
Amortized Inference for Gaussian Process Hyperparameters of Structured
Kernels

(Supplementary Material)

Matthias Bitzer1 Mona Meister1 Christoph Zimmer1

1Bosch Center for Artificial Intelligence, Renningen, Germany

In the following sections, we give further information about our method. We start by giving more experimental details. Then
we illustrate the application of our method on an extended set of simulated datasets via plots of the predictive distributions.
Finally, we give the proofs for the invariances and equivariances of our amortization network.

A EXPERIMENTAL DETAILS

Architecture - Dataset-Encoder. The dataset-encoder consists of four transformer blocks each consisting of a stack of
Transformer-Encoder sublayers [Vaswani et al., 2017] where each sublayer has a multi-head-self-attention layer and an
element-wise MLP layer as the two trainable parts. We don’t use dropout and positional encodings in our architecture as it
would disable equivariances [Lee et al., 2019].

Table 1: Dataset-Encoder Configuration.

Block Num. of Layers Embedding Dim. Hidden Dim. in MLP
Transformer no. 1 (used in step 3) 4 256 512
Transformer no. 2 (used in step 5) 4 256 512
Transformer no. 3 (used in step 7) 4 512 512
Transformer no. 4 (used in step 9) 4 512 512

Architecture - Kernel-Encoder-Decoder. The kernel-encoder-decoder consists of two stacks of Kernel-Encoder-Block
layers, which are also specified via an embedding dimension and the hidden dimension of its MLP layer. Furthermore, the
kernel-encoder-decoder also contains one transformer block.

Table 2: Kernel-Encoder-Decoder Configuration.

Block Num. of Layers Embedding Dim. Hidden Dim. in MLP
Kernel-Encoder-Block stack 1 (used in step 1) 3 512 1024
Transformer block (used in step 2) 4 512 1024
Kernel-Encoder-Block stack 2 (used in step 4) 3 512 1024

Architecture - Output layer. Each base-symbol specific MLP layer has one hidden layer with dimension dh = 200. The
MLP layer for the noise variance prediction consists of two hidden layers with dimension dh1 = 200 and dh2 = 100.

Sampling distribution. We use as base symbols SE,LIN and PER and its two gram multiplications like, e.g. SE× LIN.
We simulate datasets of sizes between n = 10 and n = 250 (drawn uniformly) and input dimensions between d = 1 and
d = 8. Here, we prefer smaller dimensions via sampling d from a geometric distribution with p = 0.25 and clip them to

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

Figure 1: In the top-left plot the RMSE scores of all considered methods are shown evaluated on the respective test set.
Several kernels {S(1), . . . ,S(m)} are evaluated where each bar shows the median RMSE value and the error-bars show the
20th and 80th percentiles of the RMSE scores of the different kernels. In the top-right plot, the NLL scores are shown and in
the bottom-right plot the corresponding ratios of inference times to our method are shown in log-scale. In the bottom-left
plot, the absolute inference times in seconds are shown for the corresponding method.

d ≤ 8. We sample the number of addends in each subexpression Si also from a geometric distribution with p = 0.6. Each
dataset is generated via sampling a kernel structure, sampling the input dataset uniformly from [0, 1]d, then sampling the
kernel parameters and noise variance from their prior. Finally, we sample the output of the dataset from the respective GP at
the respective input locations. We use the following base kernel parameterizations,

kSE(x, x
′) = σ2

kexp

(
− 1

2

(x− x′)2

l2

)
, kPER(x, x

′) = σ2
kexp

(
− 1

2

sin2(π|x− x′|/p)
l2

)
, kLIN(x, x

′) = σ2
kx y + σ2

c

with priors, σ2
k ∼ Gamma(2.0, 3.0), σ2

c ∼ Gamma(2.0, 3.0), p ∼ Gamma(2.0, 3.0) and l ∼ Gamma(2.0, 5.0). For the
noise variance we use the prior σ2 ∼ Exp(1

0.152).

Training - Phase 1 and 2. In the first phase, we train the amortization network via a batch-size of B = 128 for a total of
9 million datasets, where in each batch we simulate the datasets on-the-fly. Thus, each dataset in the training phase only
appears once. We use RAdam as optimizer with a constant learning rate of lr = 2× 10−5. In the second phase the extended
loss is configured with parameters α = 10 and β = 1. Besides that, we use the same configuration as in the first phase. We
train in this phase on 200 thousand datasets.

Datasets. All datasets are publically available (Airline can be accessed for example via https://kaggle.com.
The other datasets are UCI datasets from https://archive.ics.uci.edu/ml/datasets.php). We use for all
datasets ntrain = 500 except the smaller datasets Airline and Yacht for which we use 100 and 250 training datapoints. The
training datapoints are drawn uniformly from the complete dataset. We use the rest of the dataset as test-set, clipped to a
maximum of ntest = 400.

https://kaggle.com
https://archive.ics.uci.edu/ml/datasets.php

Type-2-ML GP settings. In our main evaluation, we consider three competitor approaches for full GP’s with Type-2-ML
hyperparameter inference: Firstly, GP-ML and GP-ML (multi-start) where we do Type-2-ML optimization via Adam with
one and with multiple restarts. Here, we use the following setting. We use the Adam optimizer with a learning rate of 0.1
for 150 steps to optimize the marginal likelihood, where we early-stop the optimization once the marginal-likelihood has
converged. We found that this setting provides a good trade-off between accuracy and inference time. For the single-run
version we use the same initial parameter values for all datasets, where we set all initial parameter values of the kernels to
one, e.g. σk = 1.0 and the initial likelihood noise to σ = 0.2. For the multi-start version, we do 10 restarts, where in each
restart the initial parameter values are sampled from the respective prior. The methods are based on GPyTorch [Gardner
et al., 2018]. Furthermore, we consider optimization of the marginal likelihood via L-BFGS, to which we refer to as GP-ML
(L-BFGS). Here, we use GPflow [Matthews et al., 2017] as implementation and use the default optimization parameters of
the library.

Sparse-Variational GP settings. For the Sparse-Variational GP (SVGP) we used I = 0.5n number of inducing points,
where n is the number of training points in the dataset. Furthermore, we use Adam to optimize the ELBO with respect
to the inducing point locations and GP parameters. Here, we trained for 500 iterations (full-batch) with a learning rate of
lr = 0.03, with early stopping once the ELBO converged.

