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Abstract

Do common assumptions about the way that crowd
workers make mistakes in microtask (labeling) ap-
plications manifest in real crowdsourcing data?
Prior work only addresses this question indirectly.
Instead, it primarily focuses on designing new
label aggregation algorithms, seeming to imply
that better performance justifies any additional as-
sumptions. However, empirical evidence in past
instances has raised significant challenges to com-
mon assumptions. We continue this line of work,
using crowdsourcing data itself as directly as possi-
ble to interrogate several basic assumptions about
workers and tasks. We find strong evidence that the
assumption that workers respond correctly to each
task with a constant probability, which is common
in theoretical work, is implausible in real data. We
also illustrate how heterogeneity among tasks and
workers can take different forms, which have dif-
ferent implications for the design and evaluation
of label aggregation algorithms.

1 INTRODUCTION

As a whole, crowds can be surprisingly wise [Surowiecki,
2004], but individuals within the crowd are unsurprisingly
prone to making mistakes. This is true for complex applica-
tions like prediction markets—where individuals collaborate
to create a probabilistic forecast for some event by trading
securities linked to particular outcomes of that event. And
it is equally true for simpler applications like microtasks—
where individuals collaborate to complete a simple task, like
labeling an image, by performing the task individually and
submitting their responses to be algorithmically aggregated
in a way that will discern the correct label from the various

The code for our experiments is at https://github.
com/burrelln/Testing-Conventional-Wisdom.

responses with high probability. Given this fallibility, then,
it is important to understand how workers make mistakes.

Clearly, how workers make mistakes on individual tasks
has important implications for the design of aggregation
algorithms. These algorithms frequently leverage insights
that flow from assumptions about how errors are made. For
example, some algorithms, like those proposed by Burnap
et al. [2015] and Welinder and Perona [2010] rely on the
assumption that there are expert workers, who label more
accurately than a typical worker. Under this assumption,
a clear aggregation strategy emerges: identify the experts,
then take the majority answer from the expert labels.

But how workers make mistakes on individual tasks also
has important implications for the evaluation of aggregation
algorithms. When an algorithm is tested on a group of data
sets, the degree to which the results of those tests will be
indicative of performance on future data depends on the
degree to which the test data sets are representative of the
future data. The (approximate) validity of basic assumptions
about how workers make errors are important dimensions
along which test data may or may not be representative of
future data, because those assumptions are a key factor in
the design of aggregation algorithms.

Further, it is important to understand the nature of individ-
ual mistakes in order to quantify uncertainty about labels.
Uncertainty quantification can be used, e.g., as in active
learning, to train classifiers that achieve a given level of ac-
curacy at a lower cost than otherwise [Cerquides et al., 2021,
Passonneau and Carpenter, 2014, Sheng et al., 2008]. More
specifically, the estimated parameters of an error model can
also be used to improve the utility of a labeled data set as a
training set for a machine learning algorithm, as shown by
Lalor et al. [2019], and to improve the reliability of crowd-
sourced experiments, as shown by Katsuno et al. [2019].

The importance of understanding errors, thus, leads to a nat-
ural question: What evidence is there in real crowdsourcing
data for the various assumptions that underlie the common
error models? Surprisingly, work towards answering this
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question is largely absent from the literature. The most di-
rect evidence for the utility of an error model is typically
just that an algorithm based on it outperforms previous al-
gorithms in aggregating labels to recover the ground truth.
However, there are many factors that confound the relation-
ship between an underlying model and the performance
of an algorithm that is designed using that model, includ-
ing the choice of test data sets. As a result, assessing the
validity of modeling assumptions solely through algorith-
mic performance offers a limited view. It is insufficient for
supporting any theoretical claims that follow from those
assumptions. Moreover, it is insufficient for understanding
how representative a group of test data sets is of future data
and for assessing the utility of the various error models for
uncertainty quantification.

We address these limitations by directly exploring the degree
to which there exists evidence in real data sets to justify
several common assumptions about worker errors. In doing
so, we uncover some regularities that hold across a diverse
collection of data sets alongside much variation in other
fundamental characteristics. Specifically, we find that:

• Errors depend on the category of each task’s correct
response. In particular, workers do not have a constant
probability of correctness for all tasks (Section 4).

• Whether errors appear to depend on factors beyond the
correct response category varies (Sections 5.1 and 5.2).

• Worker proficiency distributions are well-characterized
by (generally reliable) modal workers (Section 5.2).

• Exceptionally reliable “expert” workers do not appear
to play a significant role (Section 5.2.2).

