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Abstract

Despite the advances in Visual Question Answer-
ing (VQA), many VQA models currently suffer
from language priors (i.e. generating answers di-
rectly from questions without using images), which
severely reduces their robustness in real-world
scenarios. We propose a novel training strategy
called Loss Rebalancing Label and Global Context
(LRLGC) to alleviate the above problem. Specifi-
cally, the Loss Rebalancing Label (LRL) is dynam-
ically constructed based on the degree of sample
bias to accurately adjust losses across samples and
ensure a more balanced form of total losses in
VQA. In addition, the Global Context (GC) pro-
vides the model with valid global information to
assist the model in predicting answers more ac-
curately. Finally, the model is trained through an
ensemble-based approach that retains the benefi-
cial effects of biased samples on the model while
reducing their importance. Our approach is model-
agnostic and enables end-to-end training. Exten-
sive experimental results show that LRLGC (1)
improves performance for various VQA models
and (2) performs competitively in the VQA-CP v2
benchmark test.

1 INTRODUCTION

Visual Question Answering (VQA) aims to answer ques-
tions based on a given image. It is a multimodal task that
combines vision and language. The fundamental approach
involves identifying the image region that is most relevant
to the question and generating the most suitable answer by
leveraging the information within the image. In recent years,
VQA has made significant progress, thanks to the ongoing
advancements in computer vision and natural language pro-
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Figure 1: (A) Displays the language priors in the VQA
model. The model always tends to predict answers with
larger samples in the dataset, e.g., “white” sky and “green”
grass. (B) LRLGC can overcome the class imbalance in
the VQA dataset by rescaling the total VQA loss to a more
balanced form.

cessing [Antol et al., 2015, Zhang et al., 2019, Anderson
et al., 2018, Yu et al., 2019, Huang et al., 2020].

Despite the extant models performing well on many VQA
datasets, such as VQA v2 [Goyal et al., 2017], most machine
learning datasets are inevitably biased. Some researchers
have recently found that most existing VQA models rely
heavily on language priors, which are apparent statistical
correlations between questions and answers [Agrawal et al.,
2016, Goyal et al., 2017, Zhang et al., 2016, Hudson and
Manning, 2019, Agrawal et al., 2018]. They always tend to
ignore the image content in predicting the correct answer. As
shown in Fig. 1(A), for questions like “What color is...” the
model always tends to answer the more distributed answers
in the training set and ignore the content of the images. For
example, in the training set, “white” skies are more common
than “red” skies, and “green” grass is more common than
“brown” grass. This fragile generalization becomes very
poor when the distribution of answers in the training and
test sets is different, which greatly limits the application of
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existing models in the real world. To alleviate the language
priors problem in VQA models, Agrawal et al. [Agrawal
et al., 2018] suggested the VQA-CP dataset, which features
question-answer distributions that vary between training
and test splits. As the majority of the state-of-the-art VQA
models acquire language biases from the training data, their
accuracy on the VQA-CP dataset is significantly reduced.

In order to overcome the adverse effects of language pri-
ors on VQA models, the research done in recent years can
be broadly classified into three categories. The first are
annotation-based approaches [Selvaraju et al., 2019, Wu
and Mooney, 2019], which use additional visual informa-
tion to increase the significance of the image, i.e. they try to
match the visual attention of the VQA model with human
visual attention to ensure that the model can successfully use
visual information. However, annotation-based methods are
expensive to annotate manually [Selvaraju et al., 2019, Wu
and Mooney, 2019], and these annotations are scarce and
not readily available. Moreover, recent work [Teney et al.,
2020b, Shrestha et al., 2020] has demonstrated that the im-
provement in accuracy arises from regularization rather than
an improved visual basis. The second category is data bal-
ance methods [Zhu et al., 2020, Chen et al., 2020, Teney
et al., 2020a], which balance the dataset’s bias by construct-
ing new training samples. Counterfactual data augmenta-
tion techniques [Abbasnejad et al., 2020, Chen et al., 2020,
Liang et al., 2020, Teney et al., 2020a] balance the training
data by constructing counterfactual samples. To balance the
training data, [Zhu et al., 2020, Wen et al., 2021] used a self-
supervised framework to generate irrelevant question-image
combinations. The data-balance methods generally perform
well and do not require additional manual annotation. How-
ever, the data-balance methods are likely to introduce new
biases due to the inability to guarantee the quality of data
generation. Also, the increase in training samples leads to
longer training time.