Evaluation set of kernels. In the main evaluation and for fast-ensembling we utilize a set of 24 kernel structures
{S(1), . . . ,S(m)}. Here, we use in each input dimension the same substructure, thus S(l)

i = S(l)
j for j ̸= i and all

l = 1, . . . ,m and generate the substructures in the following way. We include the set of base-symbols {SE,PER,LIN,SE×
PER,SE×LIN,LIN×PER}. For example S(1) with S(1)

i = SEi, i = 1, . . . , d and S(2) with S(2)
i = PERi, i = 1, . . . , d,

are part of the set of 24 kernel structures. Furthermore, we sample six pairs, e.g. Si = SEi + LINi, i = 1, . . . , d, six triples
and six quadruples from the set of base symbols each without replacement to generate the 24 kernel structures. In this way,
we apply the same set of kernel (sub-)structures on each dataset - only the number of input dimension changes.

AHGP-SE-ARD settings. For the AHGP-SE-ARD model, we replicated the architecture of Rehn [2022], which uses the
dataset-encoder provided by Liu et al. [2020] and a custom head to deal with the RBF kernel. We equip the dataset-encoder
with 14 LocalTransformer blocks and 14 GlobalTransformer blocks (see Liu et al. [2020]) each specified with an embedding
size of 512. Furthermore, we use for the lengthscale and variance MLP’s (see Rehn [2022]) two hidden layers with 1024 and
512 nodes. We train the network on the same data distribution as our method for 9 million datasets, where we used RAdam
as optimizer with a learning rate of lr = 2× 10−5 and a batch size of L = 32.

Fast-ensembling details. For our fast-ensembling approach, we use a set of kernel structures {S(1), . . . ,S(m)} and define
the resulting predictive distribution of our ensemble model for a dataset D with input X and output y via

p(y∗|x∗,D) :=
1

m

m∑
l=1

wl p

(
y∗
∣∣∣∣x∗,D, ϕS(l) = gψ(D,S(l))

)
,

where p

(
y∗
∣∣∣∣x∗,D, ϕS(l) = gψ(D,S(l))

)
is the predictive distribution of the GP with kernel structure S(l) and predicted

parameters ϕS(l) = gψ(D,S(l)) and where wl =
w̃l∑m
l=1 w̃l

with w̃l := p(y|X, ϕS(l) = gψ(D,S(l))) is the (predicted)

marginal likelihood value for kernel structure S(l).

Comparison of all considered models. In Figure 1 the evaluation plots are shown for all considered methods. Here, we
also show NLL scores. The biggest difference in NLL compared to the full-GP Type-2-ML methods is present for datasets
where the predictions are already very precise (measured via RMSE) like on Energy or Yacht aka, where the NLL scores are
already very small. It is worth noting that we outperform SVGP in terms of NLL on all datasets except Powerplant.

B FURTHER EXPERIMENTS

Qualitative Analysis of Predictive Distributions. We do a qualitative analysis of the predictive distributions for 1D
datasets for different settings. In the plots (see for example Figure 2) datasets D∗ are sampled from a GP with ground
truth kernel Sgt. We compare the predictive distributions induced by our predicted GP parameters ϕ∗ = gψ(D∗,S) to the
predictive distributions induced by the learned GP parameters ϕML via Type-2-ML and against the predictive distributions
with the ground truth hyperparameters ϕgt.

The first setting (Figure 2) considers a correctly specified kernel structure, where the input kernel structure S is the same
as the ground truth kernel structure Sgt. In Figure 2, the predictive distributions of the three methods can be seen for four
different kernel structures. We see that the noise range is captured well by our method, as well as the in-distribution data-fit.

Figure 2: We show predictive distributions with kernel parameters of our method (top), Type-2-ML (middle) and with
ground truth hyperparameters (bottom), where in each column a different input kernel structure S is used and S = Sgt.

In the extrapolation regime left and right of the data, the confidence intervals of our method appear reasonable for SE,
SE × LIN and SE + LIN. However, the method makes a conservative prediction for the PER kernel via ignoring the
periodicity in the data, whereas the type-2 ML and ground truth kernel extrapolate less conservative, which in this case leads
to accurate predictions.

For the second setting (Figure 3) a misspecified kernel structure is used, where the input kernel structure S is not the same
as the ground truth kernel structure Sgt. We see for example for the dataset coming from the linear kernel (second column
from left) that the predicted lengthscale of the specified SE kernel appears to be sufficiently large. When the linear kernel is
applied to a dataset coming from an SE kernel (first column from left) we see that the noise variance prediction is higher

Figure 3: We show the predictive distributions with kernel hyperparameters predicted via our method (top), learned via
Type-2-ML (middle) and with ground truth hyperparameters (bottom), where in each column a different input kernel S and
a different ground-truth kernel Sgt is used and S ≠ Sgt. In red, the underlying ground-truth function is shown.

than the ground-truth noise (which was σ = 0.05), which is desirable for the linear kernel as the GP needs to explain the
data with noise in this case. Arguably, the most interesting case is, when a periodic kernel PER is specified as input and
the input data is coming from an SE kernel (third column from left). Here, we see that the predictive-distribution of the
Type-2-ML estimate extrapolates aggressively and overfits to the data (we made sure to find a very high marginal likelihood
value here via repeating the optimization 30 times). In this case, the conservative prediction of our method for the periodic
kernel is beneficial, as it leads to reasonable prediction intervals. As the last kernel pair, we use two more complex kernels
as ground truth and input kernel. Here, we observe that our method can also deal with more complex kernels and leads to a
reasonable predictive distribution.

In the last setting (Figure 4), we consider smaller datasets with n = 10. Here, we again use correctly specified kernels. We
observe for all kernel structures reasonable prediction intervals and out-of-data predictions. We observe for example for

Figure 4: We show predictive distributions with kernel hyperparameters of our method (top), Type-2-ML (middle) and with
ground truth hyperparameters (bottom), where in each column a different input kernel structure S is used and S = Sgt. In
red we show the underlying ground-truth function. Here, we consider small datasets with n = 10.

the SE + LIN that the method recognizes that the data is very linear already with ten datapoints. Notably, we see again
a conservative prediction for the periodic kernel and a less conservative, but in this case accurate extrapolation for the
Type-2-ML estimates.

Simulation analysis for smaller datasets on inference time. In Figure 5 we show prediction results on simulated data,
with varying sizes of the training set Dtrain that is used for one-shot prediction of the kernel parameters. For each boxplot,

Figure 5: We show RMSE and NLL boxplots on simulated data (splitted into train/test) with d = 2 and varying ntrain. Each
sample is a dataset kernel pair (D,S) drawn from our training sampling distribution (except that d and n are fixed). We
compare our method (GP-Amortized) against Type-2-ML (GP-ML).