1.1 RELATED WORK

Challenging Assumptions. In this work, we test com-
mon assumptions about crowdsourcing workers and tasks
using publicly-available data to help guide future research
and practice. Prior work includes three particularly notable
examples that do exactly that. Yin et al. [2016] uncover a
robust network of communication among crowdsourcing
workers. A key lesson of their analysis is that the group of
workers that complete a task on Amazon Mechanical Turk
(a popular crowdsourcing platform) is not a random sample
of all active workers, because workers talk to their peers
about tasks that are enjoyable, lucrative, etc. More directly
in the domain of label aggregation, Li et al. [2019] demon-
strate that the common assumption that the average number
of labels per task is small (≤ 3) often does not hold. Rather,
in the publicly-available data sets they identify, the average
number of labels per task is commonly at least 5. Further
they show that, in this label-dense setting, many state-of-the-
art aggregation algorithms perform no better than a simple
majority vote, despite being much more computationally
expensive. Lastly, Wei et al. [2022] argue that certain noise

models from the image classification literature fail to ade-
quately describe real-world noise in two new benchmark
data sets that they introduce for image classification tasks.

In testing the assumptions that we consider, we rely
crucially on an additional assumption that is typical in
crowdsourcing—that the underlying tasks have an objective
ground truth category that can be recovered by aggregating
labels. This assumption makes sense for the tasks that we
consider, which are relatively simple to complete and in
many cases have objectively correct responses. However,
it is not an appropriate assumption for all crowdsourcing
tasks. Recent work, e.g., by Basile et al. [2021],Gordon
et al. [2021], and Plank [2022], has explored alternative
approaches to working with crowdsourced data in those set-
tings where it does not make sense to assume that tasks have
an objective ground truth.

Aggregating Labels. The assumptions that we focus on
in this work are generally implicit in the error models that
are employed in the design of label aggregation algorithms.
Just two such families of error models are nearly ubiquitous
in the literature and they imply different assumptions about
the heterogeneity of tasks and workers:

1. Dawid-Skene models (Section 2.1) assume that a
worker’s errors on a task depend primarily on the cor-
rect response for the task and their own proficiency
[Dawid and Skene, 1979, Karger et al., 2011, Liu and
Wang, 2012, Liu et al., 2012, Raykar et al., 2010, Welin-
der and Perona, 2010, Zhang et al., 2014].

2. Item response theory models (Section 2.2) generally as-
sume that tasks, independently of the correct response,
follow a particular pattern of heterogeneity that affects
a given worker’s probability of responding correctly
in specific ways [Bachrach et al., 2012, Khattak et al.,
2016, Whitehill et al., 2009, Welinder et al., 2010]1.

The most common approach in designing a label aggregation
algorithm is to adopt a model from one of these families.
But there are a few prominent exceptions to this trend. For
example, Zhou et al. [2012, 2015] adopt a very flexible
error model under which each task-worker pair is associated
with its own distribution over the possible responses. This
model makes relatively few assumptions about the nature of
workers and tasks, but as a result, also has limited utility for
extrapolating to unseen examples. Another unique approach
by Jung and Lease [2012] is to apply probabilistic matrix
factorization, a collaborative filtering technique, to predict
labels from each worker on all tasks before aggregating the
predicted labels via majority vote or some other algorithm.

Bayesian Annotation Models. In this work, we seek to
validate or invalidate assumptions using data itself, and

1Otani et al. [2016] also use a model based on item response
theory in the related setting of pairwise comparisons.
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therefore to be agnostic to specific aggregation algorithms
or models, as much as possible. However, certain outcomes
are difficult to distinguish without an underlying model. For
example, is a certain group of workers with high accuracy a
group of experts or were they just assigned easy tasks? As a
result, in Section 5.2.1 we fit models from the Dawid-Skene
and item response theory families and use the parameters
of the best-fitting models to further explore the data. In that
section, our work resembles that of Paun et al. [2018] and
Lakkaraju et al. [2015], who each consider sets of Bayesian
annotation models and evaluate their utility for various esti-
mation and prediction tasks, including label aggregation.

Although Paun et al. and Lakkaraju et al. draw from essen-
tially the same families of models that we consider, our work
has significant methodological differences. And, ultimately,
we apply models toward a different end—to answer specific
questions about the data themselves and how they relate to
common assumptions from the label aggregation literature,
rather then to answer questions about the relative utility of
the models for solving problems where the data is an input
or qualitative questions about interpreting the parameters of
more complex models.

