’s objective is to
declare the arm with the highest mean with a pre-specified

1https://cxl.com/guides/click-through-rate/benchmarks/
2https://localiq.com/blog/search-advertising-benchmarks/.
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confidence level 1 − δ, while minimizing the expected
number of samples (sampling complexity). In the literature,
this is popularly known as the fixed-confidence setting, and
the algorithms that provide 1− δ confidence guarantees are
referred to as δ-correct.

Best arm identification problems are also popular in
simulation community where these are better known as
ranking and selection problems (for example see Goldsman
[1983], Chan and Lai [2006]). Classical problem involves
many complex simulation models of practical systems
such as supply chain design, traffic network and so on,
and the aim is to identify with high probability, the
system with the highest expected reward, using minimum
computational budget. In many systems, the performance
measure of interest may correspond to a rare event, e.g., a
manufacturing plant shut down probability, or computer
system unavailability fraction. The algorithms that we
propose here are also applicable in optimal computational
resource allocation in simulating such systems.

Related literature: In the learning theory literature, Even-
Dar et al. [2006] were amongst the first to consider the
fixed confidence BAI problem. They proposed a successive
elimination algorithm (see section F of supplementary ma-
terial). Upper Confidence Bound (UCB) based algorithms
were proposed in Auer et al. [2002], Jamieson et al. [2014],
wherein the arm with highest confidence index is sampled.
These algorithms usually stop when the difference between
arm indices breaches a certain threshold (see Jamieson and
Nowak [2014] for more details). The sample complexities of
these algorithms was shown to match the lower bound devel-
oped by them to within a constant. Motivated by Bayesian
approaches in Russo [2016], Jourdan et al. [2022] propose
top-two algorithms that sequentially identify a challenger
to the current empirical best arm and sample between the
two with a pre-defined probability β. Although these algo-
rithms are β-optimal 3, it’s not clear how optimal β may be
learnt, and thus they are sub-optimal. The sample complex-
ity of these algorithms is typically analyzed in an asymptotic
regime where δ → 0. Garivier and Kaufmann [2016] and
Kaufmann et al. [2016] derived a lower bound on the sam-
ple complexity through a max-min formulation. Based on
this lower bound, a Track-and-Stop algorithm (TS) was pro-
posed for arm distributions restricted to single parameter
exponential families (SPEF), and was shown to match the
lower bound even to a constant (as δ → 0).Agrawal et al.
[2019, 2020] extended the TS algorithms to more general
distributions. The optimal TS algorithms in the literature,
proceed sequentially. At each iteration, the observed empiri-
cal parameters are plugged into the lower bound max-min
problem to arrive at prescriptive optimal sample allocations
to each arm, that then guide the sample allocations. As is
known, and as we observe, TS algorithms are computation-

3see Jourdan et al. [2022] for definition

ally prohibitive4, especially since in our rare advertising
settings, the informative non-zero reward samples (those
instances where users buy products) are rare. This motivates
the paper’s goal to arrive at computationally efficient al-
gorithms that exploit the compound Poisson structure (see
chapter 2 Ross [1995]) of the arm reward process, with a
small increase in sample complexity.

Contributions: We develop a rarity framework where the
reward success probabilities are modelled as a function of
γα for arm dependent α > 0 and γ is > 0 and small. The
rewards are modelled to be of order γ−α so that the ex-
pected rewards across arms are comparable (otherwise, we
a-priori know arms with small or large expected rewards).
We assume that arm specific upper bounds on rewards are
available to us. In this framework, we propose a computa-
tionally efficient δ-correct algorithm that is nearly asymp-
totically optimal for small γ. This algorithm (approximate
track and stop) is based on existing track and stop algo-
rithms that are simplified through a Compound Poisson
approximation to the bandit reward process. The Poisson ap-
proximation can be seen to be tight as γ → 0 and we provide
bounds on the deviations due to the Poisson approximation.
Further, we give an asymptotically valid upper bound on
the sample complexity illustrating that the increase in it is
marginal compared to the computational benefit of the pro-
posed alggorithm. The rarity structure helps us shed further
light on the optimal sample allocations across arms in our
BAI problem. We identify five different regimes depend-
ing on the rarity differences between the arms. Finally, we
compare experimentally with the TS algorithm in Agrawal
et al. [2020] for bounded random rewards. We find that for
realistic rare event probabilities and reward structure, our
algorithm is 6-12 times faster than the TS algorithm with a
small increase (1-13 %) in sample complexity.