Figure 6: RMSE and NLL over kernel structures (error bars) and datasets for our method with noise-variance fine-tuning
(GP-Amortized) and without fine-tuning [GP-Amortized (No FT)].

we simulate 200 dataset-kernel pairs (D,S) from our sampling distribution, where we fix d = 2 and vary the number of
training datapoints ntrain = 10, 20, 50, 100 in order to investigate the impact that the number of training inputs has on the
performance difference of our method (GP-Amortized) against Type-2-ML (GP-ML). Similar to Liu et al. [2020], we find
that in particular for smaller datasets amortization provides more robust kernel parameters, as can be seen for example in
terms of improved NLL scores on smaller datasets. Thus, amortizing kernel parameter inference might provide regularization
against overfitting of the kernel parameters and thus might be in particular useful in the small-data regime.

Effect of noise variance fine-tuning. We investigate the effect of noise variance fine-tuning on the real-world performance
in Figure 6 and observe that on almost all datasets the fine-tuning has a beneficial effect on (median) RMSE and NLL
scores. We think that this is the case because the marginal-likelihood landscape is multi-modal with respect to the noise
value (high-noise vs low-noise explanation of the data) and the noise variance fine-tuning renders the loss landscape more
well-behaved, similar to putting a prior on the GP parameters when doing maximum-a-posteriori (MAP) estimation.

Comparison to MAP estimation. Using simulated data from a hierarchical GP model with priors on the kernel hyperpa-
rameters encodes the prior to a certain extent into the amortization neural network, via implicitly encoding the range of
parameter values in the datasets that are used in the training of the amortization network. Thus, one might compare our
method against MAP estimation of the kernel parameters using the same priors. In Figure 7 we show a comparison to MAP
estimation of the GP hyperparameters with standard ML estimation and with our method. We observe that MAP estimation
provides a small benefit compared to marginal-likelihood maximization in terms of RMSE and NLL and also in terms of
computation time - likely because of a more well-behaved loss landscape, where L-BFGS converges with fewer iterations.
However, we note that our method is still orders of magnitudes faster.

Figure 7: RMSE, NLL and time ratios over kernel structures (error bars) and datasets for our method, a GP trained with
L-BFGS and a GP with the same priors on the kernel parameters as used for training data generation of the amortization
neural network (here also L-BFGS was used).

C THEORY

Before starting to prove the invariance/equivariances in our network, we provide a high-level example on which invari-
ances/equivariances are present in our architecture and why they are important. Our network predicts for a given dataset
D and a given kernel structure S the kernel parameters and likelihood noise (θ̂S , σ̂

2) = gψ(D,S). Firstly, we note that a
reshuffling of the order of the dataset elements inside D should not change the output of gψ , since a reordering of the dataset
also does not change the Type-2-ML maximization in the standard GP optimization. Therefore, it should hold for a shuffled
dataset Dπ that

(θ̂S , σ̂
2) = gψ(D,S) = gψ(Dπ,S) = (θ̂S,π, σ̂

2
π)

Furthermore, we consider kernel structures that are multiplications over dimensions and additions of base kernels inside
dimensions. For example, on two dimensions we might consider

(SE1 + PER1)× SE2.

As addition is commutative it should not make a difference for the values of the predicted parameters if we change the order
of the addition for example to

(PER1 + SE1)× SE2.

This property is captured in our architecture as the predicted parameters of the base symbols are equivariant to such a
permutation, thus only the index changes after the permutation (now SE1 is the second entry in the addition) but not the
value of the predicted parameter (θ̂SE1

is unaffected from the permutation).

A similar equivariance is captured in case the dimension index is reshuffled. A permutation of the input dimension effects
both the dataset, that now has reshuffled dimensions indices, as well as the expression, that now also has reindexed
dimensions. For example, swapping the two dimensions in our previous example leads to

SE1 × (SE2 + PER2).

Such a permutation should not change the previously predicted parameter value θ̂SE2 of the previous symbol SE2 that is now,
after reindexing of the dimension, the predicted parameter θ̂SE1

of symbol SE1. Here, our architecture is again equivariant
meaning that a permutation like that only changes the index of the symbol but not the value of the predicted parameter. We
show these properties formally in Theorem 4.

Next, we give the proofs for the claimed invariances of our amortization network. First, we state the formal definition of an
invariant and an equivariant function f and prove some basic properties.

Definition 1 (Permutation Invariance) Let G be the permutation group and f : XN → Y a function with N ∈ N. The
function f is called permutation invariant iff

f(x) = f(x1, x2, . . . , xN) = f(xπ(1), xπ(2), . . . , xπ(N)) = f(π · x), ∀π ∈ G,x ∈ XN .

Definition 2 (Permutation Equivariant) Let G be the permutation group and f : XN → YN a function with N ∈ N. The
function f is called permutation equivariant iff

π · f(x) = f(π · x), ∀π ∈ G,x ∈ XN .

We first show that a function f that maps each of its sequence elements xi ∈ X element-wise via a function g is permutation
equivariant.

Lemma 1 Let f : XN → YN be a function with N ∈ N and let f(x1, . . . , xN) = [g(x1), . . . , g(xN)] ∈ YN for some
g : X → Y. Then f is permutation equivariant.

Proof: Let N ∈ N and x = [x1, . . . , xN] ∈ XN and let π ∈ G. Let yj := g(xj). Then

f(π · x) = f(xπ(1), xπ(2), . . . , xπ(N)) = [g(xπ(1)), g(xπ(2)), . . . , g(xπ(N))]

= [yπ(1), yπ(2), . . . , yπ(N)] = π · [y1, . . . , yN] = π · f(x).

■

Next, we show that chaining a permutation equivariant function with a permutation invariant function leads to a
permutation invariant function.

Lemma 2 Let f : XN → YN be a permutation equivariant function with N ∈ N and let g : YN → V be permutation
invariant. Then h : XN → V with h = g ◦ f is permutation invariant.

Proof: Let x ∈ XN and π ∈ G. Then

h(π · x) = g(f(π · x)) = g(π · f(x)) = g(f(x)) = h(x).

■

Furthermore, the chaining of two permutation equivariant functions is permutation equivariant.

Lemma 3 Let f : XN → YN be a permutation equivariant function with N ∈ N and let g : YN → VN be permutation
equivariant. Then h : XN → VN with h = g ◦ f is permutation equivariant.

Proof: Let x ∈ XN and π ∈ G. Then

h(π · x) = g(f(π · x)) = g(π · f(x)) = π · g(f(x)) = π · h(x).

■

Furthermore, the chaining of a permutation invariant function with any function is permutation invariant.

Lemma 4 Let f : XN → Y be a permutation invariant function with N ∈ N and let g : Y → V. Then h : XN → V with
h = g ◦ f is permutation invariant.