2 MODELING

The fundamental elements of an error model are tasks and
workers. In our setting, a task is an object that is associated
with a collection of categories or labels with a fixed, finite
size k. Among these categories, exactly one applies to the
object. That category is called the ground truth. For example,
a task might be an image of a duck, with the categories
“Duck” and “’No Duck.” In that case, “Duck” is the ground
truth. A worker’s job is to select the ground truth category
that applies to the object for each task assigned to them.

2.1 DAWID-SKENE

The most popular models in the label aggregation literature
are Dawid-Skene (DS) models, which were proposed as a
way to understand and mitigate individual errors in clinical
diagnoses [Dawid and Skene, 1979]. In a DS model, the
interactions between workers and tasks are parameterized by
a collection of confusion matrices. A confusion matrix M is
a k× k stochastic matrix. Entry mij denotes the probability
of a worker reporting category j on a task for which the
ground truth is i. Typically, each worker is associated with
their own confusion matrix, but variants of that basic model
include models where a single confusion matrix is shared
among a cluster of workers or among the entire population.

Intuitively, DS models suppose that the probability of a
particular worker making an error on a particular task can
depend on that task’s ground truth category, but only on
that. In our running example, that means that duck images

and non-duck images may have different patterns of errors,
but every image of a duck (and every image that is not of
a duck) is more or less equally recognizable as such. We
decompose this into two distinct assumptions: The first is
that the pattern of errors is category-dependent. The second
is that tasks with the same ground truth are homogeneous.

2.2 ITEM RESPONSE THEORY

Item response theory (IRT) [Embretson and Reise, 2000,
Reckase, 2009] was developed in psychometrics for the
purpose of designing tests (e.g., academic assessments) and
interpreting their results. In contrast to DS models, IRT
models parameterize both workers and tasks. Each worker i
is characterized by an ability parameter θi, which may be a
scalar or vector. θi represents i’s adeptness at the underlying
skill being “measured” by a particular test, i.e., set of tasks.
Each task j is characterized by up to three scalar parameters:
a discrimination parameter aj , a difficulty parameter bj , and
a “guessing” parameter cj ∈ [0, 1]. The worker and task
parameters interact in the following way to determine the
probability of a correct response on task j from worker i:

Pr[correct] = cj + (1− cj) expit (aj (θi − bj)) , (1)

where expit(x) = exp(x)
1+exp(x) is the standard inverse-logit

(i.e., logistic) function. In this function, ceteris paribus, the
discrimination parameter controls the rate of change in the
probability of correctness as the worker’s ability varies. The
guessing parameter captures the intuition that, with a finite
number of categories, it is possible to produce the correct
response without identifying it by responding randomly.

Equation (1) captures the three basic IRT models. The dif-
ference between these models is that the simpler models
impose stronger constraints on the task parameters. In the
one-parameter logistic model (1PL), aj = a, a constant, and
cj = 0 for all tasks j. In the two-parameter logistic model
(2PL), cj = 0 for all tasks j. In the three-parameter logistic
model (3PL), all of the task parameters are allowed to vary.

On the whole, IRT models suggest that the probability of
a particular worker making an error on a particular task
comes down to an interaction between the characteristics of
the worker and the characteristics of the task. However, the
characteristics of tasks that are assumed to be relevant are
different under IRT than under DS. In particular, the ground
truth category is generally not taken into consideration.

3 DATA

Given a worker and a task, the DS model predicts a complete
response distribution over the possible categories. IRT pre-
dicts a probability that the response will be correct, but does
not predict which category will be chosen if the response is
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not correct. To remove this asymmetry, we limit our analy-
sis to data sets with binary categories, so that specifying a
probability of correctness is equivalent to specifying a com-
plete distribution over the categories. In addition to binary
categories, we also require the data sets to have ground truth
labels. This introduces an important assumption we make
throughout: that ground truth labels are sufficiently reliable.

Sheshadri and Lease [2013]’s Statistical QUality Assurance
Robustness Evaluation ([SQUARE, Accessed: Oct. 2022])
project, a benchmarking resource for label aggregation re-
search, provides six data sets that meet our criteria2 and are
meant to be used to evaluate label aggregation algorithms:

• BM involves labeling the sentiment of tweets as either
positive or negative [Mozafari et al., 2012, 2014].

• HCB involves determining whether a particular Web
page is relevant to a given search query [SQUARE,
Accessed: Oct. 2022].

• RTE involves textual entailment, i.e., deciding whether
a given statement implies a subsequent one [Snow et al.,
2008].

• TEMP involves deciding two events’ temporal order
[Snow et al., 2008].