The rest of the paper is organized as follows: Section 2
formally introduces the problem, rare event setting and
provides some background. Section 3 introduces the ap-
proximate problem, analyzes its deviations from the exact
problem and gives the optimal weight asymptotics. Section
4 outlines the details of the Aproximate Track and Stop
(TS(A)) algorithm, δ-correctness, sample complexity guar-
antee and computational benefits of the algorithm. Section
5 presents some experimental results and we conclude in
Section 6. The proofs of various results and further technical
details are furnished in the supplementary material.

2 MODELLING FRAMEWORK

Consider a K-armed bandit with each arm’s distribution de-
noted by pi, i ∈ [K]. We denote such a bandit instance by p.
For any distribution η, let µ(η) denote its mean and supp(η)

4UCB based BAI algorithms aren’t instance optimal and incur
large sample complexity in this setting.
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denote its support. Further, let KL(η, κ) = Eη
[

log
(
dη
dκ

) ]
denote the Kullback-Leibler divergence between two mea-
sures η and κ, where Eη denotes the expectation operator
under η. The agent’s goal is to sequentially sample from
these arms using a policy that at any sequential step t, may
depend upon all the generated data before time t. The policy
then stops at a random stopping time and declares an arm
that it considers to have the highest mean. A sampling strat-
egy, a stopping rule and a recommendation rule are together
called a best arm bandit algorithm. A best arm bandit algo-
rithm that correctly recommends the arm with the highest
mean with probability at least 1 − δ (for a pre-specified
δ ∈ (0, 1)) is said to be δ-correct.

This BAI problem has been well studied, and lower bounds
on sample complexity under δ-correct algorithms have been
developed along with algorithms that match the lower bound
asymptotically as δ → 0. Below, we first state the lower
bound in Theorem 2, and then briefly outline an algorithm
that asymptotically matches it. The lower bounds were de-
veloped by Garivier and Kaufmann [2016]) for single param-
eter exponential family of distributions and were generalized
to bounded and heavy-tailed distributions by Agrawal et al.
[2020]. Let

KL,Binf (η, x) := min
supp(κ)⊆[0,B]

µκ≤x

KL(η, κ) (1)

KU,Binf (η, x) := min
supp(κ)⊆[0,B]

µκ≥x

KL(η, κ). (2)

Henceforth, we suppress the dependence on B above to
ease the presentation. This should not cause confusion in
the following discussion. For brevity, we’ll denote µpi by µi
for each i ∈ [K]. As is customary in the BAI literature, we
assume that best arm is unique and without loss of generality,
µ1 > µi for i ∈ [K]\{1}.

Theorem 5 in Agrawal et al. [2020]. For our bandit prob-
lem, any δ-correct algorithm with stopping rule τδ , satisfies

Ep[τδ] ≥
1

V ∗(p)
log
( 1

2.4δ

)
,

where V ∗(p) is defined as

max
w∈ΣK

min
i 6=1

inf
x∈[µi,µ1]

w1KLinf (p1, x) + wiKUinf (pi, x), (3)

ΣK being the K-dimensional probability simplex.

The lower bound suggests that each arm be sampled in
proportion to the optimal weightsw∗ in (3). This idea guides
the optimal Track and Stop (TS) algorithms that match
the lower bound asymptotically as δ → 0. Typically, such
algorithms have the following features: (see Garivier and
Kaufmann [2016], Agrawal et al. [2020] for further details):

1. Arms are sampled sequentially in batches. At stage t,
each arm is sampled at least order

√
t times (this sub

linear exploration ensures that no arm is starved).

2. Empirical distributions p̂t are plugged into the lower
bound 3 and is solved to determine the prescriptive
proportions ŵt.

3. The algorithm then samples to closely track these pro-
portions.

4. The algorithm stops when the log-likelihood ratio at
stage m exceeds a threshold β(m, δ) (set close to
log(1/δ)). At stage m, the log likelihood ratio equals

min
b6=k∗

inf
x≤y

Nk∗(m)KLinf (p̂k∗(m), x)

+Nb(m)KUinf (p̂b(m), y),

where k∗ denotes the arm with the largest sample mean,
each Na(m) denotes the samples of arm a amongst m
samples.

As is apparent, the above algorithm involves repeatedly solv-
ing the lower bound problem, and this is computationally
demanding, particularly when nonzero rewards are rare and
occur with very low probabilities.

2.1 THE RARE EVENT SETTING

We now specialize the BAI setting to illustrate our rare
event framework where the rewards from each arm take
positive values with small probabilities. Further, while the
expected rewards across arms are of the same order, the
realized rewards and the associated probabilities may be
substantially different.