Proof: Let x ∈ XN and π ∈ G. Then

h(π · x) = g(f(π · x)) = g(f(x)) = h(x).

■

Furthermore, we make use of the following mappings that are used in our architecture:

1. Transformer-Encoder without positional encoding: We use the encoder part of the transformer architecture with-
out positional-encoding and without dropout [Vaswani et al., 2017, Lee et al., 2019] and denote the mapping as
Transformer : Xn → Xn with X ⊂ Rh. This block uses a stack of multi-head-self-attention layer [Vaswani et al.,
2017] denoted as mapping MHSA : Xn → Xn. Both, the MHSA (without dropout) and Transformer (without
positional encoding and dropout) are permutation-equivariant as shown in Lee et al. [2019] Property 1 and Section 3.4.

2. Mean aggregation: The mean aggregation MeanAGG : XN → X with X ⊂ Rh is permutation invariant.

C.1 MAIN INVARIANCES AND EQUIVARIANCES

Next, we will prove the mentioned invariances for the several parts of the amortization network. We denote the dataset
with D = {(xj , yj) ∈ Rd+1|j = 1, . . . , n} = {(x(1)

j , . . . , x
(d)
j , yj) ∈ Rd+1|j = 1, . . . , n}. A permutation π of the dataset

elements is then a shuffling of [(x1, y1), . . . , (xn, yn)] to [(xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))]. We denote the reindexed
dataset with Dπ . A permutation π̂ of the dimensions is a reshuffling of D = {(x(1)

j , . . . , x
(d)
j , yj) ∈ Rd+1|j = 1, . . . , n} to

{(x(π̂(1))
j , . . . , x

(π̂(d))
j , yj) ∈ Rd+1|j = 1, . . . , n}. We denote the resulting dataset with Dπ̂ .

Theorem 1 Let D be a dataset with n ∈ N elements and d ∈ N input-dimensions. The dataset-encoder gD as a mapping
from the dataset D to embedding vectors [h1, . . . ,hd] (described through the steps 1.-9.) is permutation-invariant to a
shuffling of the dataset elements (in the sense that hi is invariant for all i = 1, . . . , d) and permutation-equivariant to a
shuffling of the dimensions.

Proof: We go along the computation steps 1.-9. and keep track of the invariances/equivariances of the respective quantities.
We note that applying multiple equivariant transformations in a row, keeps the equivariance according to Lemma 3. For each
quantity we add the respective computation step index as right-most lower index to each quantity. We also do that with the
weights of the respective learnable function.

1. Here, the dataset D is transformed into dimension-wise sequences H(i) = [(x
(i)
j , yj)]

n
j=1 where we denote h

(i)
j,1 :=

(x
(i)
j , yj).

Dataset shuffling: When we shuffle the dataset elements via permutation π this translates to shuffeled sequences
[(x

(i)
π(j), yπ(j))]

n
j=1 applied to all dimensions i = 1, . . . , d. Thus, the sequences [h(i)

j,1]
n
j=1 are equivariant to a dataset

shuffling.
Dimension shuffling: When we shuffle the dimension via a permutation π̂ this translates to the shuffling of the
sequence of sequences [H(1), . . . ,H(d)] to [H(π̂(1)), . . . ,H(π̂(d))] by definition of H(i). The sequence of sequences
itself [H(1)

1 , . . . ,H(d)
1] is thus equivariant, to a shuffling of the input dimensions.

2. Each element h(i)
j,1 in H(i)

1 is mapped element-wise via the same linear layer LinearW2
: R2 → Rh with weights W2

to h
(i)
j,2:

h
(i)
j,2 = LinearW2

(
h
(i)
j,1

)
.

Dataset shuffling: From Lemma 1 with g = LinearW2
it follows that the mapped sequence H(i)

2 = [h
(i)
1,2, . . . , h

(i)
n,2] is

equivariant to a dataset shuffling for all i = 1, . . . , d.
Dimension shuffling: As the same mapping is applied for all dimensions i = 1, . . . , d via

H(i)
2 = ElemLinearW2

(H(i)
1) := [LinearW2

(h
(i)
1,1), . . . ,LinearW2

(h
(i)
n,1)],

the sequence of transformed sequences [H(1)
2 , . . . ,H(d)

2] = [ElemLinearW2(H
(1)
1), . . . ,ElemLinearW2(H

(d)
1)] is

equivariant to dimension shuffling with Lemma 1 and g = ElemLinearW2 .

3. Here, the TransformerW3
block with weights W3 is applied and results in the transformed sequence H(i)

3 :=

[h
(i)
1,3, . . . , h

(i)
n,3] = TransformerW3([h

(i)
1,2, . . . , h

(i)
n,2]).

Dataset shuffling: As the TransformerW3 block is permutation equivariant, the transformed sequence H(i)
3 =

[h
(i)
1,3, . . . , h

(i)
n,3] = TransformerW3

([h
(i)
1,2, . . . , h

(i)
n,2]) is equivariant to dataset shuffling for all i = 1, . . . , d.

Dimension shuffling: As we apply the same (weight-shared) transformer block TransformerW3 to all dimensions
i = 1, . . . , d, and applying Lemma 1 with g = TransformerW3 , the transformed sequence of sequences

[H(1)
3 , . . . ,H(d)

3] = [TransformerW3
(H(1)

2), . . . ,TransformerW3
(H(d)

2)]

is equivariant to input dimension shuffling.

4. Here, we first construct the combined (over i = 1, . . . , d) sequences Wj,4 := [h
(1)
j,3 , . . . , h

(d)
j,3] and apply mean

aggregation on them via

hj,4 := MeanAGG(Wj,4) = MeanAGG([h
(1)
j,3 , . . . , h

(d)
j,3])

to form the sequence [h1,4, . . . , hn,4].

Dataset shuffling: As [h
(i)
1,3, . . . , h

(i)
n,3] is equivariant to dataset shuffling for all i = 1, . . . , d, also the sequence

[W1,4, . . . ,Wn,4] of the combined (over i = 1, . . . , d) elements Wj,4 := [h
(1)
j,3 , . . . , h

(d)
j,3] is equivariant to dataset shuf-

fling. As we apply the same function to each Wj,4, via hj,4 := MeanAGG(Wj,4), also the sequence [h1,4, . . . , hn,4]
is equivariant to dataset shuffling via Lemma 1.