• WB involves labeling images by whether they contain
a certain kind of bird Welinder and Perona [2010].

• WVSCM involves labeling whether images of smiles
are of “Duchenne” smiles [Whitehill et al., 2009].

Several of these data sets are no longer available through
the SQUARE project site, so we provide alternative links
[Mozafari et al., Snow et al., Welinder et al.].

We also consider the following additional data set, which
was released subsequently to the SQUARE project:

• SP involves labeling the sentiment of a sentence ex-
tracted from a movie review as either positive or nega-
tive [Venanzi et al., 2015].

4 CATEGORY-DEPENDENT ERRORS

We begin with a model-agnostic, non-parametric approach.
We apply randomization inference—also known as a permu-
tation test—to the hypothesis that the errors in the data from
our various sources are not category-dependent. Specifically,
in each of 999 (unique) permutations, we randomly assign
the ground truth category for each task (while preserving the
size of each category) and then compute each worker’s fre-
quency of correctness conditioned on the (assigned) ground

2It also lists a seventh data set, SpamCF, which appears to
meet our criteria, but upon closer inspection only contains ground
truth categories for tasks where the workers were in unanimous
agreement.

Table 1: Summary of Each Data Set.

Workers Tasks Responses
gt = 0 gt = 1

BM 83 1000 2545 2455
HCB 722 3267 8767 10932
RTE 164 800 4000 4000

TEMP 76 462 2590 2030
WB 39 108 2340 1872

WVSCM 17 159 1219 731
SP 143 500 4900 5100

truth category. The test statistic is the median absolute differ-
ence between these frequencies. To obtain an exact p-value
for this hypothesis test, we compute the number out of all
1000 computed medians3 that are at least as extreme as the
median observed under real categories.

Using this test, we find very strong evidence to reject the
null hypothesis that errors in each data set are not category-
dependent. For nearly every data, the median observed under
the real categories is the most extreme, corresponding to
a p-value of 0.001 for our test. In the remaining datasets,
TEMP and SP, the observed median is still quite extreme,
corresponding to p-values of 0.020 and 0.006, respectively.4

As a result, it is apparent that, even for this diverse collection
of tasks with binary categories, category matters a great deal
in determining the pattern of errors in crowdsourcing data.

In addition to being statistically significant, the dependence
on categories is also practically significant. In Table 2, we
show the median absolute difference (MAD) between fre-
quencies of correctness conditioned on the ground truth
categories for each data set and estimate a 95% confidence
interval for these values via bootstrap resampling. We em-
phasize that these values are absolute differences. Large
values do not necessarily imply that one category is sub-
stantially easier than the other; workers can differ in the
category for which their responses are more accurate. Then,
we compare the true median absolute differences—our test
statistic (TS)—to the median and maximum values of the
test statistics observed in the permuted data during our ran-
domization inference. In this comparison, the true value of
the test statistic, and even the lower bound of the confidence
interval, is often much greater than the maximum value of
the test statistic observed in any permutation.

3999 under permutations of the ground truth categories and 1
under the real ground truth categories from the data.

4Further, if the mean absolute difference in frequency of cor-
rectness is used in place of the median as the test statistic, then the
observed mean is the most extreme value (and, thus, p = 0.001)
for every data set.
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Table 2: Summary of Randomization Inference Results: Testing Null Hypothesis of Category Independence.

MAD 95% CI Med TS Max TS p
BM 0.382 (0.318, 0.476) 0.100 0.167 0.001

HCB 0.364 (0.333, 0.471) 0.166 0.197 0.001
RTE 0.138 (0.131, 0.200) 0.088 0.111 0.001

TEMP 0.085 (0.050, 0.167) 0.061 0.119 0.020
WB 0.408 (0.319, 0.550) 0.058 0.179 0.001

WVSCM 0.238 (0.148, 0.436) 0.079 0.179 0.001
SP 0.065 (0.053, 0.091) 0.049 0.071 0.006

5 TASK & WORKER HETEROGENEITY

In this section, and further in the supplementary material,
we explore the degree to which tasks and workers exhibit
heterogeneity with a variety of approaches. For tasks, we
say they are heterogeneous if the probability of a correct
response from a worker tends to vary with the underlying
task (and homogeneous otherwise). For workers, we say they
are heterogeneous if the probability of a correct response on
a task tends to vary with the worker who is providing the
response (and homogeneous otherwise).