However, it is still a major challenge to make VQA models
generalize well under unbalanced training data. Unlike the
methods mentioned above, the third type of method is the
ensemble-based method [Cadene et al., 2019, Niu et al.,
2021, Liang et al., 2021, Lao et al., 2021, Clark et al., 2019,
Mahabadi et al., 2020], which is a more efficient solution.
Ensemble-based methods do not require additional manual
annotations and do not require the generation of new train-
ing data. It usually uses an ensemble strategy to combine
the predicted outputs of the bias-only model and the VQA
model to derive the training gradient based on the fused
answers. However, we believe the previous ensemble-based
methods have shortcomings: 1) they tend to overcorrect for
language biases. Because they do not discriminate the de-
gree of bias of samples well, they also take larger penalties
for less biased samples. 2) Few models effectively use the
global context. Fusing context and local information, mod-
els can predict more accurately. 3) Most of them gain in

out-of-distribution on the VQA-CP v2 dataset at the cost of
degrading the model’s in-distribution performance on the
VQA v2 dataset. Ideally, a robust VQA model should over-
come the language priors while maintaining its performance
on the in-distribution dataset.

Inspired by [Liang et al., 2021, Guo et al., 2022], we con-
sider it crucial to rebalance the proportion of the loss value
of each answer in the total VQA loss (cf. Fig. 1(B)). We
propose a novel model-agnostic training scheme called Loss
Rebalancing Label and Global Context (LRLGC), as shown
in Fig. 2. It can overcome language priors and fully use
global context. It mainly consists of three modules. (1)
Loss Rebalancing Label Module: LRLGC uses the bias-
only model’s prediction output and ground-truth semantic
similarity to determine sample bias. The Loss Rebalancing
Label (LRL) is dynamically constructed based on the sam-
ple bias. It can assign lower weights to biased samples and
ensure a more balanced total VQA loss. (2) Global Context
Module: We propose the Global Context (GC) module to
utilize the global context effectively. It focuses on globally
valid information in images and questions and retains benefi-
cial context priors in biased samples. (3) Ensemble Training
Module: We use the ensemble training method [Cadene
et al., 2019, Liang et al., 2021, Clark et al., 2019] to merge
the debiased and global context module’s predicted outputs
into a single training. By training with an ensemble-based
approach, the beneficial effects of biased samples on the
model are preserved while their importance is reduced. Fol-
lowing [Cadene et al., 2019, Liang et al., 2021, Clark et al.,
2019], our approach only keeps the base VQA module.

This paper’s contributions are summarized as follows:

• We propose a novel model-agnostic generic framework
LRLGC that enables end-to-end training and can be
easily integrated into various VQA models.

• We propose LRL and Global Context Module, which
can effectively help the model overcome the language
priors while preserving the contextual information.

• Experimental results show that LRLGC achieves com-
petitive performance on the bias-sensitive VQA-CP
v2 (60.91%) without sacrificing performance on the
in-distribution VQA v2 (60.81%).

2 RELATE WORK

2.1 VISUAL QUESTION ANSWERING

VQA attempts to understand visual content and natural lan-
guage questions in order to predict appropriate answers [An-
tol et al., 2015]. With the increasing demand for multimodal
information understanding and the potential of VQA for its
powerful applications, VQA tasks have recently attracted a
lot of attention in recent years [Antol et al., 2015, Anderson
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et al., 2018, Yang et al., 2016]. VQA has made significant
progress and achieved good results in real images due to
the development of deep learning techniques and the pro-
posal of large-scale VQA datasets [Antol et al., 2015, Goyal
et al., 2017, Hudson and Manning, 2019]. Existing methods
include attention-based [Anderson et al., 2018, Gao et al.,
2018, Kim et al., 2018], graph-based [Huang et al., 2020,
Li et al., 2019, Khademi, 2020], and knowledge-based [Wu
et al., 2016, Zhang et al., 2020]. However, most existing
models remember language priors during training and ne-
glect visual information, resulting in poor performance on a
test set from a different domain.

