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Abstract

When estimating a regression model, we might
have data where some labels are missing, or our
data might be biased by a selection mechanism.
When the response or selection mechanism is ig-
norable (i.e., independent of the response variable
given the features) one can use off-the-shelf re-
gression methods; in the nonignorable case one
typically has to adjust for bias. We observe that
privileged information (i.e. information that is only
available during training) might render a nonignor-
able selection mechanism ignorable, and we refer
to this scenario as Privilegedly Missing at Random
(PMAR). We propose a novel imputation-based re-
gression method, named repeated regression, that
is suitable for PMAR. We also consider an import-
ance weighted regression method, and a doubly
robust combination of the two. The proposed meth-
ods are easy to implement with most popular out-
of-the-box regression algorithms. We empirically
assess the performance of the proposed methods
with extensive simulated experiments and on a syn-
thetically augmented real-world dataset. We con-
clude that repeated regression can appropriately
correct for bias, and can have considerable advant-
age over weighted regression, especially when ex-
trapolating to regions of the feature space where
response is never observed.

1 INTRODUCTION

Regression is a primary technique in data science,
machine learning and statistics. When presented with
data (X1, Y1), ..., (Xn, Yn) sampled from the distribution
P(X,Y ), the goal is to find the conditional expectation of
Y given X , i.e. estimate the function µ(x) = E[Y |X = x].
Practitioners are often presented with either incomplete data

(where some values are missing) or data that is not repres-
entative of the population (drawn from some other P̃(X,Y )
with P̃ 6= P), and hence have to correct for the bias that is
present in their training data. The discrepancy between P̃
and P can for example be induced by a selection mechanism.

Consider the situation where we want to predict whether a
loan applicant will default. Let X be the digital record of a
person applying for a loan, Y whether the borrower defaults
on the loan, Ŷ a current algorithm’s prediction of default,
and Z (costly) expert advice on whether the applicant will
default, which correlates with Y through information that
is unavailable to us. We want to reject any applicants that
will default on the loan, so we have the issue of the loan
S, as a weighted combination of Ŷ and Z. Only when we
issue the loan, Y will be observed. If we want to re-train
our current prediction model Ŷ = Ê[Y |X] we have to take
into account the bias induced by Z during training of the
model without explicitly adding Z to the covariates X . In
this work, we demonstrate how one can incorporate such
privileged information in a regression model, to correct for
any bias that it induces in the data generating process.

An important line of work on selection bias is by Pearl
[2012] and Bareinboim et al. [2014], who consider the prob-
lem of estimating P(Y |X) from a potentially biased dataset
by leveraging knowledge of the underlying causal graph.
They derive an expression of P(Y |X) as an integral of quant-
ities that can be estimated from readily available biased and
additional (‘external’) unbiased data. Although identifica-
tion of a conditional distribution might be useful in certain
scenarios, this does not tell the practitioner how to estimate
a regression model, especially when dealing with continu-
ous variables. In this work we address this problem, keeping
in mind the applicability of the proposed methods.

Missingness problems are often characterised by the pres-
ence of certain conditional independencies in the data. Typ-
ically these independencies are untestable, making it unclear
whether these conditional independence assumptions are ap-
propriate for the data at hand. Drawing a causal graph of
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the data generating process is often helpful for gaining a
better understanding of the problem. Moreover, the causal
graph identifies conditional independencies in the data, and
thereby allows the practitioner to motivate these conditional
independence assumptions. As posed by Rubin [1976]:

“The inescapable conclusion seems to be that when dealing
with real data, the practising statistician should explicitly
consider the process that causes missing data far more often
than he does. However, to do so, he needs models for this
process and these have not received much attention in the
statistical literature.”

Contrary to what is often seen in the literature we do not
need a full probabilistic model of the missingness mechan-
ism, as the identification of certain conditional independ-
encies can already be sufficient for estimating a regression
model.

Our contributions are as follows. First, this paper serves a
pedagogical purpose by reviewing literature of missingness
and selection bias, as addressed in Section 2. We address
what the consequences of certain conditional independen-
cies are for the practitioner. While doing so, we motivate the
use of privileged information [Vapnik and Vashist, 2009]
when missingness or selection is nonignorable, and intro-
duce the Privilegedly Missing at Random setting (PMAR).
Secondly, in Section 3 we formulate a novel imputation-
based estimator for the PMAR setting, which we refer to as
repeated regression. We point out that importance weighted
regression is also suitable for the PMAR setting, and com-
bine the two methods into a doubly robust estimator. These
estimators are formulated such that they are easy to imple-
ment using out-of-the box regression algorithms. We then
address the intricacies of evaluation under selection bias and
missingness in Section 4. We warn the practitioner that, to
our knowledge, there is no appropriate way of evaluating
a regression method on a finite, biased dataset without re-
lying on auxiliary models. Lastly, in Section 5 we assess
the performance of the formulated methods on extensive
simulated experiments and on synthetically augmented real-
world data. We observe that repeated regression has con-
siderable advantage over importance weighting, especially
when extrapolating.