5.1 MODEL-AGNOSTIC ANALYSIS

Heterogeneity in Tasks. Previously, we found that there
is strong evidence that tasks are heterogeneous based on
their category. The next question we consider is whether
tasks are homogeneous—i.e., whether workers have a con-
stant probability of correctness—within each category. We
once again employ randomization inference to test the null
hypotheses that tasks within each ground truth category are
homogeneous. Consequently, we perform two hypothesis
tests in each data set—one per category. For these tests, our
test statistic is the difference in the mean (DiM) frequency
of correct responses between apparently difficult tasks and
apparently easy tasks in the given category. The apparently
difficult and apparently easy tasks are the upper and lower
half, respectively, of the set of all tasks in that category
when sorted in order fraction of correct responses for each
task. We perform the randomization inference by (uniquely)
permuting the identifiers of the tasks within the given cate-
gory (999 times); this preserves the number of times each
task appears in the set of all responses, but changes which
workers are associated with which tasks. We obtain exact
p-values as above. The results of these tests are displayed in
Table 3.

For most categories, in most data sets, this test suggests
rejecting the null hypothesis of homogeneity. However, in
contrast to our randomization inference for categories, there
is some reason to be skeptical of the practical significance
of some of the results, even when they appear statistically
significant. The values of the test statistics for the permuta-
tions are surprisingly consistent, even to the point of being

Table 3: Summary of Randomization Inference Results:
Testing Null Hypothesis of Task Homogeneity.

gt DiM Med TS Max TS p

BM 0 0.235 0.235 0.235 0.998
1 0.603 0.346 0.386 0.001

HCB 0 0.437 0.354 0.376 0.001
1 0.338 0.292 0.309 0.001

RTE 0 0.242 0.239 0.265 0.412
1 0.244 0.193 0.217 0.001

TEMP 0 0.142 0.227 0.262 1.00
1 0.186 0.194 0.228 0.723

WB 0 0.176 0.111 0.150 0.001
1 0.266 0.125 0.174 0.001

WVSCM 0 0.351 0.228 0.281 0.001
1 0.419 0.208 0.281 0.001

SP 0 0.184 0.102 0.119 0.001
1 0.210 0.109 0.125 0.001

nearly invariant for category 0 in the BM data set. As a
result, there are certain values for which the difference be-
tween the true value of the test statistic in the real data and
the values observed in the permutations (as summarized
by the median and maximum values in Table 3) are quite
small, even though the value in the real data is the most
extreme value (and thus the associated p-value is small). For
example, the true value in category 1 for both the HCB and
RTE data sets is less than 0.06 more than the median of the
values from the permutations. This suggests that, although
we may reject the null hypothesis of homogeneity, the actual
difference between homogeneity and the particular kind of
heterogeneity that appears to be present in those data sets
may not be very meaningful. We will return to this point in
Section 5.2.1, when we test the fit of models with different
assumptions about task heterogeneity.

5.2 MODEL-INFORMED ANALYSIS

To further investigate task and worker heterogeneity, we
need to move beyond our model agnosticism. Without a
model, it is not possible to distinguish between, for example,
a group of expert workers who completed a standard set
of tasks and a group of average workers who completed a
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set of particularly easy tasks. In contrast to prior modeling
work, though, we employ models as a means to an end—to
answer further questions about the data itself. As a result, we
employ the standard version of each model. This allows us to
perform exact inferences and to make minimal assumptions,
while still capturing the essential features of the model.

5.2.1 Finding the Best Fit

We seek to identify the standard DS or IRT model that
provides the best fit to each data set. Then, we can use the
estimated parameters of those models to answer deeper ques-
tions about the data. In light of our results from Section 4,
though, IRT models have an obvious shortcoming—they
generally do not incorporate category-dependent errors, ex-
cept in the special case where the same category is more
difficult to label than the other for every worker. To ad-
dress this shortcoming, we also consider an extension of
IRT: category-dependent IRT (CIRT), which is similar to
the model proposed by Khattak et al. [2016]. For CIRT, we
split each data set into two parts by conditioning on the
ground truth and fit the standard IRT models to each part
independently.

Estimating DS Parameters. Because all of our data sets
contain ground truth categories, fitting the DS model is
quite straightforward. We use the maximum likelihood es-
timate (MLE) given in the original paper by Dawid and
Skene [1979]. For each worker, their confusion matrix is
completely determined given the diagonal entries, which rep-
resent the conditional probabilities of answering correctly
given each ground truth category. The estimate for each of
these entries is simply that worker’s empirical frequency
of correctness on the tasks they completed in that category.
For practical purposes, we must augment these estimates in
two ways. First, if a worker did not complete any tasks in a
particular category, we use the population-level frequency
of correctness for that category as the estimate. Second, to
avoid undefined quantities in our model comparison tech-
niques, we hedge extreme estimates p̂ = 0 or p̂ = 1 in the
following manner:

p̂h =
1

2n
+

(n− 1)

n
p̂,

where n is the number of tasks (and h stands for hedged).