2.2 OVERCOMING LANGUAGE PRIORS IN VQA

Many studies [Agrawal et al., 2018, Cadene et al., 2019,
Selvaraju et al., 2019, Zhu et al., 2020, Niu et al., 2021,
Ouyang et al., 2022, Clark et al., 2019, Chen et al., 2020]
have found that the majority of VQA models have serious
language priors, which greatly limit the ability of VQA mod-
els to understand and generalize multimodal information.
Although most existing models can achieve good results on
datasets with the same answer distribution for both training
and test sets, applying them to real-world scenarios is dif-
ficult due to the models’ fragile generalization capabilities.
In recent years, much work has been proposed to overcome
language priors in VQA. These methods can be divided into
three categories: annotation-based methods, data-balanced
methods, and ensemble-based methods.

Annotation-Based Methods. The annotation-based method
has shown its effectiveness in improving model general-
ization under external visual supervision. The importance
of image regions is increased by HINT [Selvaraju et al.,
2019] using the annotation of the VQA-HAT [Das et al.,
2017] dataset. SCR [Wu and Mooney, 2019] matches cor-
rect answers and influential image regions to human text
interpretation, thus reducing the sensitivity of incorrect an-
swers to influential objects. The annotation-based method
strengthens the visual foundation by introducing additional
human visual supervision. Annotation-based methods focus
on strengthening the visual foundation by introducing addi-
tional human visual supervision, but all of them require man-
ual annotation, which is very expensive. Furthermore, the
study [Shrestha et al., 2020] showed that the performance
improvement is not a result of visual basis improvement but
rather a regularization effect of preventing overfitting the
language priors.

Data-Balanced Methods. SSL-VQA [Zhu et al., 2020] in-
troduces a self-supervised framework to balance data bias by
replacing relevant question-image pairs with irrelevant ones
to generate additional data. CSS [Chen et al., 2020] gen-
erates counterfactual training samples by masking critical
objects in the images and words in the questions and as-
signing different ground true answers. Based on CSS [Chen

et al., 2020], CL-VQA [Liang et al., 2020] constructs pos-
itive and negative samples for counterfactual samples and
uses contrast learning for training. Augmenting the data to
balance dataset biases does not require additional manual
annotation. However, the additional data generated may in-
troduce new biases and make it challenging to ensure the
quality of the generated data.

Ensemble-Based Methods. The ensemble-based approach
attempts to include an additional branch to account for lan-
guage priors in order to mitigate their negative impact on the
model. AdvReg [Ramakrishnan et al., 2018] uses an adver-
sarial learning approach to prevent VQA models from cap-
turing language biases in their question encoding. RUBi [Ca-
dene et al., 2019] and LMH [Clark et al., 2019] are fusion-
based methods. This approach combines the two predicted
outputs of the VQA model and the question-only branch
together and serves as the final output of the VQA model in
the training phase. It effectively prevents the VQA model
from using bias for answer prediction. LPF [Liang et al.,
2021] and LP-Focal [Lao et al., 2021] use the bias model’s
output distribution to reduce the bias samples’ weight when
calculating the VQA loss.

However, the ensemble-based method also compromises the
ability of the model to learn context to some extent [Yang
et al., 2021]. To improve this problem, we propose our
LRLGC training strategy that can reduce language biases
while preserving the model’s ability to learn context.