2 MISSING DATA, SELECTION BIAS
AND PRIVILEGED INFORMATION

2.1 MISSING DATA MECHANISMS

A very general framework for handling missing data is pro-
posed by Rubin [1976]. When modelling the distribution of
a set of random variables X1, ..., Xm, this framework takes
into account potential missing values of any of the Xi by
considering a random vector of response indicators: binary
variables S1, ..., Sm, where Si = 1 indicates that variable

Xi is observed. The process that determines whether we
observe Xi can be explicitly modelled as P(Si|X1, ..., Xm).
We then define the observed random vector Xo

1 , ..., X
o
m

where Xo
i = Xi if Si = 1 and Xi =? if Si = 0, where ‘?’

denotes the value that is missing in the dataset. We focus on
a specific missingness problem where we have covariates
X , response variable Y , and where S is a response indicator
for Y , so only Y can have missing values.

Rubin [1976] proposed the following classification of miss-
ing data mechanisms, which approximately categorises the
difficulty of many inference problems.

Definition 1. [Rubin, 1976] Given variables X,Y , and re-
sponse indicator S for Y , we say that Y is

• Missing Completely at Random (MCAR) if the miss-
ingness mechanism is independent of all other ob-
served variables, i.e. S⊥⊥X,Y ;

• Missing at Random (MAR) if the missingness mech-
anism is independent of the missing variable given all
other fully observed variables, i.e. Y ⊥⊥S |X;

• Missing Not at Random (MNAR) if it is neither MCAR
nor MAR.

A large body of literature has been written about inference
under missingness. Important works are the EM algorithm
[Dempster et al., 1977], Nobel prize winning work by Heck-
man [1979] on correcting for selection bias in linear regres-
sion, Rosenbaum and Rubin [1984] which laid the found-
ations of propensity score based methods in causal infer-
ence, and a series of generalised estimating equations (GEE)
based methods for inference under missingness [Robins
et al., 1994, Robins and Rotnitzky, 1995, Rotnitzky et al.,
1998, Scharfstein et al., 1999]. Graphical modelling of miss-
ingness mechanisms and related independence testing and
identification problems have been investigated in Daniel
et al. [2012], Thoemmes and Mohan [2015], Nabi et al.
[2020], Mohan and Pearl [2021], Goel et al. [2021]. For an
overview of the field, see Little and Rubin [2019]. In this
work we focus on correcting for bias in regression using
privileged data, which is not treated in the aforementioned
literature.

S-recoverability As proposed by Pearl [2012] and further
developed in Bareinboim et al. [2014], s-recoverability is
a method to deal with selection bias. Consider again the
case of modelling the distribution of X1, ..., Xm. Instead of
having one response indicator for each Xi as in the miss-
ingness framework, Pearl [2012] considers one selection
variable S where S = 1 indicates that all variables are ob-
served (selected), and S = 0 indicates that no variable is
observed, i.e. there is no row for this observation in our data-
set. Any data that we observe is drawn from the distribution
P(X1, ..., Xm|S = 1).
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Bareinboim et al. [2014] prove that for discrete variables and
under certain positivity assumptions, P(Y |X) is recoverable
from P(X,Y |S = 1) if and only if Y ⊥⊥S |X . The ‘if’ part
is straightforward, since the conditional independence im-
plies P(Y |X) = P(Y |X,S = 1), and the right-hand-side
can be estimated from the data. When this conditional inde-
pendence is not satisfied, Bareinboim et al. [2014] consider
joint measurement of X,Y and some other variable Z in
the biased dataset (so availability of P(X,Y, Z|S = 1)), sat-
isfying the conditional independence Y ⊥⊥S |X,Z. Addi-
tionally, they assume availability of unbiased measurements
of (X,Z), i.e. sampled from P(X,Z), which they refer to
as ‘external data’. For discrete Z, the quantity P(Y |X) is
then identified with

P(Y |X) =
∑
z

P(Y |X,Z = z)P(Z = z|X)

=
∑
z

P(Y |X,Z = z, S = 1)P(Z = z|X)
(1)

provided we have P(S = 1|X,Z) > 0,P(X,Z)-
almost surely, which is for example satisfied when
supp[P(X,Z|S = 1)] = supp[P(X,Z)].1 One can
straightforwardly replace the sum with an integral when
Z is continuous. However, when the domain of Z is count-
ably infinite or continuous, estimating this quantity is not
straightforward. The repeated regression estimator proposed
in Section 3.1 is a solution to this problem.

Our proposed methods can be applied to the selection bias
and missingness settings. In either case, we require availab-
ility of i.i.d. observations of (X,Y, Z) ∼ P(X,Y, Z|S = 1)
whose index set we denote with S, and i.i.d. observations
of (X,Z) ∼ P(X,Z) whose index set we denote with D.
In the missingness setting, both samples are readily avail-
able and we have S ⊆ D. In the selection bias setting the
sample D consists of ‘external’ data and we typically have
S ∩ D = ∅. A schematic display of the assumed available
data under missingness and selection bias is provided in the
supplements. For the methods of Sections 3.2 and 3.3 we
additionally require knowledge of the selection probability
P(S = 1|X,Z), which is directly estimable in the miss-
ingness setting, but which has to be assumed under selec-
tion bias. Throughout this paper, any distinctions between
missingness and selection bias will be pointed out when
necessary. Otherwise, either setting can be assumed.