Concretely, suppose that γ is a small positive value (say of
order 10−2 or lower) and corresponding to each arm distribu-
tion pi, i ∈ [K], we have a rarity index αi > 0. The support
of arm i takes ni distinct nonzero values, namely, aijγ−αi ,
each with probability pijγαi > 0 for j ∈ [ni], ni ∈ N.
Under each pi, the realized reward takes value zero with
probability close to 1. To summarize,

PX∼pi(X = aijγ
−αi) = pijγ

αi , j ∈ [ni]

PX∼pi(X = 0) = 1−
∑
j

pijγ
αi .

The arm means are given by µi =
∑
j aijpij and are in-

dependent of γ. We further assume that an upper bound
Biγ

−αi for each arm i is known to the agent. We assume
above that when arm i sees a large reward of order γ−αi , it
takes finitely many values. This keeps our analysis some-
what simpler and we deal with compound Poisson process
for cumulative reward from each arm. It is easy to extend this
to general distributions. However, the cumulative rewards
from each arm would follow a Poisson random measure and
Proposition 2.2 would generalize accordingly.
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The above rarity framework brings out the benefits of the
proposed approximations cleanly for small γ in our theoreti-
cal analysis. However, in executing the associated algorithm,
we don’t need to separately know the values of γ and each
αi.

2.2 THE POISSON APPROXIMATION OF KL
DIVERGENCE

We motivate in this section the approximate form of KL
divergence that we shall use. The following well-known
result, shown in section A.5 of the supplementary material
for completeness, is used to motivate our approximation.

Proposition 1. Let τ (1)
ij denote the minimum number of

samples of arm i needed to see the reward aijγ−αi , i.e. the
first arrival time of the support point j. Similarly, let τ (k)

ij

be the k-th arrival time of support point j.

Let Nij(t) be the number of times the reward aijγ−αi is
returned by arm i in dtγ−αie trials (t ∈ R). Then as γ → 0,

(a) P(τ
(k)
ij > tγ−αi)→ e−pijt,

(b) Nij(t)
D−→ Poisson(pijt).

Further for all support points, {Poisson(pijt)}j is a collec-
tion of mutually independent random variables.

This implies that in rare event setting, the distribution of the
counting process Nij(t) for each support point aijγ−αi is
well-approximated by a Poisson process. We now argue that
when γ is small enough, the KL divergence between arm
distributions pi and p̃i of same rarity can be approximated
by a sum of KL divergences between independent Poisson
variables.

Let X1:m and X̃1:m be two sets of i.i.d samples of size m
from pi and p̃i respectively. The corresponding measures
are the product measures p⊗mi and p̃⊗mi respectively. By the
tensorization property of KL-divergence, we have that

KL
(
p⊗mi , p̃⊗mi

)
= mKL(pi, p̃i) (4)

In the following discussion we set m = dtγ−αie. Con-
sider the vector-valued random variable (Nij(t))j∈[ni] and
its counterpart (Ñij(t))j∈[ni] under p̃i. Note that they are
functions of the samples X1:dtγ−αie, X̃1:dtγ−αie. Since we
can also reconstruct a permutation of these samples from
(Nij(t))j ,(Ñij(t))j , we have that

KL
(
p
⊗dtγ−αie
i , p̃

⊗dtγ−αie
i

)
=KL

(
ν((Nij(t))j), ν((Ñij(t))j)

)
where ν(A) is the measure of a random variable A. Now, by
continuity of KL in γ and weak convergence of Proposition

1, it follows that for γ small enough:

KL
(
p
⊗dtγ−αie
i , p̃

⊗dtγ−αie
i

)
≈
∑
j

KL(Poisson(pijt),Poisson(p̃ijt))

=t

[∑
j

pij log
(pij
p̃ij

)
+ (p̃ij − pij)

]
.

for γ small enough. Then, combining the approximation
above with the relation (4) gives

KL(pi, p̃i) ≈ γαi
[∑

j

pij log
(pij
p̃ij

)
+ (p̃ij − pij)

]
. (5)

This approximation is used to motivate the approximate
lower bound problem in the next section.

3 APPROXIMATE LOWER BOUND
PROBLEM

For each i, if Bi /∈ supp(pi), let ñi = ni + 1 and set aiñi =
Bi, else ñi = ni. The Poisson approximation of the KL
divergence (see Section 2.2) suggests that in lieu of Equation
(3), which is computationally expensive to solve, one could
consider the following approximate problem when the rarity
γ is small (the summations over j below correspond to
j ∈ [ñi]).

V ∗a (p) := max
w∈ΣK

min
i 6=1

inf∑
j aij p̃ij≥∑
j ua1j p̃1j

{
w1γ

α1

[∑
j

p1j log
(p1j

p̃1j

)

+ (p̃1j − p1j)

]
+ wiγ

αi

[∑
j

pij log
(pij
p̃ij

)
+ (p̃ij − pij)

]}
.