Dimension shuffling: As [H(1)
3 , . . . ,H(d)

3] is equivariant to dimension shuffling each sequence [h
(1)
j,3 , . . . , h

(d)
j,3] is equiv-

ariant to dimension shuffling for all j = 1, . . . , n. Applying the mean aggregation hj,4 = MeanAGG([h
(1)
j,3 , . . . , h

(d)
j,3])

onto [h
(1)
j,3 , . . . , h

(d)
j,3] renders via Lemma 2 the quantity hj,4 invariant to dimension shuffling and thus also the complete

sequence [h1,4, . . . , hn,4].

5. Here, we apply the transformer block TransformerW5 with weights W5 on [h1,4, . . . , hn,4] to form the sequence

[h1,5, . . . , hn,5] = TransformerW5
([h1,4, . . . , hn,4]).

Dataset shuffling: As [h1,4, . . . , hn,4] is equivariant to dataset shuffling and the transformer block TransformerW5

with weights W5 keeps equivariance also the transformed sequence [h1,5, . . . , hn,5] is equivariant to dataset shuffling.
Dimension shuffling: The previous sequence [h1,4, . . . , hn,4] is invariant to dimension shuffling, and the invariance of
[h1,5, . . . , hn,5] to dimension shuffling is preserved via Lemma 4.

6. Here, we concatenate for each i = 1, . . . , d the sequences H(i)
3 = [h

(i)
1,3, . . . , h

(i)
n,3] from step 3 with [h1,5, . . . , hn,5] via

h
(i)
j,6 := Concat(hj,5, h

(i)
j,3)

to form the combined sequences H(i)
6 := [h

(i)
1,6, . . . , h

(i)
n,6] with i = 1, . . . , d.

Dataset shuffling: As the sequences H(i)
3 = [h

(i)
1,3, . . . , h

(i)
n,3] from step 3. are equivariant to a shuffling of the dataset

elements for all i = 1, . . . , d as well as the sequence [h1,5, . . . , hn,5] from step 5 also the concatenation of the
elements of the two sequences is permutation equivariant. Thus, the transformed sequence H(i)

6 := [h
(i)
1,6, . . . , h

(i)
n,6] is

permutation equivariant to dataset shuffling for all i = 1, . . . , d.

Dimension shuffling: The sequence of transformed sequences [H(1)
6 , . . . ,H(d)

6] is permutation equivariant to a shuffling
of the dimensions as we applied the same function to all sequences, via

H(i)
6 = ElemConcat([hj,5]

n
j=1,H

(i)
3) = [Concat(h1,5, h

(i)
1,3), . . . ,Concat(hn,5, h

(i)
n,3)],

where [hj,5]
n
j=1 is invariant to the shuffling of the dimensions (see step 5).

7. Here, we apply the TransformerW7
block with weights W7 to get the transformed sequence

[h
(i)
1,7, . . . , h

(i)
n,7] = TransformerW7

([h
(i)
1,6, . . . , h

(i)
n,6]).

Dataset shuffling: The TransformerW7
block with weights W7 is equivariant, therefore is the transformed sequence

[h
(i)
1,7, . . . , h

(i)
n,7] equivariant to dataset shuffling for all i = 1, . . . , d.

Dimension shuffling: As we use the same transformer for all dimensions i = 1, . . . , d, the transformed sequence of
sequences

[H(1)
7 , . . . ,H(d)

7] = [TransformerW7(H
(1)
6), . . . ,TransformerW7(H

(d)
6)]

keeps its equivariance to the shuffling of the input dimensions.

8. Here, we apply the mean aggregation

hi,8 = MeanAGG([h
(i)
1,7, . . . , h

(i)
n,7])

on each sequence H(i)
7 = [h

(i)
1,7, . . . , h

(i)
n,7] to form the compressed sequence [h1,8, . . . ,hd,8]

Dataset shuffling: As the mean aggregation is invariant to shuffling and the sequences H(i)
7 = [h

(i)
1,7, . . . , h

(i)
n,7]

are equivariant to a shuffling of the dataset elements, with Lemma 2, it follows that the vector hi,8 =

MeanAGG([h
(i)
1,7, . . . , h

(i)
n,7]) is invariant to the shuffling of the dataset elements and thus also the complete sequence

[h1,8, . . . ,hd,8].

Dimension shuffling: As we apply the same function (mean aggregation) to all sequences H(i)
7 , i = 1, . . . , d and the

sequence of sequences [H(1)
7 , . . . ,H(d)

7] is permutation equivariant to dimension shuffling, also the output embeddings
sequence [h1,8, . . . ,hd,8] is permutation equivariant to dimension shuffling.

9. In the last step we apply a TransformerW9
with weights W9 to [h1,8, . . . ,hd,8] to get the sequence

[h1,9, . . . ,hd,9] = TransformerW9
([h1,8, . . . ,hd,8]).

Dataset shuffling: As [h1,8, . . . ,hd,8] was invariant to to dataset shuffling before the transformation, it is still after the
transformation, via Lemma 4.
Dimension shuffling: As the transformer block TransformerW9 with weights W9 is equivariant and the input sequence
[h1,8, . . . ,hd,8] is equivariant, also the sequence [h1,9, . . . ,hd,9] is equivariant to a shuffling of the input dimensions.
■

Next, we will prove invariances of the kernel-encoder-decoder block gk(hD,VS) that maps a sequence of sequences
VS = [V1, . . . ,Vd] of base kernel representations, with Vi = [v

(i)
1 , . . . , v

(i)
Ni

] and the sequence of dataset embeddings
[h1, . . . ,hd] to a transformed sequence of sequences [Ṽ1, . . . , Ṽd] of learned base kernel representations. In particular, when
we refer to a permutation π̂ of the input dimensions of the datset we implicity assume that the input sequence [V1, . . . ,Vd]
is shuffled in the same way, thus to [Vπ̂(1), . . . ,Vπ̂(d)]. Furthermore, as one sequence Vi = [v

(i)
1 , . . . , v

(i)
Ni

] describes an
addition of kernels we also consider the permutation equivariance of these subsequences in the sense that for any dimension
i ∈ {1, . . . , n} the output sequence, denoted by Ṽi = [ṽ

(i)
1 , . . . , ṽ

(i)
Ni

] is permutation equivariant to a permutation π̃ of the

input sequence Vi = [v
(i)
1 , . . . , v

(i)
Ni

]. We call it permutation of the base-symbols within dimension i.

First, we will show that the Kernel-Encoder-Block, as a function from a sequence [v1, . . . , vN] and a context c to a
transformed sequence [v1, . . . , vN], is permutation equivariant given the context c.

Theorem 2 The Kernel-Encoder-Block g as described in Figure 1 b) in the main paper is permutation equivariant as a
mapping from a sequence [v1, . . . , vN] with vj ∈ Rh to a sequence [v1, . . . , vN] given a context vector c ∈ Rl, meaning for
a permutation π ∈ G and a context vector c ∈ Rl:

g(π · [v1, . . . , vN], c) = π · g([v1, . . . , vN], c).