3 METHOD

3.1 BASE VQA MODULE

We denote the VQA dataset with N training instances as
D = {Ii, Qi, ai}Ni=1, where Ii ∈ I, Qi ∈ Q and ai ∈ A
denote the ith instance image, question, and ground truth
answer. The visual encoder ev and the question encoder eq
encode Ii and Qi to generate the embedding vectors vi =
ev (Ii) and qi = eq (Qi), respectively. The goal of the VQA
model is to train a mapping function fV QA : I ×Q → RA

that produces a correct distribution across answer space A.
The VQA work can generally be considered a multi-class
classification task Anderson et al. [2018], Kim et al. [2018].
We train the VQA model using binary cross-entropy loss to
optimize its learning parameters:

PV QA (A|vi, qi) = Softmax (fV QA (A|vi, qi)) (1)

LV QA = − 1

N

N∑
i=1

tilog (σ (fV QA (A|vi, qi)))

+ (1− ti) log (1− σ (fV QA (A|vi, qi)))

(2)

where soft target score ti is denoted by ti ∈ [0, 1]
‖A‖ for ai,

and σ (·) denotes the sigmoid function.
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Figure 2: Overview of LRLGC training strategy. (A) An arbitrary VQA model. (B) A Bias Model captures language biases,
and the Loss Rebalancing Label Constructor dynamically generates Loss Rebalancing Labels (LRL) for each biased sample.
(C) A gated multi-headed self-attention mechanism captures global context. (D) Learning by the ensemble.

3.2 LOSS REBALANCING LABEL MODULE

In this part, we try to construct Loss Rebalancing Labels
(LRL) for each biased sample and use the LRL to train
the VQA model to reduce the negative impact of biased
samples, i.e., to reduce the negative bias of multimodal
features fV QA (A|vi, qi). Before that, we need to capture
the presence of language biases in the training samples.

Bias Model captures the biases. An intuitive method is
to train a unimodal model that accepts only one of the two
modes as input to capture the biases in the VQA dataset [Ca-
dene et al., 2019]. It is common practice to use the question-
only model as a branch of the VQA model [Cadene et al.,
2019, Liang et al., 2021, Lao et al., 2021], but this unimodal
feature contains only language modality information and
lacks the use of image information. Inspired by Zhu et al.
[2020], we swap the original image I with image I ′, which
is chosen randomly from the image set I. Considering the
vast size of I, the probability that (Q, I ′) are related is ex-
tremely remote, i.e., the input question and the image are
unrelated. A comparison of the effects of the question-only
model and the bias model is shown in Table 4. Specifically,
our bias model fBias : Rdv × Rdq → RA consists of a
question-only model fQO : Rdq → Rdq , which can be
formalized as:

q
′

i = fQO(qi), v
′

i = ev(I
′

i) (3)

fBias(A|v
′

i, q
′

i) = clfBias(mBias(v
′

i � q
′

i)) (4)

where � denotes element-wise product and mBias : Rdq ×

Rdv → Rdm denotes multi-layer perceptron (MLP), and
clfBias : Rdm → RA denotes the classifier. Formally,
binary cross-entropy loss is used to optimise the parameters
of the bias model and the question-only model:

LQ = − 1

N

N∑
i=1

tilog (σ (fQO (qi)))

+ (1− ti) log (1− σ (fQO (qi)))

(5)

LB = − 1

N

N∑
i=1

tilog (σ (fBias (A|v′i, q′i)))

+ (1− ti) log (1− σ (fBias (A|v′i, q′i)))

(6)

Filter Biased Samples (FBS). According to [Cadene et al.,
2019, Ouyang et al., 2022], we classify the training samples
as biased and unbiased. Among them, biased samples are
those in which the model relies on the questions alone to
predict the answer, while unbiased samples require images
and questions to infer the answer.

sim(fBias, fGT ) =
fBias

>fGT
‖fBias‖ ‖fGT ‖

(7)

where sim (·, ·) denotes a similarity score function, and a
higher value indicates a higher probability that the sample is
biased. In practice, we use the similarity function made by
cosine similarity. fBias and fGT denote the vectors for word
embedding using Glove 300, where fBias is the predicted
answer for the bias model and fGT is the ground true answer.
We assume that all candidate answers are independent of
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each other. Therefore they cannot be effectively modelled
by a recurrent neural network (e.g., GRU) similar to the
question sentence. For answers containing multiple words
(e.g., “knife and spoon”), we use the sum of these word
vectors to represent them.