2.2 REGRESSION UNDER DIFFERENT
SELECTION MECHANISMS

Suppose we are interested in estimating E[Y |X] with con-
tinuous or discrete (ordinal) Y , and arbitrary X .2 We might
be confronted with a dataset with missing values of Y , or
we might suspect that some selection mechanism is in play

1We let supp[P] denote the support of P.
2Note that this setting includes binary classification.

YX

S

(a) Ignorable

YX

S

(b) Nonignorable

Y

Z

X

S

(c) Privilegedly ig-
norable

Figure 1: Examples of missingness or selection bias settings,
where S indicates whether Y is observed or not.

which makes certain (X,Y ) pairs unobserved. In this sec-
tion, we investigate whether there is need for any bias correc-
tion. As this investigation is based on conditional independ-
ence assumptions, we first elaborate how such assumptions
can be motivated.

Causal modelling Missingness mechanisms can be char-
acterised by independencies. This is everything we need: all
proposed methods will only require certain conditional inde-
pendencies in the data, and no causal assumptions. However,
the conditional independencies that are assumed are typic-
ally untestable. For example, the independence Y ⊥⊥S is not
testable, as we have not observed Y for S = 0. To motivate
such an independence assumption, one could model the data
generating process with a graphical causal model, and infer
from d-separations in the graph that there must be certain
independencies in the data [Pearl, 2009]. In the missingness
setting where only Y can be missing (with indicator S), we
can draw a simplified graph that discards the Y o variable, as
in Figure 1a. In the graphical framework of s-recoverability,
S is implicitly required to be a sink node (i.e. a node without
children) [Bareinboim et al., 2014]. We do not adopt this
convention.

Ignorable missingness/selection bias When the data is
MCAR or MAR, we have the conditional independence
Y ⊥⊥S |X and thus

E[Y |X] = E[Y |X,S = 1], (2)

in which case we call the missingness/selection mechanism
ignorable for estimating E[Y |X]. An example of an ignor-
able (MAR) missingness or selection mechanism is given in
Figure 1a. When this mechanism is ignorable, any correctly
specified model could directly be learned as Empirical Risk
Minimization (ERM) is consistent [Sugiyama et al., 2007],
and hence, there is no need for bias correction. Note that
the right-hand side of equation (2) is only defined for X ∈
supp[P(X|S = 1)], and one has to be mindful when extra-
polating to values X ∈ supp[P(X)] \ supp[P(X|S = 1)]
[Martius and Lampert, 2016].

Although in this case the missingness or selection mech-
anism can in principle be ignored, one should beware that
under model misspecification, ERM is not consistent any-
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more. Also, efficiency of the estimation procedure can be
affected by MCAR and MAR. Zadrozny [2004] and Wei Fan
et al. [2005] investigate the performance of multiple popular
classification algorithms under covariate shift. Robins and
Rotnitzky [1995] investigate the asymptotic efficiency of
semi-parametric estimation of the regression function via
Generalised Estimating Equations (GEE). Note that in the
missingness setting, we can use the values of X where Y
is unobserved as additional (unlabelled) input of a semi-
supervised learning algorithm. When doing anticausal pre-
diction (i.e., when Y is the cause of X), these additional
samples could benefit performance [Schölkopf et al., 2012].

Privilegedly ignorable missingness/selection bias It
might be the case that the missingness or selection mechan-
ism is nonignorable. For example, we may suspect that S
and Y are confounded by some variable that is not contained
inX , as depicted in Figure 1b. In this case we typically have
E[Y |X,S = 1] 6= E[Y |X], in which case naive regression
on the available data yields a biased model. However, we
might be able to identify the latent confounder, or more
generally, any variable (e.g. mediator or confounder of Y
and S) that induces a dependence between Y and S after
conditioning on X .

More specifically, we are looking for a set of variables Z
such that Y ⊥⊥S |X,Z, such as depicted in Figure 1c. Hav-
ing identified Z, one might include it into the features of the
model and deploy the unbiased model Ê[Y |X,Z, S = 1].
However, in practice it might be costly or impossible to
measure Z during deployment, e.g. when Z can only be
measured after making a prediction with the regression
model. In these settings, it is undesirable to incorporate
Z into the features of the deployed model. When Z is only
available during training it is referred to as privileged inform-
ation, following Vapnik and Vashist [2009]. The specific
setting that we consider in this work is formally defined as
follows:

Definition 2 (PMAR). Given features X and label Y , re-
sponse indicator S for Y , and privilegedly observed vari-
able Z, we say that Y is Privilegedly Missing at Random
(PMAR) if the response indicator is independent of the
missing label given all other fully or privilegedly observed
variables, i.e. Y ⊥⊥S |X,Z.