Estimating IRT Parameters. Our model fitting tech-
niques for IRT models similarly take advantage of the
ground truth labels. Unlike in label aggregation generally,
this is the standard setting for IRT—when you are grading a
test, you generally need to know the answers. The standard
algorithm for fitting an IRT model is to use a marginal max-
imum likelihood (MML) approach [Embretson and Reise,
2000, Sanchez, 2021]. In this algorithm, the item parameters
are estimated first by computing an MLE while marginaliz-
ing over a population-level distribution of ability parameters

that is estimated from the data using a quadrature method.
Then, the ability parameters are estimated using MLE given
the item parameter estimates.

A major assumption underlying IRT model-fitting proce-
dures is that the correct dimension for the ability parameters
is specified. We assume these parameters are unidimen-
sional. Although tests to indicate whether ability parameters
in a given data set are plausibly multidimensional have been
proposed, those methods are designed for settings where
nearly all participants respond to nearly all items. They do
not readily generalize to crowdsourcing settings where each
worker tends to only complete a small subset of the tasks.

We also limit ourselves to the 1PL and 2PL models for IRT
and CIRT. Fitting the 3PL model is too computationally
expensive in our data sets, which are large compared to
typical IRT data. Further, a limitation of our model fitting
software [Sanchez, 2021] is that it is not possible to specify
or learn a constant value (i.e., 0.5) for the guessing parameter
c when using the model fitting methods for the 1PL and 2PL.
Thus, c is fixed at the default value of 0 for our experiments.

Lastly, for our largest data set, HCB, fitting the 2PL and
C2PL models is too computationally expensive for 10-fold
cross validation (see below). Thus, for that comparison,
we limit ourselves to the 1PL models for IRT and CIRT.
However, we do use the 2PL models for our other model
comparison, the Bayesian information criterion (see below).

Comparing Models. There is no perfect method to com-
pare fit among models, particularly those belonging to differ-
ent model families. Thus, we apply two different procedures:
10-fold cross validation (10FL) and the Bayesian informa-
tion criterion (BIC) [Gelman et al., 2013, Ch. 7].

10FL involves splitting the tasks into 10 equal-sized parts.
For each part i, we fit each of the models on the 9 other parts
and use the estimated parameters to make predictions about
the probability of correctness for each worker-task pair in
part i. These individual predictions are scored using the
quadratic scoring rule. If there is a particular worker-task
pair for which there is no data from the other parts on which
to estimate parameters for the worker, that pair is skipped.
Finally, models are evaluated using the sum total of their
scores for all individual predictions in all 10 parts.

BIC is an adjusted log-likelihood (LLH) measure that penal-
izes the inclusion of additional parameters:

BIC = k log(n)− 2LLH,

where k is the number of parameters and n is the size of the
data set, i.e., the total number of responses.

The results of these comparisons are summarized in Table 4.
We find that our two comparison procedures tend to agree,
giving us more confidence that we are selecting the best
model. We put slightly more weight on cross-validation
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Table 4: Summary of Model Fitting Results:
Best-Fitting Model for each Data Set.

10FL BIC
BM C1PL DS

HCB DS DS
RTE DS DS

TEMP DS DS
WB C1PL C1PL

WVSCM C1PL C1PL
SP C1PL C1PL

than BIC, so for the one data set (BM) where there is dis-
agreement, we select C1PL as the best-fitting model. Our
results indicate that the data sets differ in terms of how use-
ful it is to model characteristics of tasks beyond the ground
truth category. The DS model providing the best fit indi-
cates that tasks are more or less homogeneous, whereas the
C1PL model indicates that there is heterogeneity. Given
this understanding, it is noteworthy that the results of our
randomization inference from Section 5.1 do a fairly good
job of predicting the results of our model fitting. The data
sets that we find are best fit by the DS model include TEMP,
for which our randomization inference suggested we should
not reject the hypothesis of homogeneity. Further, RTE and
HCB are also best fit by the DS model. In those data sets,
we found evidence of heterogeneity, but also found reason
to question the practical significance of that apparent hetero-
geneity. Lastly, in both tests, the results for the BM data set
are somewhat mixed.