(6)
The minimization in 3 will now be replaced with the ap-
proximation in 5. Above, instead of allowing p̃i to have
the support [0, Biγ

−αi ], we limited its support to that of
pi extended to allow point Biγ−αi . This is justified in Sec-
tions A.1-A.2 of the supplementary material. The above
representation suggest that in TS algorithm we do not need
estimate γ and α’s separately, instead the equation above
suggests that only the relative rarity γαi−αk for some fixed
k is sufficient.

Let

Pi := inf
x∈[µi,µ1]

w1KLinf (p1, x) + wiKUinf (pi, x) (7)

denote the inner minimisation problem in 3 and let

Pi,a := inf∑
j aij p̃ij≥∑
j a1j p̃1j

w1γ
α1

[∑
j

p1j log
(p1j

p̃1j

)
+ (p̃1j − p1j)

]

+wiγ
αi

[∑
j

pij log
(pij
p̃ij

)
+ (p̃ij − pij)

]
(8)
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denote its approximation (above, we suppress the depen-
dence on w1 and wi of Pi and Pi,a). By approximating a
reformulated version of Pi that uses the dual representations
of KLinf and KUinf (following the approach used in Honda
and Takemura [2010], Agrawal et al. [2020]), we can show
that

Pi,a =w1γ
α1
[∑

j

p1j log(1 + Ca1ia1j)− Ca1ix∗i,a
]

+wiγ
αi
[∑

j

pij log(1− Cai aij) + Cai x
∗
i,a

]
,

(9)

where the quantities x∗i,a, C
a
1i, C

a
i (the qualifier ’a’ reminds

us these are for the approximate problem) are defined by the
relations:

Ca1iw1γ
α1 = Cai wiγ

αi ,

x∗i,a =
∑
j

a1jp1j

1 + a1jCa1i
, and

x∗i,a =
∑
j

aijpij
1− aijCai

.

(10)

Section A.4 of the supplementary material provides the step-
by-step reformulation, as well as the results that have been
used for it (Sections A.1-A.3 and A.5). The advantage of
our reformulation is that the quantities Ca1i and Cai have
bounded well-defined limits and using (10), we can elimi-
nate the dependence on x∗i (whose behaviour is not as easy
to analyze when γ → 0).

The discussion in Section 2.2 also suggests that Pi,a ≈ Pi
and hence, V ∗(p) ≈ V ∗a (p). This is shown in the following
theorem:

Theorem 1. For each i ∈ [K] and w ∈ ΣK , Pi, Pi,a are
O(γmax(α1,αi)). Furthermore, lim

γ→0

Pi
Pi,a = 1. In addition,

there exist constants L1i and Li, independent of w, such
that

|Pi−Pi,a| ≤ L1iw1γ
min(2α1,α1+αi)+Liwiγ

min(2αi,αi+α1).

Furthermore,

|V ∗(p)− V ∗a (p)| ≤ max
i 6=1

max
(
L1iγ

min(2α1,α1+αi),

Liγ
min(2αi,αi+α1)

)
.

The proof involves simplifying Pi, Pi,a through Taylor ex-
pansions for small γ. It is given in the Sections A.4 and B
of the supplementary material.

3.1 SOLVING THE APPROXIMATE LOWER
BOUND

By definition we have that

V ∗a (p) = max
w∈ΣK

min
i 6=1
Pi,a.

Further, we note that Pi,a is a concave function of w (infi-
mum of linear function of w). Maxmin problems with this
specific structure were studied in Glynn and Juneja [2004]
(the caveat being that in our Kinf definitions in the underly-
ing KL term, the first argument is fixed while we optimize
over the second argument, while in Glynn and Juneja [2004],
these orders are reversed. However, all the steps carry out
identically). The optimal weights w∗ are characterized in
the following theorem:

Theorem 1 in Glynn and Juneja [2004]. The optimal w∗

of the maxmin problem 6 satisfies:
K∑
i=2

∂Pi,a(w∗)

∂w1

/
∂Pi,a(w∗)

∂wi
= 1, (11)

and ∀i 6= j, i, j 6= 1,

Pi,a(w∗) = Pj,a(w∗). (12)

These conditions are also sufficient.

We can use the above theorem to find closed form expres-
sions (in terms of w∗) for Pi,a and ∂Pi,a(w∗)

∂wj
using (9). As

a starting point, we identify certain monotonicities present
in (10), (11) and (12) to ease up the process of root-finding
via bisection methods.