When the data used for regression is PMAR, we refer to the
missingness/selection mechanism as privilegedly ignorable.

Examples of PMAR A causal graph related to the bank
loan problem from the introduction is given in Figure 2a,
from which we deduce that indeed Y ⊥⊥S |X,Z. The bank
loan problem is an example of a more general PMAR setting
where individuals or items are selectively labelled [Guerdan
et al., 2023], based on predictions from an existing model
Ŷ = Ê[Y |X] and additional data Z that is not part of the
features X .

X

Ŷ

Y

Z

S

(a)

X

ZŶ

Y

S

(b)

YX

Z

S

(c)

Figure 2: Causal graphs relating to examples of PMAR.

The PMAR setting is also encountered when we want to re-
place the feature set Z of a current selection model Ê[Y |Z]
with a new feature set X . One could start measuring X
when the old algorithm is still in use, to generate data on
which the new prediction algorithm Ê[Y |X] can be learned;
this data generating process is depicted in Figure 2b.

Another example that fits the PMAR signature would be
the selection of patients for costly CT scans, with X di-
gitally available measurements of the patient, Z all addi-
tional information (besidesX) that the doctor uses to decide
whether a CT scan should be made of the patient (e.g. pale
skin, slurred speech, pain indicated by patient), Y whether
the patient has a certain disease (as measured by the CT
scan), and S the doctors decision of making a CT scan of
the patient. If we want to estimate E[Y |X], e.g. to assist
the doctor in the future in their decision making process,
then we can only unbiasedly estimate this if we have meas-
ured Z, which requires the doctor to manually register all
information that they use for making the decision. This can
be a costly process, hence we might only want to have to
measure this at train time, and not at test time.

The previous examples are of missing response, where the
distributions P(X,Y, Z|S = 1) and P(X,Z) are readily
available. As an example of selection bias with the PMAR
conditional independence, we consider a dataset of patients
from the University Hospital of Caracas, Venezuela, who
have been tested for the presence of cervical cancer through
a biopsy or colposcopy (Y ).3 In this dataset we have demo-
graphic and medical information of these patients (X), from
which we might want to estimate E[Y |X] for automated
screening of the population. However, it might be that these
patients are self-selected based on any symptoms, denoted
by Z. A possible causal graph of the data generating process
is depicted in Figure 2c. Naive regression on this dataset
would yield the biased model Ê[Y |X,S = 1]. As mentioned
earlier, to correct for this bias we require external data D
from distribution P(X,Z), i.e. an unbiased sample of cov-
ariates X and symptoms Z from the population. This could
for example be sampled through a questionnaire. One could
compare this with the approach of sampling (X,Y ) from

3Available at https://archive.ics.uci.edu/ml/
datasets/Cervical+cancer+(Risk+Factors).
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the population to directly estimate E[Y |X], which requires
a costly and intrusive intervention (biopsy or colposcopy)
on randomly sampled subjects, hence it would be preferred
to only sample (X,Z) from the population.

In all these cases, the variable Z induces bias that should
be corrected for when estimating E[Y |X]. In the following
section, we demonstrate how this can be achieved.

3 IMPUTATION, WEIGHTING, AND
DOUBLE ROBUSTNESS UNDER PMAR

We propose three estimation procedures for training a re-
gression model E[Y |X] in the PMAR setting: a repeated
regression method, a weighted regression method, and a
doubly robust regression method. Throughout this section,
we consider the following example.

Example 1. Consider the data generating process

X = εX

Z = 3 sin(X) + εZ

Y =
1

2
X + Z + εY

S ∼ Bernoulli(pS(X,Z))

(3)

with independent Gaussian random variables εX , εZ and
εY . The selection probability is defined as pS(x, z) :=
σ(x)σ(z) with sigmoid σ(x) = 1/(1 + ex).

Y

Z

X

S

Figure 3

Figure 3 displays the graphical model
related to this data generating process.
Note that we can indeed read off that
Y ⊥⊥S |X,Z, so if Z is only avail-
able during training, the missingness
mechanism is PMAR. Figure 4 depicts
n = 400 draws from the generating
model (3). In this example, we have #{S = 1} = 123.
The black dots indicate (X,Y ) pairs where Y is observed
(S = 1), and the grey dots indicate (X,Y ) pairs where Y
is unobserved (S = 0). The green line shows the true re-
gression line E[Y |X = x] = 1

2x+ 3 sin(x), and the black
line shows the regression line of the naive, biased estimate
Ê[Y |X,S = 1]. In this example and throughout this paper
we use thin plate splines regression [Duchon, 1977, Wood,
2003] as implemented in the mgcv package [Wood, 2015].
Note that, additional to what is shown in Figure 4, we have
all (X,Z) pairs available. Our goal is to fit a regression
model that is close to the green line, E[Y |X]. 4

Extrapolation and positivity Many missingness meth-
ods assume positivity of the selection probability, i.e. that
P(S = 1|X,Z) > 0 holds P(X,Z)-almost surely, as is for
example required for the identification equation (1). This
assumption ensures that asymptotically, we do not run into
the problem of extrapolation. For finite samples, we might

True
NaiveX

Y

Figure 4: Dataset from Example 1, with observed (black)
and unobserved data (grey); the true regression line
E[Y |X] (green) and the naively estimated regression line
Ê[Y |X,S = 1] (black).

run into extrapolation issues already when P(S = 1|X,Z)
is close to zero. In the example of Figure 4 we have no pos-
itivity for large values of X; we will see that extrapolation
is still possible by using privileged data Z that is highly
predictive of Y .