The VQA dataset answer types are “yes/no”, “number” and
“other”. When the answer type is “other”, we consider a sam-
ple biased if fBias has a similar semantic space distance to
fGT . Unlike the “other” questions, the predicted answers to
the “yes/no” and “number” questions have a strong semantic
correlation with the underlying ground true answers, which
is not conducive to determining biased samples through sim-
ilarity in the semantic space. Therefore, the sample is biased
when the answer type is “y/n” or “num” and fBias equals
fGT .

biased sample ∈

{
sim(fBias, fGT ) > α, at is other
fBias = fGT , at is y/n or num

(8)
where at denotes the answer type and α is a hyperparameter.

Construct LRL and train the model using LRL. The bias
model captures the language biases, and we want to use the
language biases to construct LRLs for biased samples. LRL
helps the model to focus more on the training samples that
only make the language modal and cannot answer correctly.
If the training samples are unbiased, the LRLs are ground
true answers. In contrast, for the biased samples, we use LRL
as the label to train the model, thus reducing the harmful
effects of biased samples on the model.

LRL =

{
ti (1− PBias (A|v′i, q′i))

β
, biased

ti, unbiased
(9)

PBias(A|v
′

i, q
′

i) = Softmax(fBias(A|v
′

i, q
′

i)) (10)

where β is a hyperparameter. A larger β indicates a stronger
penalty for that biased sample. Using LRLs for train-
ing, we can obtain the model debiased predicted output
PV QA (LRL|vi, qi).

3.3 GLOBAL CONTEXT MODULE

Multi-head Self-Attention. We use a multi-headed self-
attention mechanism [Vaswani et al., 2017] to capture the
correlation between the image and the question.

Att(Q,K, V ) = Softmax(
QK>
√
dk

)V (11)

where Att (·, ·, ·) indicates self-attention mechanism.
Softmax (·) operation is performed for each row. Q, K
and V denote query, key and value respectively and

√
dk is

the channel number of Q and K.

hi = Att
(
XWQ

i , XW
K
i , XW

V
i

)
(12)

fMSA (X) = Concat (h1, ..., hH) +X (13)

where hi refers to the output of the ith head, and H denotes
the number of heads. Concat (·) represents concatenating
the results of multiple heads.

Gate Mechanism. We can make visual modality and text
modality interact and integrate better through fMSA (·).
However, the visual and textual modalities of fMSA (·)
projections may contain noisy or meaningless information.
We added a sigmoid-gating mechanism to pass information
adaptively and suppress useless details [Cadene et al., 2019].
It consists in multiplying the output of a newly added multi-
head self-attention layer by sigmoid (wg) before adding
it to the input representation from the residual connection,
where wg is a learnable scalar and is initialized at 0.

fContext (A|vi, qi) = y + σ (wg)

×fMSA (y) , where y = vi � qi
(14)

PContext (A|vi, qi) = Softmax (fContext (A|vi, qi))
(15)

This gating mechanism improves both the stability of the
training and the final performance. Note that here vi is not
calculated with qi for local attention, because we want to
have access to all information that may affect context fea-
tures fContext.

We convert sim(fBias, fGT ) to a binary vector bi as the label
for computing LC to learn context priors with language
biases, as shown below:

LC = − 1

N

N∑
i=1

bilog (σ (fContext (A|vi, qi)))

+ (1− bi) log (1− σ (fContext (A|vi, qi)))

(16)

bi =

{
1, sim(fBias, fGT ) ≥ γ
0, sim(fBias, fGT ) < γ

(17)

Based on empirical values, we fixed γ to 0.1.

3.4 ENSEMBLE TRAINING MODULE

To combine the debiased prediction output with con-
textual information, inspired by [Clark et al., 2019],
we trained an ensemble of fV QA (LRL|vi, qi) and
fContext (A|vi, qi) and computed a new prediction distribu-
tion PEnsemble (A|vi, qi).

fE (A|vi, qi) = log (fV QA (LRL|vi, qi))
+log (fContext (A|vi, qi))

(18)

PEnsemble (A|vi, qi) = Softmax (fE (A|vi, qi)) (19)
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A binary cross-entropy loss can be used to optimize the
parameters of the LE :

LE = − 1

N

N∑
i=1

tilog (σ (fE (A|vi, qi)))

+ (1− ti) log (1− σ (fE (A|vi, qi)))

(20)

Note that all other modules are involved in the training stage.
All extra modules are removed during the inference stage,
and we use only fV QA (·) to make accurate predictions.