The equations defining Ca1i and Cai imply that Cai is a de-
creasing function of Ca1i. Mathematically, the implicit func-
tions gi(r), defined for all i 6= 1 as∑

j

a1jp1j

1 + gi(r)a1j
=
∑
j

aijpij
1− raij

are decreasing in r. The domain of gi is chosen such that
the RHS in the above equation is positive and finite.
The optimality equation (12) implies at the optimal weight
w∗, each Ca1i, i > 2, is an increasing function of Ca12. More
formally, the functions ξi(s), ∀i > 2, implicitly defined
through the equation:∑

j

p1j log(1 + gi(ξi)a1j) +
gi(ξi)

ξi

∑
j

pij log(1− ξiaij)

=
∑
j

p1j log(1 + g2(s)a1j) +
g2(s)

s

∑
j

p2j log(1− sa2j),

are increasing in s. The domain of ξi is such that the RHS is
well-defined. Finally, as a function of Ca12, the LHS in the
optimality equation 11 is also increasing. Mathematically
this means that the functions , ∀i 6= 1,

hi(s) :=

(∑
j

p1j log(1 + ξia1j)− ξi.

[∑
j

a1jp1j

1 + a1jξi

])(∑
j

pij log(1− gi(ξi)aij)

+ gi(ξi)
∑
j

[ aijpij
1− aijgi(ξi)

])−1
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are increasing in s. These monotonicities enable one to solve
for optimal weights in (6) through simple bisection methods.
This is the source of computational benefit of solving (6)
vis-a-vis (3). In (3), one has to solve either convex programs
(Pi) or a nonlinear system of four equations to arrive at the
solution (see Section C of supplementary material).

This enables us to study the behaviour of w∗ as γ → 0. We
set up some notation first.

Definition 1. Two positive valued functions of γ, A(γ)
and B(γ), are said to be asymptotically equivalent if
0 < lim inf

γ→0

A(γ)
B(γ) ≤ lim sup

γ→0

A(γ)
B(γ) < ∞. We denote this

by A(γ) = Θ(B(γ)).

Let αmax = maxiαi. The quantity ζ :=∑
i6=1,

αi=αmax

hi(ξi(0)) also plays a role in governing

the asymptotic behaviour of w∗.

Theorem (2) provides insight into the optimal weights in the
lower bound problem as γ → 0. We discuss its conclusions
further in the next subsection.

Theorem 2. The behaviour of w∗ as γ → 0 is described
by the following five cases:

Case 1: The best arm is not the rarest, αmax 6= α1.

w∗1 = Θ(γ
αmax−α1

2 ),

w∗i = Θ(γαmax−αi) for all i 6= 1.

Case 2: The best arm is uniquely the rarest, α1 = αmax >
αi, i 6= 1.

w∗2 = Θ(γ
αmax−α2

2 ),

w∗i = Θ(γαmax−αi) for all i 6= 2.

Case 3: The best and second best arm only are the rarest,
α1 = α2 = αmax > αi, ∀i 6= 1, 2.

w∗i = Θ(γαmax−αi), for all i.

Case 4: The best arm is the rarest but not uniquely, α1 =
αk = αmax ≥ αi, i /∈ {1, 2, k}, αmax > α2 and ζ > 1.

w∗2 = Θ(γ
αmax−α2

2 ),

w∗i = Θ(γαmax−αi) for all i 6= 2.

Case 5: The best arm is the rarest but not uniquely, α1 =
αk = αmax ≥ αi, i /∈ {1, 2, k}, αmax > α2 and ζ ≤ 1.

w∗1 = Θ(γαmax−α1),

w∗i = Θ(γαmax−αi) for all i 6= 1.

Further, the asymptotic equivalence can be expressed by
limits that are functions of parameters of the bandit problem.

Proof. See section C of supplementary material.

Theorem 2 gives us insight into the behavior of the optimal
weights w∗ in (6). The results from the theorem rely on
Lemma 1 below and are discussed further in Section 3.2.

By the fact that V ∗(p) ≈ V ∗a (p) (Theorem 1) the optimal
weights of actual maxmin problem also will show the same
asymptotic behaviour. It is easy to see that substituting these
optimal weights in V ∗(p) gives us an overall lower bound
on the sample complexity as a scalar multiple of γαmax .

3.2 DISCUSSION ON THEOREM 2

Without loss of generality let arm 2 be the one with the
second highest mean. We further assume that µ2 > µi for
i ≥ 3.

Lemma 1. In the maxmin problem (3), let x∗i,e(w
∗) denote

the minimizer of each Pi for the optimal weights w∗. Then,
we have x∗i (w

∗) ∈ [µ2, µ1] ∀i.

Remark I. t is well known that x∗i,e(w
∗) lies within [µi, µ1].

The Lemma 1 shows that x∗i,e(w
∗) ≥ µ2.