3.1 REPEATED REGRESSION

By the law of total expectation and the PMAR conditional
independence Y ⊥⊥S |X,Z we can write the conditional
expectation E[Y |X] as follows

E[Y |X] = E[E[Y |X,Z]|X]

= E[E[Y |X,Z, S = 1]|X],
(4)

similar to equation (1). For this equality to hold we require
P(S = 1|X,Z) > 0,P(X,Z)-almost surely. We formulate
an estimation procedure based on this expression by estim-
ating each conditional expectation with a regression model.
That is, we first regress Y on X and Z using the data S,
which results in the regression model Ê[Y |X,Z, S = 1].
Using the unbiased data (xi, zi) for i ∈ D we construct
pseudo-labels Ỹi := Ê[Y |X = xi, Zi = zi, S = 1]. Now,
we regress Ỹ onX using the data (Xi, Ỹi)i∈D, which yields
the final model:

µ̂RR(x) = Ê[Ỹ |X = x]. (5)

Note that this method requires datasets S and D, and as-
sumes that Y ⊥⊥S |X,Z. So, if this conditional independ-
ence is satisfied, it can be directly applied in both the miss-
ingness setting, and in the selection bias setting where we
have ‘external data’ P(X,Z).
Example 1 (continued). Recall that the data for Y is gen-
erated by Y = 1

2X + Z + εY , so for fitting a model
Ê[Y |X,Z, S = 1], although we can only fit this model
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on a small part of the data (123 out of 400 observations)
it is a relatively easy (linear) model to fit. We compute the
pseudo-labels Ỹi := Ê[Y |X = xi, Z = zi, S = 1], as de-
picted with orange crosses in Figure 5. Regressing these
imputed values on X yields the final model µ̂RR (orange
line in Figure 5). 4

True
RRX

Y

Figure 5: Repeated regression. Orange crosses indicate im-
puted values, and the orange line is the regression line res-
ulting from repeated regression.

Regression imputation is explicitly used for estimating the
mean under missingness via E[Y ] = E[E[Y |X,S = 1]]
by Bang and Robins [2005]. Similarly, the average causal
effect can be estimated by E[Y |do(X)] = E[E[Y |X,Z]]
for a valid adjustment set Z; this method is known as stand-
ardization [Hernán and Robins, 2021]. For these estimators,
the inner expectation is estimated with a regression model,
and the outer expectation is calculated by taking the mean
of the pseudo-labels. The novelty in estimator (5) lies in
the fact that the outer expectation is estimated by regression
instead of the empirical mean, and the observation that this
estimator is applicable to the PMAR setting. Note that in
general, automatically generated confidence intervals result-
ing from the outer regression Ê[Ỹ |X] are not valid. To this
end, multiple imputation methods are often used. As this re-
quires the modelling of the full distribution P(Y |X,Z), we
do not consider this. For an overview of multiple imputation
methods in GEE regression, see Ditlhong et al. [2018].

3.2 IMPORTANCE WEIGHTING

For estimating the parameter β∗ in the regression model
E[Y |X] = g(X;β∗) we often specify a loss function ` and
perform empirical risk minimisation (6) as an approximation
of the parameter that is optimal in terms of the true risk (7).

β̂ = argmin
β

1

|D|
∑
i∈D

`(g(Xi;β), Yi) (6)

β∗ = argmin
β

E[`(g(X;β), Y )] (7)

Writing f(x, y) := `(g(x;β), y), we can express the risk
in terms of the distribution conditional on S = 1 using
importance weighting:

E[f(X,Y )] = E[w(X,Z)f(X,Y )|S = 1], (8)

with importance weights w(x, z) := P(S = 1)/P(S =
1|X = x, Z = z), provided we have that P(S = 1|X,Z) >
0 holds P(X,Z)-almost surely. A derivation of these import-
ance weights can be found in the supplementary material.
Since β∗ = argminβ E[w(X,Z)`(g(X;β), Y )|S = 1],
when we have observations (Xi, Zi, Yi) ∼ P(X,Z, Y |S =
1) for i ∈ S , we can directly perform empirical risk minim-
ization on this dataset using the weighted loss:

β̂w := argmin
β

1

|S|
∑
i∈S

w(Xi, Zi)`(g(Xi;β), Yi), (9)

and use β̂w as an estimate of β∗. Many implementations of
regression algorithms allow the user to specify such sample
weights. When the weights are not known in the missingness
setting, they can be estimated [Cortes et al., 2008]. Prac-
tically, when the selection probability P(S = 1|xi, zi) is
nearly zero for particular drawn values xi, zi, these probabil-
ities are ‘clipped’ (i.e. transformed to remain lower bounded
by some pre-specified strictly positive value) to reduce vari-
ance. In the experiments, we consider a linear map of the
array of selection probabilities to [1/20, 1], as this yields
the best performance among different clipping strategies.
Example 1 (continued). The fitted IW regression model
is depicted in Figure 6. Here, we used the true weights
w(xi, zi). The size of the observed points indicate the as-
sociated weight. Note that the IW regression only uses the
black points (i.e. the (xi, yi) pairs for which Si = 1). Com-
paring to repeated regression (Figure 5) we see that IW
extrapolates poorly, possibly due to the effect of importance
weighting on regularization [Xu et al., 2021]. On the other
hand, IW interpolates better than the naive model. 4

True
IWX

Y

Figure 6: IW regression with true weights.

The idea of weighting observations stems from the Horvitz-
Thompson estimator for the population mean [Horvitz and
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Thompson, 1952]. The use of importance weights in GEE
regression in the MAR setting is analysed by [Robins et al.,
1994, Robins and Rotnitzky, 1995], and its MNAR counter-
part is described by Scharfstein et al. [1999]. When weight-
ing is performed to correct for confounding bias in causal ef-
fect estimation, this is often called inverse propensity weight-
ing [Hernán and Robins, 2021]. For weighted SVM- and
kernel regression under covariate shift and target shift, see
Zhang et al. [2013].

3.3 DOUBLY ROBUST REGRESSION

We now follow a relatively standard procedure to com-
bine the two previous models into a doubly robust model
[Bang and Robins, 2005, Kang and Schafer, 2007, Dudík
et al., 2014]. First, we consider the repeated regression
method µ̂RR from Section 3.1. We calculate the resid-
uals of this method on the available Y values: we set
Ri := Yi − µ̂RR(Xi) for all i ∈ S. We model the con-
ditional expectation of the residuals given X using the IW
regression method from Section 3.2, as

r̂IW (x) := g(X; β̂w) ≈ E[R|X] (10)

where β̂w = argminβ |S|−1
∑
i∈S w(Xi, Zi)`(g(Xi;β), Ri)

and where we use the same importance weights w as in
Section 3.2. Then we define the doubly robust model

µ̂DR(x) := µ̂RR(x) + r̂IW (x). (11)

Here, double robustness refers to the fact that for this model
to be consistent, only one of µ̂RR and r̂IW has to be con-
sistent.
Example 1 (continued). For sake of exposition, we apply the
doubly robust method with a misspecified model µ̂RR(x).
Recall that µ̂RR(x) = Ê[Ỹ |X = x], where Ỹ are the values
that are imputed with the model Ê[Y |X,Z, S = 1]. To make
the RR model deliberately misspecified, we use the same
Ỹ as in Section 3.1 (more specifically, as in Figure 5), but
for the outer regression Ê[Ỹ |X] we employ polynomial
regression with degree 5. The resulting models are depicted
in Figure 7. We see that µ̂DR extrapolates poorly, but it
interpolates better than the misspecified model µ̂RR. 4

For overview papers on doubly robust estimation of the
mean, see Bang and Robins [2005] and Kang and Schafer
[2007]. For doubly robust regression in the MNAR setting,
see Rotnitzky et al. [1998] and Scharfstein et al. [1999].
Doubly robust estimation of causal effects is treated by
Coston et al. [2020] and Bhattacharya et al. [2022], among
others.

4 EVALUATION

Consider the setup where we split the available data
D = D′′∪̇D′ into train- and test test respectively, and

True
Missp.
Resid.
DR

X

Y

Figure 7: Doubly robust regression. At the top the (X,Y )
pairs are plotted, with the true model (green) and misspe-
cified RR model (black). The residuals of the misspecified
model are plotted at the bottom. The IW regression model
for the residuals (yellow) is then added to the misspecified
model, which yields the doubly robust model (orange).

where we split S accordingly. When all values of Y are
known, performance is typically assessed using MSE :=
|D′|−1

∑
i∈D′(ŷi − yi)2. Under missingness or selection

bias, this quantity cannot be calculated as it requires the
unobserved values yi for i /∈ S ′. Quantities that can be
calculated on the test set are as follows:

MSE-n :=
1

|S ′|
∑
i∈S′

(ŷi − yi)2 (12)

MSE-w :=
1

|S ′|
∑
i∈S′

w(xi, zi)(ŷi − yi)2 (13)