Proof: The Kernel-Encoder-Block first maps the sequence through a multi-head-self-attention MHSA layer with output
sequence [ṽ1, . . . , ṽN]. After that it adds the input sequence [v1, . . . , vN] element-wise to the output sequence and applies a
layer normalization step element-wise. We denote the output of that operation as [v̄1, . . . , v̄N]. This sequence is concatenated
with the context vector to [(v̄1, c), . . . , (v̄N , c)]. This is given element-wise to a shared MLP layer, where we denote the
output with [v̂1, . . . , v̂N]. This is followed by an addition of [v̄1, . . . , v̄N] to [v̂1, . . . , v̂N] and a layer normalization step that
is applied element-wise.

As MHSA is permutation equivariant the sequence [ṽ1, . . . , ṽN] is permutation equivariant and thus also the addi-
tion to the original sequence [v1, . . . , vN]. As the layer normalizaton is applied element-wise, via Lemma 1, the sequence
[v̄1, . . . , v̄N] is permutation equivariant. As we concatenate equivariant elements v̄j with a fixed quantity c, the sequence
[(v̄1, c), . . . , (v̄N , c)] is permutation equivariant to a shuffling of [v1, . . . , vN]. The MLPW with weights W is applied
element-wise:

[v̂1, . . . , v̂N] = [MLPW (v̄1, c), . . . ,MLPW (v̄N , c)]

and via Lemma 1 it holds that the output sequence is permutation-equivariant. As [v̄1, . . . , v̄N] is permutation equivariant as
well as [v̂1, . . . , v̂N] their addition is permutation equivariant. As the final layer normalization is applied element-wise, via
Lemma 1, the final output is permutation equivariant.■

Next, we prove the mentioned invariances for the kernel-encoder-decoder gk.

Theorem 3 Let [h1, . . . ,hd] be the output of gD for the dataset D and let VS = [V1, . . . ,Vd] be the sequence of sequences
of input base-symbol encodings. The output sequence of sequences [Ṽ1, . . . , Ṽd] of the kernel-encoder-decoder gk(hD,VS)
is permutation equivariant to a shuffling of the dimensions. Furthermore, for any dimension i ∈ {1, . . . , d} the single output
sequence Ṽi = [ṽ

(i)
1 , . . . , ṽ

(i)
Ni

] is equivariant to a permutation π of the respective input sequence Vi = [v
(i)
1 , . . . , v

(i)
Ni

].

Proofs: First, we show that a stacked version of the Kernel-Encoder-Block is also permutation equivariant given a context
(just as a single Kernel-Encoder-Block according to Theorem 2). To show that, we denote the Kernel-Encoder-Block as
the mapping KernelEncoderW : XN × Rl → XN with weights W and a stacked version with

KernelEncoderStacked(V, c) := KernelEncoderW̃1
(KernelEncoderW̃2

(V, c), c)

here w.l.o.g with two layers and weights W̃1, W̃2. It is permutation equivariant given a context c ∈ Rh with h ∈ N since

πKernelEncoderStacked(V, c) = πKernelEncoderW̃1
(KernelEncoderW̃2

(V, c), c)
= KernelEncoderW̃1

(πKernelEncoderW̃2
(V, c), c)

= KernelEncoderW̃1
(KernelEncoderW̃2

(πV, c), c).

We denote a stack of Kernel-Encoder-Block layers with weights W̃1, . . . , W̃k with KernelEncoderStackedW where
we summarize all weights to W .

Now, let D be a dataset with n ∈ N datapoints and d ∈ N input-dimensions. Let [h1, . . . ,hd] = gD(D) and let VS =

[V1, . . . ,Vd] be the sequence of sequences of input base-symbol encodings with Vi = [v
(i)
1 , . . . , v

(i)
Ni

]. Furthermore, let

l ∈ {1, . . . , d} be the dimension on which we apply the permutation π̃ of the base symbol sequence Vl = [v
(l)
1 , . . . , v

(l)
Nl
].

Similar as in Theorem 1 we now go along the computation steps 1.-4. of the kernel-encoder-decoder and consider the
invariance/equivariances of the respective quantities. We add the respective computation step index as right-most lower
index to each quantity and weight of the respective learnable function:

1. Here, each sequence Vi = [v
(i)
1 , . . . , v

(i)
Ni

], i = 1, . . . , d is given to a KernelEncoderStackedW1 block with weights
W1 together with context hi:

[v
(i)
1,1, . . . , v

(i)
Ni,1

] = KernelEncoderStackedW ([v
(i)
1 , . . . , v

(i)
Ni

],hi)

Shuffling of base symbols in dimension l: As KernelEncoderStackedW1
is equivariant given a context (and we set

the context to the fixed quantity hl), the transformed sequence Vl,1 = [v
(l)
1,1, . . . , v

(l)
Nl,1

] is permutation equivariant to a
shuffling of the base-symbols in dimension l.
Shuffling of dimension: The sequence [h1, . . . ,hd] is permutation equivariant to a shuffling of the input dimensions ac-
cording to Theorem 1 and the sequence [V1, . . . ,Vd] by definition. Thus, the sequence of tuples [(V1,h1), . . . , (Vd,hd)]
is equivariant to a shuffling of the dimension and we apply the same KernelEncoderStackedW1

block to each
tuple with

[V1,1, . . . ,Vd,1] = [KernelEncoderStackedW1
(V1,h1), . . . ,KernelEncoderStackedW1

(Vd,hd)].

Thus, the transformed sequence of sequences [V1,1, . . . ,Vd,1] is equivariant to dimension shuffling, according to
Lemma 1 with g = KernelEncoderStackedW1 .

2. Here, we apply a mean aggregation on the sequences Vi,1 = [v
(i)
1,1, . . . , v

(i)
Ni,1

], i = 1, . . . , d via

vi,2 = MeanAGG([v
(i)
1,1, . . . , v

(i)
Ni,1

])

to construct the sequence [v1,2, . . . ,vd,2].