Proof of Lemma 1: We shall show this by contradiction.
Suppose x∗i,e(w

∗) < µ2. Then, from the optimality condi-
tions of w∗ (similar to (11), (12)) we have, ∀i 6= j, i, j 6= 1:

inf
µ′i≥µ′1

w∗1KL(µ1, µ
′
1) + w∗iKL(µi, µ

′
i)

= inf
µ′j≥µ′1

w∗1KL(µ1, µ
′
1) + w∗jKL(µj , µ

′
j).

But we know that this minimization, for each i 6= 1, is
attained uniquely by a bandit instance p′ where the rest of
the arms, except 1 and i, are the same as the original bandit
instance in consideration, namely, p. Both the arms i and 1
have means x∗i,e(w

∗) under p′. But the assumed hypothesis
then implies that x∗i,e(w

∗) = µ′1 < µ′2 = µ2. That means p′

is also in the set {µ′2 ≥ µ′1} and hence

inf
µ′i≥µ′1

w∗1KL(µ1, µ
′
1) + w∗iKL(µi, µ

′
i)

> inf
µ′2≥µ′1

w∗1KL(µ1, µ
′
1) + w∗2KL(µ2, µ

′
2).

However, this contradicts the necessary optimality condi-
tions for w∗. Thus, x∗i,e(w

∗) ≥ µ2.

A similar result can also be shown for the approximate
problem (6) (see Section D of supplementary material).

On Theorem 2. In the rare event setting, the non-zero sam-
ples from an arm are the informative samples, but they are
quite rare. Any algorithm needs to see non-zero (informa-
tive) samples from at least some arms before it decides to
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stop. By Lemma 1 we know that all arms, except possibly
the best and second best (i = 1, 2), will show deviations
in their sample mean under max-min optimality. As the TS
algorithm and our algorithm track these weights, it is to
be expected that the number of samples for arm i(6= 1, 2)
is only as high as it takes to see an O(1) sample mean,
but also sufficiently low as to ensure that the probability
of sample mean deviation is high. The optimal weights
w∗i ' γαmax−αi , ∀i 6= 1, 2, have this feature. This gives the
sample complexity for arm i( 6= 1, 2) as O(γ−αi) (since the
overall sample complexity isO(γ−αmax )). On average, each
arm thus sees only O(1) non-zero samples, with a deviation
probability 1−O(γαi(µ1 − µi)2) and O(1) sample mean.

4 TRACK AND STOP ALGORITHM

Our algorithm builds upon the Track and Stop (TS) algo-
rithm proposed in Agrawal et al. [2019], Kaufmann et al.
[2016]. We call it Track and Stop (A), to emphasize thatwe
are solving an approximate problem. The algorithm solves
the approximate maxmin problem 6, and samples according
to the weights obtained. The calculation of the sampling
weights happen in batches of size m. Let l denote the batch
index. Within each batch we ensure that each arm gets at
least

√
lm samples. This is done in the same manner as

Agrawal et al. [2019]. At the end of l-th batch, TS(A) evalu-
ates the maximum likelihood ratio Zk∗(l) for the empirical
best arm k∗(l) and decides whether to stop or not. The
likelihood ratio is given by:

Zk∗(l) :=min
b 6=k∗

inf
x≤y

Nk∗(lm)KLinf (p̂k∗(lm), x)

+Nb(lm)KUinf (p̂b(lm), y),

the same way as in Garivier and Kaufmann [2016] and
Agrawal et al. [2019]. p̂(t) refers to the empirical bandit
instance after t samples.Ni(t) denotes to number of pulls of
arm i after t samples. TS(A) stops when Zk∗(l) > β(lm, δ),
where β(t, δ) is a stopping threshold defined as

β(t, δ) := log

(
K − 1

δ

)
+ 5 log(t+ 1) + 2.

Note that we are computing the maximum likelihood ratio
by solving the Kinf problems exactly, and not approxi-
mately. Although it is relatively expensive to compute these
quantities exactly, such computations occur only once for
each l. The number of samples Ni(t) for each arm i is influ-
enced by the optimal weights that are obtained as solution to
the approximate maxmin problem. The precise algorithmic
details of TS(A) are given below.

Observe that in Algorithm 1 when we solve (6) we need an
estimate of γαi . Typically, this can be estimated either as
the ratio of the known upper bounds of the support of each
arm. Alternatively, this maybe estimated from the past sales
data.

Algorithm 1 TS(A) algorithm
Input: Confidence level δ, Upper bounds [Biγ

−αi ]i∈[K].
Output: Arm recommendation k∗.