MSE-ỹ :=
1

|D′|
∑
i∈D′

(ŷi − ỹi)2, (14)

which are respectively the naively calculated MSE, the re-
weighted MSE using the true weights, and the MSE calcu-
lated as if the imputed values ỹ were true. We define MSE-ŵ
similarly, in terms of the estimated weights.
Example 1 (continued). The IW and DR models are learned
both with true and estimated weights (denoted with -t and
-e respectively), and all weights are clipped. We calculate
the different mean squared error metrics for the estimated
models on 500 independently drawn test sets of n = 400
samples. The results are provided in Table 1. We emphas-
ize that MSE is not calculable in practice, and note that
MSE-n, MSE-w and MSE-ŵ yield qualitatively different
results than the oracle MSE. MSE-ỹ provides the same or-
dering as MSE, but in practice the reliance on the imputation
model can be undesirable. We observe that RR appropriately
corrects for bias, as its MSE lies close to the MSE of the
true function E[Y |X]. Additional to the oracle MSE, we
calculate the MSEs specifically for data points where the re-
gression model is interpolating (between the minimum and
maximum values of X for which S = 1) and extrapolating
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MSE MSE-n MSE-ỹ MSE-w MSE-ŵ

Naive 24.07 7.56 19.54 16.19 19.79
RR 8.81 8.13 4.44 8.50 9.34
IW-t 40.42 8.40 35.58 22.22 24.67
IW-e 38.44 8.28 33.60 21.49 23.08
DR-t 25.91 8.13 21.27 14.82 16.65
DR-e 24.09 8.00 19.43 13.96 15.52

True 8.03 7.78 4.63 7.87 8.87

Table 1: Mean squared errors of different regression methods
applied to Example 1, averaged over 500 test sets.

(the complement of these values), as depicted in Table 2. We
observe that IW extrapolates poorly, especially compared to
RR. 4

MSE MSE-interp. MSE-extrap.

RR 8.81 8.43 10.17
IW-t 40.42 12.00 138.22
IW-e 38.44 11.77 129.41
DR-t 25.91 10.47 78.48
DR-e 24.09 10.23 70.42

Table 2: Inter- and extrapolation results for Example 1.

When the true weights are not known, one can only evaluate
the proposed bias correction methods on biased data by
relying on an auxiliary model, i.e. either the imputation
model Ê[Y |X,Z, S = 1] or P̂(S = 1|X,Z). In general, if
the practitioner is able to evaluate on an unbiased random
sample of (X,Y ), this would be much more reliable than
evaluating on a biased sample.

5 EXPERIMENTS

The example that is used throughout this paper is quite ex-
treme in the sense that the model E[Y |X,Z] is relatively
simple and E[Y |X] is rather complex, which gives RR a
clear advantage over IW. To investigate the proposed meth-
ods in a more general setting, we assess performance on
extensive simulations and on the Boston Housing dataset.4

5.1 SIMULATIONS

To assess the performance of the proposed methods em-
pirically, we first identify which graphs with variables
X,Y, Z and S satisfy the pattern of d-separations X 6⊥Y
(such that regression E[Y |X] makes sense), Y 6⊥S|X and
Y ⊥S |X,Z (PMAR). There are 550 Acyclic Directed

4Code for the experiments is publicly available at https://
github.com/philipboeken/debiased_regression.

Mixed Graphs (ADMGs) that fit this pattern. For each
ADMG we simulate 50 datasets, and for each dataset we
draw 2000 samples according to an additive noise structural
equation model, where all equations for X,Y, Z are random
functions, independently drawn from a Gaussian process,
and the additive noise is the pushforward of a Unif[0, 1]
distribution through a random function that is also drawn
from a Gaussian process [Mooij et al., 2016]. We let the se-
lection probability be p(x, z) = σ(x)σ(z), when X and Z
are parents of S in the ADMG. We make a 50/50 train-test
split for training and evaluation. For a complete description
of the simulation setup, we refer to the supplements. On
each dataset, we fit a ‘naive’ model Ê[Y |X,S = 1] and the
models µ̂RR, µ̂IW and µ̂DR from Section 3. We also fit a
‘true’ model Ê[Y |X] for comparison. In Table 3 we report

MSE MSE-ỹ MSE-w MSE-ŵ

Naive 3.11 (20.6) 2.81 (18.0) 0.91 (1.3) 0.90 (0.6)
RR 2.01 (2.6) 0.60 (0.9) 1.25 (1.5) 1.20 (1.3)
IW-t 4.91 (33.6) 4.57 (30.9) 0.92 (1.5) 0.92 (0.6)
IW-e 4.18 (23.2) 3.83 (20.7) 0.92 (1.2) 0.91 (0.6)
DR-t 4.98 (29.8) 4.97 (31.1) 0.77 (0.4) 0.81 (0.4)
DR-e 4.51 (45.1) 4.47 (49.0) 0.80 (0.4) 0.79 (0.4)

True 0.98 (0.3) 1.63 (3.0) 1.03 (0.6) 1.00 (0.5)

Table 3: Results over 27.500 simulated datasets.

the different mean squared error metrics of the methods,
averaged over all 27.500 tests sets (standard deviations are
shown in parentheses). We see that the average MSE of RR
is half that of the best IW method. The median MSEs follow
the relation RR < Naive < IW-t, confirmed with respective
p-values 1.6 · 10−110 and 3.2 · 10−39 of Wilcoxon’s signed
rank test. In ADMGs where X is a parent of S there is a
clear region of the support of X with no positivity of S,
hence a clear region where the regression model is extra-
polating, similar to Example 1. When singling out these
ADMGs we calculate the average MSE, and additionally
the MSEs on the parts where the regression model is inter-
and extrapolating, as shown in the table below. From Table
4 we see that IW and DR do not extrapolate well, while RR
does.