Shuffling of base symbols in dimension l: As the sequence [v
(l)
1,1, . . . , v

(l)
Nl,1

] is equivariant to a shuffling of the base-
symbols in dimension l and the mean aggregation is permutation invariant, the kernel embedding in dimension l, given
as vl,2 = MeanAGG([v

(l)
1,1, . . . , v

(l)
Nl,1

]), is invariant to a shuffling of the base-symbols in dimension l via Lemma 2.
For any other dimension i ̸= l the quantity vi,2 is also invariant to a shuffling of base symbols in dimension l, as the
permuted sequence Vl is not an input to that quantity. Thus, the complete sequence [v1,2, . . . ,vd,2] is invariant to a
shuffling of base symbols in dimension l.
Shuffling of dimension: Furthermore, the sequence of embeddings [v1,2, . . . ,vd,2] is equivariant to dimension shuffling
as we apply the same mapping onto the equivariant sequence [V1,1, . . . ,Vd,1] via

[v1,2, . . . ,vd,2] = [MeanAGG(V1,1), . . . ,MeanAGG(Vd,1)]

and applying Lemma 1 with g = MeanAGG.

3. Here, we apply a TransformerW3
with weights W3 to get the transformed sequence

[v1,3, . . . ,vd,3] = TransformerW3
([v1,2, . . . ,vd,2]).

Shuffling of base symbols in dimension l: As [v1,2, . . . ,vd,2] is invariant to a shuffling of base symbols in dimension l,
also the transformation [v1,3, . . . ,vd,3] is, via Lemma 4.
Shuffling of dimension: As the transformer block TransformerW3 is equivariant, the equivariance to dimension
shuffling is preserved for the transformed sequence [v1,3, . . . ,vd,3]

4. In the last step, each sequence Vi,1 = [v
(i)
1,1, . . . , v

(i)
Ni,1

] from step 1 with i = 1, . . . , d is given to a
KernelEncoderStackedW4 block with weights W4:

[v
(i)
1,4, . . . , v

(i)
Ni,4

] = KernelEncoderStackedW4
([v

(i)
1,1, . . . , v

(i)
Ni,1

], ci,4)

together with the extended context ci,4, where

ci,4 = Concat(hi,vi,3).

Shuffling of base symbols in dimension l: As vl,3 is invariant to a base-symbol shuffling within dimension l also
the concatenated context cl,4 = Concat(hl,vl,3) is invariant to that shuffling. Thus, independent of the shuffling
of the base-symbols within the dimension l, the context vectors stays the same and we can apply Theorem 2. Thus,
via Theorem 2 the KernelEncoderStackedW4

is equivariant given the context cl,4, therefore, with the fact that
[v

(l)
1,1, . . . , v

(l)
Nl,1

] is equivariant to a shuffling of the base symbols in dimension l we conclude that also the transformed

sequence Vl,4 = [v
(l)
1,4, . . . , v

(l)
Nl,4

] is permutation equivariant to a shuffling of the base-symbols in dimension l.
Shuffling of dimension: The sequence of input tuples [(V1,1, c1,4), . . . , (Vd,1, cd,4)] is equivariant to a shuffling of the
dimension as [c1,4, . . . , cd,4] and [V1,1, . . . ,Vd,1] are equivariant. Applying the same KernelEncoderStackedW4

block to each tuple renders the transformed sequence

[V1,4, . . . ,Vd,4] = [KernelEncoderStackedW4
(V1,1, c1,4), . . . ,KernelEncoderStackedW4

(Vd,1, cd,4)]

equivariant to dimension shuffling, according to Lemma 1 with g = KernelEncoderStackedW4
. ■

Noise Variance Predictor: We give a short detailed notation for the noise variance predictor. The noise variance predictor
gNV gets as input the output of the dataset encoder [hi]di=1 and the output of the kernel-encoder-decoder ṼS = [Ṽ1, . . . , Ṽd]
and maps to a single real value σ̂2 = gNV ([hi]

d
i=1, ṼS) that is the prediction for the noise variance σ2. It is defined via:

gNV ([hi]
d
i=1, ṼS) = MLPW

(
Concat

(
MeanAgg([hi]di=1),MeanAgg(ṼS)

))
where MeanAgg(ṼS) is the mean over all ṽ(i)j in ṼS and W are the weights of the MLP layer.

Kernel Parameter Predictor: We give a short detailed notation for the kernel parameter predictor gΘS . It gets as
input the output of the kernel-encoder decoder ṼS = [Ṽ1, . . . , Ṽd] and the sequence of sequences of base-symbols

BS :=

[
[B

(i)
1 , . . . , B

(i)
Ni

]|i = 1, . . . , d

]
of S with B

(i)
j ∈ B and is defined via

gΘS (ṼS ,BS) :=

[
[MLP

B
(i)
1
(v

(i)
1), . . . ,MLP

B
(i)
Ni

(v
(i)
Ni

)]

∣∣∣∣i = 1, . . . , d

]
where for each symbol B ∈ B in the corpus B a separate MLPB layer with weights WB is used.

The next theorem is our main theorem and combines the previous theorems to state the main invariances of the output
quantities, namely the predicted kernel parameters and the predicted likelihood noise variance.

Theorem 4 Let D be a dataset with d ∈ N input dimensions and n ∈ N datapoints and S an expression as described
in Section 2 of the paper. For the output of our amortization network g(D,S) given through the prediction of the kernel
parameters θ

B
(i)
j

∈ Θ
B

(i)
j

for each base symbol in S with i = 1, . . . , d and j = 1, . . . , Ni and a prediction of the likelihood

variance σ2 the following properties hold:

1. The output is invariant to a shuffling of the dataset elements, meaning for any valid S and shuffeled dataset Dπ it holds:

g(D,S) = g(Dπ,S).

2. The output kernel parameters are equivariant to a dimension shuffling, meaning for a dimension shuffeled dataset Dπ̂
and a dimension shuffeld expression Sπ̂ with permuted sequence of sequence of base-kernels BSπ̂

it holds:

θ̂
B̂

(i)
j

= θ
B

(π̂(i))
j

∈ Θ
B̂

(i)
j

= Θ
B

(π̂(i))
j

,

where θ̂
B̂

(i)
j

is the output of g(Dπ̂,Sπ̂) for symbol B̂(i)
j ∈ BSπ̂

and θ
B

(i)
j

is the output of g(D,S) for symbol B(i)
j ∈ BS .

3. For any i ∈ {1, . . . , d} the output kernel parameters are equivariant to a permutation π̃ of the the base-symbols inside
the subexpression Si meaning for the shuffeled expression Sπ̃ with permuted sequence of sequence of base-kernels BSπ̃

it holds for all j = 1, . . . , Ni:

θ̂
B̂

(i)
j

= θ
B

(i)

π̃(j)

∈ Θ
B̂

(i)
j

= Θ
B

(i)

π̃(j)

,

where θ̂
B̂

(i)
j

is the output of g(D,Sπ̃) for symbol B̂(i)
j ∈ BSπ̃

and θ
B

(i)
j

is the output of g(D,S) for symbol B(i)
j ∈ BS .