1: Generate bmK c samples for each arm.
2: l← 1.
3: Compute the empirical bandit p̂ = (p̂)i∈[K].
4: ŵ(p̂)← Compute weights according to (6).
5: k∗ ← arg max

i∈[K]

E[p̂i].

6: Compute Zk∗(l), β(lm, δ).
7: while Zk∗(l) ≥ β(lm, δ) do
8: si ← (

√
(l + 1)m−Ni(lm))+.

9: if m ≥
∑
i si then

10: Generate si many samples for each arm i.
11: Generate (m−

∑
i si)

+ i.i.d. samples from ŵ(p̂).
Let Count(i) be occurrence of i in these samples.

12: Generate Count(i) samples from each arm i.
13: else
14: ŝ∗ ← arg min

ŝ,si≥ŝi≥0
maxi(si − ŝi).

15: Generate ŝ∗i samples from each arm i.
16: end if
17: l← l + 1
18: Update empirical bandit p̂.
19: k∗ ← arg max

i∈[K]

E[p̂i].

20: Update Zk∗(l), β(lm, δ).
21: ŵ(p̂)← Compute weights according to (6).
22: end while
23: return k∗.

4.1 δ-CORRECTNESS AND SAMPLE
COMPLEXITY OF TS(A)

The following theorem guarantees the δ-correctness and
gives asymtptotic sample complexity bound for TS(A):

Theorem 3.. The TS(A) is a δ-correct algorithm with the
following asymptotic sample complexity bound:

lim sup
δ→0

Ep[τδ]
log(1/δ)

≤ 1

VTS(A)(p)
(13)

where VTS(A)(p) := min
i6=1
Pi(ŵ∗(p)). ŵ∗(p)) denotes the

optimal weights for the approx lower bound problem V ∗a (p).

See sections E and F in the supplementary material for
a proof of Theorem 3. Note that by definition we have
V ∗(p) ≤ VTS(A) and hence we do suffer some loss in sam-
ple complexity vis-a-vis the TS algorithm. However, when
γ is small, the difference is negligible as w∗(p) ≈ ŵ∗(p).
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4.2 COMPUTATIONAL BENEFIT OF POISSON
APPROXIMATION

The computational benefit of TS(A) vis-a-vis the exact al-
gorithm, call it TS (E), is in how the approximate and exact
lower bound problems are solved.

Let us first examine the number of operations required in
finding the exact lower bound. In our implementation, we
used Brent’s method for one-dimensional optimization and
the bisection method for root finding. To get a relative error
of ε in Brent’s method (see Chapter 4 in Brent [2013]) we re-
quire O

(
log2

(
1
ε

))
operations. The bisection method takes

O
(

log
(

1
ε

))
for a relative accuracy of ε. Lemma 2 (see Sec-

tion A of the supplementary material) reduces the process of
computingKLinf andKUinf to a root-finding procedure, caus-
ing said computations to take about O

(
log
(

1
ε

))
operations.

The inner optimization Pi is a convex optimization that
requires O

(
log2

(
1
ε

))
operations. The outer optimization

in (3) can be reduced to solving two sets of simultaneous
root finding procedures and hence would takeO

(
log2

(
1
ε

))
.

Thus, the total number of operations to solve the exact lower
bound (3) is O

(
log5

(
1
ε

))
.

In the approximate problem Ci, C1i’s are the unknown vari-
ables, whose behaviour we analyze. Using gi (section 3.1) to
write Ci as a function of C1i requires aboutO

(
log
(

1
ε

))
op-

erations for each such conversion using the bisection method.
Then, each of the C1i (i 6= 2), are written as function
of C12 through ξi. This again requires about O

(
log
(

1
ε

))
operations for each such conversion. Finally the solution
of C12 through hi requires another factor of O

(
log
(

1
ε

))
.

This gives the total required number of operations to be
O
(

log3
(

1
ε

))
. Thus, we are saving about O

(
log2

(
1
ε

))
by

solving the approximate problem vis-a-vis the exact one.

5 NUMERICAL EXPERIMENTS

We compare the sample complexity and computational time
between TS(A) and TS(E) algorithm proposed in Agrawal
et al. [2020]. We make the comparison across different arms,
γ and α structures at a confidence level δ = 0.01. We
choose the parameter γ = 10−2, 10−3 to reflect the typical
rarities seen in the online ads scenario. We choose different
configuration of the relative rarities α’s to reflect some of
the different regimes seen in Theorem 2. The tested config-
uration are given below:

(γ, α) configuration Config. name
(γ = 10−3, α = (1, 1, 1)) Expt 1.

(γ = 10−2, α = (1, 1.5, 2)) Expt 2.
(γ = 10−3, α = (1, 1, 1, 1, 1)) Expt 3.