Employing models, though, allows us to do more than just
corroborate the results of our previous test. It allows us to
gain additional perspective on task heterogeneity beyond
what was possible with our model-agnostic analysis. In par-
ticular, we find that, even when there is evidence that tasks
are heterogeneous, the complexity of that heterogeneity ap-
pears limited—the additional discrimination parameters in
the 2PL and C2PL models do not improve model fit.

5.2.2 Examining Experts

We can also use our parameter estimates from the best-
fitting models to investigate heterogeneity among workers.
A convenient one-dimensional summary of a worker’s pro-
ficiency is their logit-probability of correctness, which can
be estimated from the parameters of the best-fitting model.
For the DS model, probability of correctness is estimated
as the sum over all categories of the product of the esti-
mated probability of correctness for that category and its
empirical frequency in the set of tasks. For the C1PL model,
probability of correctness is estimated using a Monte Carlo
method. First, for each ground truth category of tasks, we
compute a kernel density estimate (KDE) for the distribution
of difficulties. Then, 500 total samples are drawn from these

distributions5, in proportion to the empirical frequency of
the ground truth categories. For each sample, we use the IRT
eq. (1) to estimate a probability of correctness. Then, we
average the probability of correctness over all 500 samples.
Lastly, applying the logit function to the estimated probabil-
ities of correctness is a convenient transformation, because
it extends the range of the values from [0, 1] to (−∞,∞).

Kernel density estimates (KDEs) of the distributions
of logit-probability of correctness, where bandwidths
are selected using Silverman’s rule [Silverman, 1986,
scipy.stats.gaussian_kde, Accessed: Oct. 2022], are dis-
played in Figure 1. For the data sets best fit by the DS
model—HCB, RTE, TEMP—we remove outliers at the ex-
treme values. The extreme values for the most part represent
workers who responded correctly to every task they com-
pleted.6 We are comfortable removing these workers as
outliers, because their extreme estimated logit-probabilities
of correctness are very likely to be an illusion of chance
and sparse data. We can substantiate this intuition with the
following resampling procedure: Fit a normal distribution
to the logit-probabilities excluding extreme values (i.e., the
max values in all three data sets and the min value in HCB).
For each worker in the data set, draw a logit-probability of
correctness from the fitted normal distribution. Then, sample
a number of correct responses from a binomial distribution
with the corresponding probability of correctness where the
number of trials is equal to the number of tasks that worker
completed in the data. Using this procedure, it is common to
observe that both the number of extreme values and the av-
erage number of correct responses from the corresponding
workers is greater than in the real data.

These estimated distributions offer insights into the validity
of a key assumption of many crowdsourcing papers—that
there are expert workers. Who should count as an expert is
a somewhat ill-defined concept in the literature. Sometimes,
experts are a distinct group of participants apart from crowd-
sourcing workers, who are thought or known to be more
reliable. We are more interested in experts within the crowd.
But there are still questions about who, if anyone, should
be counted as an expert. Is it any worker of above-average
proficiency? Or is there something more distinct about an
expert?

The first thing to note is that nearly all of the distributions
in Figure 1 appear to be somewhat left-skewed. In such
distributions, considering an above-average worker to be
an expert seems inappropriate—the modal worker is above
average. Further, the BM, SP, and WVSCM data sets each
appear to have one prominent mode, after which the densi-
ties drop off relatively steeply. Thus, even if we were to set
some threshold to the right of the mode and to consider any
workers beyond the threshold to be experts, the density is

5We reuse the same 500 samples for each worker.
6For HCB, there are also workers who responded incorrectly

on each of their tasks, whom we remove for analogous reasons.
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small enough that expertise would appear to be relatively
insignificant in these data sets. WVSCM is a possible ex-
ception. Its shape is very similar to SP, but it is centered
in a region where the inverse logit function changes much
more quickly. Thus, the relative difference in probability
of correctness between a modal worker and a worker in
the right tail in WVSCM is greater than that in SP, which
may justify considering expertise as more significant in the
WVSCM data.

The remaining data sets are all at least plausibly multimodal.
This visual intuition is corroborated with statistical hypoth-
esis tests for unimodality in the supplementary material.
Like the unimodal distributions, the plausibly multimodal
distributions are mostly left-skewed, with the right-most
apparent mode being the largest. The distributions drop off
less steeply—they are more dispersed than the unimodal dis-
tributions. However, these larger tails are mostly in regions
where the inverse logit function changes less quickly, so the
change in probability of correctness that occurs in the larger
tails is less significant. The WB distribution is the exception
to these trends. There, the left-most apparent mode is the
largest. Moreover, the distribution is centered in a region
where the inverse logit function changes quickly. Thus, the
right-most apparent mode can be considered a significant
cluster of expert workers, distinct from the cluster of work-
ers near the larger mode. We call this phenomenon strong
expertise to distinguish it from the weaker notion of experts
who are in the upper tail of the largest (apparent) mode.