4. The likelihood variance prediction is invariant to a permutation of the input dimension π̂ and invariant to a permutation
π̃ of the the base-symbols inside a subexpression Si applied to any input dimension i ∈ {1, . . . , d}.

Proof:
1. For the noise variance prediction σ̂2 it holds that:

σ̂2
π = gNV (gD(Dπ), gk(gD(Dπ),VS)) = gNV (gD(D), gk(gD(D),VS)) = σ̂2

as gD(D) = gD(Dπ) according to Theorem 1. For the kernel parameter prediction θ̂S it holds similarly

θ̂πS = gΘS (gk(gD(Dπ),VS),BS) = gΘS (gk(gD(D),VS),BS) = θ̂S

as gD(D) = gD(Dπ) according to Theorem 1.

2. Let π̂ be a permutation applied to the input dimensions. Let [V̂1, . . . , V̂d] be the output of the kernel encoder-decoder
for the permuted input and [Ṽ1, . . . , Ṽd] for the unpermuted input. As B̂(i)

j = B
(π̂(i))
j (by definition) and v̂

(i)
j = ṽ

(π̂(i))
j by

Theorem 3 with v̂
(i)
j ∈ V̂i and ṽ

(i)
j ∈ Ṽi it follows

θ̂
B̂

(i)
j

= MLP
B̂

(i)
j
(v̂

(i)
j) = MLP

B
(π̂(i))
j

(ṽ
(π̂(i))
j) = θ

B
(π̂(i))
j

.

3. Let i ∈ {1, . . . , d} and let π̃ be a permutation of the base symbols in dimension i. Let Ṽi = [ṽ
(i)
1 , . . . , ṽ

(i)
Ni

] be the output

of the kernel-encoder-decoder for the unpermuted input and V̂i = [v̂
(i)
1 , . . . , v̂

(i)
Ni

] for the permuted input. As B̂(i)
j = B

(i)
π̃(j)

(by definition) and v̂
(i)
j = ṽ

(i)
π̃(j) by Theorem 3 it follows

θ̂
B̂

(i)
j

= MLP
B̂

(i)
j
(v̂

(i)
j) = MLP

B
(i)

π̃(j)

(ṽ
(i)
π̃(j)) = θ

B
(i)

π̃(j)

.

4. Let π̂ be a permutation applied to the input dimensions. Let [hi]di=1 be the output of the dataset-encoder for the unpermuted
input dataset D and let [ĥi]di=1 be the output of the dataset-encoder for the permuted input dataset Dπ̂ . Furthermore, let ṼSπ̂

be the output of the kernel-encoder-decoder for the permuted expression Sπ̂ . Then, it holds for the noise variance prediction:

σ̂2
π̂ = gNV ([ĥi]

d
i=1, ṼSπ̂

) = MLPW
(

Concat
(

MeanAgg([ĥi]di=1),MeanAgg(ṼSπ̂
)

))
= MLPW

(
Concat

(
MeanAgg([hi]di=1),MeanAgg(ṼS)

))
= gNV ([hi]

d
i=1, ṼS) = σ̂2,

since MeanAgg([ĥi]di=1) = MeanAgg([hi]di=1) and MeanAgg(ṼSπ̂
) = MeanAgg(ṼS) as the mean aggregation is permu-

tation invariant. For the permutation π̃ of the base symbols in dimension i the proof goes accordingly via permuted output
ṼSπ̃

of the kernel-encoder-decoder and

σ̂2
π̃ = gNV ([hi]

d
i=1, ṼSπ̃

) = MLPW
(

Concat
(

MeanAgg([hi]di=1),MeanAgg(ṼSπ̂
)

))
= MLPW

(
Concat

(
MeanAgg([hi]di=1),MeanAgg(ṼS)

))
= gNV ([hi]

d
i=1, ṼS) = σ̂2.

■

Figure 8: In this figure, we see two datasets with four datapoints each. Both datasets would be treated equivalently by the
dataset encoder if it would be invariant to a permutation π of a single dimension-wise input sequence H(i) = [(x

(i)
j , yj)]

n
j=1

for some i ∈ {1, . . . , d}. For the second dataset, we swap the values of the first dimension of the red datapoints, thus doing
a permutation of a single dimension-wise input sequence. Considering the y values, the second dataset has high noise, while
the first dataset could also come from a low noise process. An invariant network would output the exact same GP parameters
for both datasets, a clearly undesirable property.

C.2 REASON FOR CHANGE OF DATASET ENCODER

In this section, we analyze a property that motivates the change to the architecture of the dataset encoder compared to
Liu et al. [2020]. We consider a permutation π of a single dimension-wise input sequence H(i) = [(x

(i)
j , yj)]

n
j=1 for some

i ∈ {1, . . . , d}. Our architecture is in general not invariant to such a permutation, in contrast to the dataset encoder in Liu
et al. [2020] which would output the same kernel parameters also after a permutation of a single dimension-wise input
sequence. In Figure 8 we show two datasets that would be treated exactly as the same dataset in case such an invariance
exists - the first dataset might come from a low noise process while the second dataset clearly contains large noise. Thus,
assigning the same GP parameters to both datasets is undesirable in this case. Our trained amortization network, equipped
with an SE kernel in each dimension, predicts for the left dataset a noise value of σ̂D1

= 0.18 and for the right dataset
σ̂D2

= 0.213. This shows that our network is not invariant to such a permutation and also assigns higher noise to the second
dataset.

References

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. In Advances in Neural Information Processing Systems,
2018.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer: A framework
for attention-based permutation-invariant neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 3744–3753. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/lee19d.
html.

Sulin Liu, Xingyuan Sun, Peter J Ramadge, and Ryan P Adams. Task-agnostic amortized inference of gaussian process hyper-
parameters. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 21440–21452. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/f52db9f7c0ae7017ee41f63c2a7353bc-Paper.pdf.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas, Pablo León-Villagrá,
Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process library using TensorFlow. Journal of Machine
Learning Research, 18(40):1–6, apr 2017. URL http://jmlr.org/papers/v18/16-537.html.

https://proceedings.mlr.press/v97/lee19d.html
https://proceedings.mlr.press/v97/lee19d.html
https://proceedings.neurips.cc/paper/2020/file/f52db9f7c0ae7017ee41f63c2a7353bc-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f52db9f7c0ae7017ee41f63c2a7353bc-Paper.pdf
http://jmlr.org/papers/v18/16-537.html

Aki Rehn. Amortized bayesian inference of gaussian process hyperparameters. Master Thesis, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Experimental Details
	Further Experiments
	Theory
	Main Invariances and Equivariances
	Reason for Change of Dataset Encoder