(γ = 10−2, α = (2, 1.5, 2, 2.5, 1)) Expt 4.

We run each algorithm for 100 sample paths and their av-
erage sample complexity and average computational time

are reported in the Table 1 below. The algorithm for both
TS(E) and TS(A) proceeds in batches of size γ−αmax . Ta-

Experiment:
(γ,α)

Samples (m) Runtime (s)
TS(E) TS(A) TS(E) TS(A)

Expt 1. 0.28 0.37 269.49 27.36
Expt 2. 0.45 0.47 45.47 2.74
Expt 3. 0.81 0.92 1016.29 144.08
Expt 4. 7.87 8.88 109.61 15.17

Table 1: Comparison between the TS and TS(A) algorithms.
Sample complexity is reported in million (m) samples. The
computational runtime is reported in seconds (s).

ble 1 shows that for all experiments, TS(A) takes slightly
more samples (1-13%) to stop and recommend an arm com-
pared to TS. The computational savings of TS(A) is about
6− 12 times the TS algorithm. These simple experiments
underscore the trade-off between sample complexity and
computational time.

Experiment:
(γ,α)

Samples (m) Runtime (s)
lilUCB LUCB lilUCB LUCB

Expt 1. 38.8 171.7* 8870 28200*
Expt 2. 162.2 137.7* 28230 34250*
Expt 3. 85.8 141* 17340 28590*
Expt 4. 204.8* 134.2* 37300* 34850*

Table 2: Further comparison of TS(A) with lil-UCB and
LUCB1.The superscript ∗ denotes those runs which took a
long time (>10 hours) to stop. We report the stopped values
for these runs.

We conduct further comparisons with LilUCB (see Jamieson
et al. [2014]) and LUCB (see Kalyanakrishnan et al. [2012]).
Both these algorithms are well known in the BAI literature.
These additional results are reported in Table 2. We see that
both the TS algorithms are much better. The issue with UCB-
index based algorithms like LilUCB, LUCB is that they have
a dependence of σ2(where σ is the sub-gaussianity parame-
ter, see Appendix H) in the sample complexity upper bound.
This translates to a dependence of γ−2αmax (since the upper
bounds on rewards scale with γ−αmax ) while the TS(E) and
TS(A) have an order dependence of only γ−αmax , which is
a significantly better sample complexity dependence.

Experiment:
(γ,α)

Samples (m) Runtime (s)
m=200 m=500 m=200 m=500

Expt 1. 0.39 0.38 4.15 6.51
Expt 2. 0.18 0.14 14.59 16.21
Expt 3. 0.28 0.25 62.93 84.13
Expt 4. 4.29 4.38 11.98 21.30

Table 3: We increase the support size m of each bandit
arm while holding the means fixed. The sample complexity
increases with increasing support points.

As noted in Section 2.1 the theory can be extended to contin-
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uum support. The experimental results reported in Table 1
were with a support size m = 25 per arm. Now, we increase
the support size to m = 200 and m = 500, while the mean
of the arms are held fixed. The results are presented in Table
3. We observe the sample complexity increases with increas-
ing support points but the marginal increase is diminishing.
This hints that the sample complexity is tending towards the
one suggested by theory for the continuum support.

Experiment:
(γ,α)

Samples (m) Runtime (s)
γ′ = 0.95γ γ′ = 0.1γ γ′ = 0.95γ γ′ = 0.1γ

Expt 1. 0.52 33.13 2.88 8.58
Expt 2. 0.72 31.9 4.12 8.5
Expt 3. 1.09 9.28 186.84 233.7
Expt 4. 8.23 1124.6 15.21 47.34

Table 4: Misspecified γ. Sample complexity is stable wrt
the mis-specification.

The TS(A) algorithm requires (see Section 4.1) an estimate
of the rarity γα. As the rarity can only be known only ap-
proximately we study the scenario where the parameter γ is
mis-specified and hence the rarities are too. The results are
presented in Table 4. We observe that the sample complexity
is stable wrt mis-specification, with larger estimation errors
leading to an increase in sample complexity.

6 CONCLUSION

The paper proposes a rarity framework to study the fixed
confidence BAI problem relevant to online ad placement. In
this framework the positive reward probabilities are small
while the corresponding rewards are quite large. Conse-
quently, the mean rewards are O(1).
We introduce a Poisson approximation to the standard lower
bound problem and use it to motivate an algorithm that is
computationally faster than the optimal TS algorithm at the
cost of a small increase sample complexity. We also use
this approximation to derive asymptotic optimal weights
which give insight into the lower bound behaviour in the
rare event setting. We observe this trade-off between sam-
ple complexity and computational time in our numerical
experiments.
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