MSE MSE-interp. MSE-extrap.

RR 2.13 (2.7) 1.46 (1.8) 2.89 (4.2)
IW-t 7.29 (34.0) 1.29 (0.7) 13.75 (53.8)
IW-e 5.82 (16.4) 1.27 (0.6) 10.81 (32.6)
DR-t 7.73 (45.7) 1.26 (0.6) 14.37 (70.1)
DR-e 6.93 (72.3) 1.24 (0.6) 12.34 (94.9)

Table 4: Inter- and extrapolation results for simulated data.

We hypothesize that IW and DR extrapolate badly because
of the interplay between the smoothness assumption and reg-
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ularization of thin plate spline regression, and large weights
near the edge of the support of P(X|S = 1), causing the
model to diverge away from the true E[Y |X] when extrapol-
ating (as is for example the case in Figure 6). We investigate
this by running the experiments with RR, IW and DR imple-
mented with regression trees [Breiman et al., 1984] instead
of thin plate regression. As regression trees extrapolate flatly,
this can allow for better extrapolation performance than
thin pate regression. The results of these experiments are
provided in the supplements. They are indeed numerically
less extreme than for thin plate regression, but qualitatively
the same.

5.2 BOSTON HOUSING DATA

In absence of a real-world dataset where there is missing-
ness and the missing value is known, we consider the Bo-
ston Housing dataset [Harrison Jr and Rubinfeld, 1978]
and simulate a selection mechanism ourselves. We con-
sider the problem of predicting the value of owner-occupied
homes in US Dollars (Y ) from the number of rooms per
dwelling (X). We let selection depend on X , and on
the ‘percentage of people of lower status of the popula-
tion in the town where the house is situated’ (Z), which
strongly correlates with Y . Selection is simulated by setting
P(S = 1|X,Z) := σ(f1(X))σ(f2(Z)), where f1, f2 are
random functions drawn from a Gaussian process. For each
dataset, the 506 available observations are randomly split
into evenly sized train and test sets. The average MSEs are
provided in Table 5, and show the same qualitative results as
the simulations. When calculating the MSE of the inter- and
extrapolation regions, we observe that RR performs better
than IW at both tasks (table shown in supplements).

MSE MSE-ỹ MSE-w MSE-ŵ

Naive 1.23 (2.5) 0.84 (2.3) 0.48 (0.7) 1.79 (5.9)
RR 0.71 (0.3) 0.26 (0.3) 0.44 (0.4) 1.63 (4.8)
IW-t 2.18 (4.9) 1.77 (4.9) 0.56 (1.5) 2.40 (9.2)
IW-e 1.75 (4.4) 1.40 (4.7) 0.50 (0.9) 1.98 (7.4)
DR-t 1.92 (3.7) 1.65 (3.4) 0.23 (0.2) 0.39 (1.2)
DR-e 2.43 (5.4) 2.20 (5.5) 0.25 (0.2) 0.21 (0.3)

True 0.45 (0.1) 0.54 (0.4) 0.36 (0.3) 0.85 (2.2)

Table 5: Results of 500 biased instantiations of the Boston
Housing dataset.

6 DISCUSSION AND CONCLUSION

In this work, we have motivated the use of privileged in-
formation for estimating a regression model when selection
or missingness is nonignorable, and introduced the Priv-
ilegedly Missing at Random (PMAR) setting. We formulated

the repeated regression method, the IW regression method,
and the doubly robust combination of the two. We note
that evaluation of regression methods on biased data is not
straightforward and relies on auxiliary models. Experiments
show that repeated regression can appropriately correct for
bias, and with considerable advantage over IW regression.
In particular, in repeated regression, extrapolation is facilit-
ated by privileged data Z that is predictive of Y . IW does
not have such a property, and extrapolates worse than RR.

Further research can be done on the statistical properties of
the proposed methods, e.g. on bounding the regret of DR
in terms of the regret of RR and IW (possibly under mis-
specification), or on the interplay of importance weighting,
regularization, and extrapolation.

Additionally, further research on the sensitivity of these
methods with respect to the conditional independence as-
sumption would be valuable, e.g. to determine whether it’s
always better to correct for bias with some privileged in-
formation Z, even when the independence Y ⊥⊥S |X,Z is
not met.

Finally, it would be interesting to see whether the improved
performance of repeated regression over weighted regres-
sion translates to their counterparts for estimating causal
effects, i.e. whether standardization should be preferred over
inverse propensity weighting.
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