6 DISCUSSION

In Table 5, we summarize our results intuitively in terms of
the strength of evidence for various assumptions we find in
each data set.7 Below, we discuss key implications of those
pieces of evidence and their significance for future work:

Workers make errors that are category-dependent. In no-
table theoretical work [Karger et al., 2011, Liu et al., 2012,
Ok et al., 2016], it is assumed that workers have a constant
probability of correctness. Our results present a challenge
to extend theoretical results beyond this simple setting. If
provable guarantees are important for designing better algo-
rithms, then those guarantees should be proven under more
realistic assumptions. Our results also indicate that, when
invoking the IRT model family, it is wise to adopt a CIRT-
style model that allows for category-dependent errors, e.g.,
as is done by Khattak et al. [2016].

Tasks with the same ground truth category may or may not
be heterogeneous. When they are heterogeneous, that het-
erogeneity appears to have limited complexity. Some data
sets were best fit by a CIRT model, others by DS. But when

7Table 5 gives an intuitive summary of our results; the precise
meanings of the terms we use in it are discussed in the supplemen-
tary material.

CIRT provided the best fit, it was always the least complex
model—C1PL. This suggests that when there is heterogene-
ity within categories of tasks—i.e., when workers do not
have a constant probability of correctness per category—the
differences within categories can be represented simply.

Workers appear heterogeneous, with distributions of profi-
ciency that are generally well-characterized by the modal
workers. Exceptionally reliable “expert” workers do not
appear to play a significant role. In the supplementary ma-
terial, our model-agnostic analysis finds evidence of worker
heterogeneity in one (moderate evidence of heterogeneity)
or both (strong evidence) categories of each data set. In our
model-informed analysis, where we consider the distribu-
tions of logit-probability of correctness, workers in each
data set exhibit clear heterogeneity. However, many of the
distributions have densities that drop off relatively quickly
from the largest mode, suggesting that even the most reliable
workers do not report correctly with much higher probability
than a relatively typical worker.

No set of assumptions universally characterizes the data sets
that we consider. As a result, hierarchical (Bayesian) models
like those of Lakkaraju et al. [2015] and Paun et al. [2018],
which have hyperparameters to capture the degree of diver-
sity across tasks and workers, are likely to be useful. These
models can learn whether workers or tasks are completely
homogeneous, completely heterogeneous, or something in
between. For example, partitioning workers or tasks into a
small set of homogeneous clusters may effectively capture
the diversity among them. Hierarchical models infer these
kinds of relationships directly from the data when estimat-
ing model parameters. Further, we note that our results offer
some guidance in applying the hierarchical approach. For
example, our results suggest that it would be reasonable
to adopt a Gaussian prior for a logit-probability of correct-
ness parameter (or, equivalently a logit-normal prior for a
probability-of-correctness parameter), as long as category-
dependent errors are properly incorporated.

Moreover, the diversity among data sets that we uncover
suggests that the degree to which tasks and workers are het-
erogeneous is something that should be tested rather than
assumed when working in a new domain. Understanding the
amount (and form) of heterogeneity has important implica-
tions for designing or selecting an aggregation algorithm—
since candidate algorithms should be tested on a group of
representative data sets—and for subsequently quantifying
uncertainty in aggregated labels. A concrete next step for
future work is to test state-of-the-art label aggregation al-
gorithms on groups of test data sets—including, but not
necessarily limited to, those that we consider—that have
apparently similar characteristics according to the evidence
we summarize in Table 5 and document the extent to which
relative algorithmic performance varies among the groups.
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Figure 1: Kernel Density Estimates of the Distributions of Logit-Probability of Correctness in each Data Set.

Table 5: Characterization of Data Sets Based on Strength of Evidence for Assumptions in Experimental Results.

Category-Dependent Task Heterogeneity Worker Heterogeneity Expertise
Errors (Intra-Category) Model-Agnostic Model-Informed

BM Very Strong Moderate Moderate Moderate Weak
HCB Very Strong Moderate Moderate Strong Moderate
RTE Very Strong Weak Strong Moderate Weak

TEMP Strong Weak Moderate Moderate Weak
WB Very Strong Strong Strong Moderate Strong

WVSCM Very Strong Strong Strong Moderate Weak
SP Strong Strong Strong Moderate Weak
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