Finally, the total loss function can be defined as follows:

L = LV QA + LQ + LB + LC + LE (21)

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method using standard evaluation met-
rics Antol et al. [2015] on the most widely used out-of-
distribution benchmark VQA-CP v2 Agrawal et al. [2018]
test set and the standards-based in-distribution VQA v2
Goyal et al. [2017] validation set. The VQA-CP v2 training
and test sets contain around 121k and 98k images and 245k
and 220k questions, respectively.

4.2 BASELINES

To demonstrate the effectiveness of our LRLGC, we used
different backbones, including UpDn [Anderson et al.,
2018], SAN [Yang et al., 2016], BAN [Kim et al., 2018].
None of these three models is designed to mitigate language
priors. In addition, several different methods are compared
to our approach: (1) annotation-based methods: AttAlig [Sel-
varaju et al., 2019], HINT [Selvaraju et al., 2019], SCR [Wu
and Mooney, 2019]. (2) data-balanced methods: Unshuf-
fling[Teney et al., 2021], RandImg [Teney et al., 2020b],
CSS [Chen et al., 2020], CL-VQA [Liang et al., 2020],
SSL-VQA [Zhu et al., 2020]. (3) ensemble-based meth-
ods: AdvReg[Ramakrishnan et al., 2018], RUBi [Cadene
et al., 2019], LMH [Clark et al., 2019], CF-VQA [Niu et al.,
2021],GGE-DQ [Han et al., 2021], LPF [Liang et al., 2021],
Loss-Rescaling [Guo et al., 2022], LP-Focal [Lao et al.,
2021], CCB-VQA [Yang et al., 2021], SBS [Ouyang et al.,
2022].

4.3 IMPLEMENTATION DETAILS

We use pre-trained Faster-RCNN to extract object features.
Specifically, we extract 36 object features with dimensions
of 2048 for each image. All questions are padded to the
same length 14. Each word vector is embedded with 300-
dimensional Glove. Then, they are fed into a single-level

GRU to produce a 1280-dimensional representation of the
sentence level. Inspired by Zhu et al. [2020], we set a Batch
Normalization layer in front of each classifier and use a
binary cross-entropy loss to train all branches during train-
ing.The Adam optimizer is used with an initial learning rate
of 0.001. After ten epochs, we halve the learning rate every
five epochs. The batch size is set to 512, and we train our
LRLGC for 30 epochs. The α = 0.5 and β = 4 settings
are used in all tests in this work. In later sections, we will
also study the hyperparameter setting. Besides, we set the
Global Context Module to use one layer and 64 headers.

4.4 PERFORMANCE COMPARISON

On the VQA-CP v2 test set and the VQA v2 validation set,
our LRLGC and state-of-the-art approaches are compared,
and the experimental outcomes are presented in Table 1.
The following conclusions can be drawn from these results.

On the VQA-CP v2 test set, (1) data-balanced and ensemble-
based methods perform similarly (59.18% vs. 59.57%), sig-
nificantly outperforming HINT Selvaraju et al. [2019] and
SCR Wu and Mooney [2019] that require additional manual
annotation. Although data-balanced methods perform well,
they change the training prior, making it difficult to tell if the
VQA model is still driven by a memory prior. (2) LRLGC
outperforms all compared methods, achieving an advanced
performance of 60.91%. Specifically, LRLGC outperforms
LMH Clark et al. [2019], CL-VQA Liang et al. [2020],
and SBS Ouyang et al. [2022] by approximately 9%,1.7%,
and 1.3%, respectively. Results showed LRLGC improved
(+21.17%) compared to UpDn Anderson et al. [2018]. No-
tably, our method doesn’t use additional data. (3) For the
“Other” questions, LRLGC is consistent with SSL-VQA Zhu
et al. [2020] and outperforms the other methods. For the
“Yes/No” questions, LRLGC is second to CF-VQA Niu et al.
[2021]. These results further validate the effectiveness of
our LRLGC training strategy.

The VQA v2 results validate the debiasing strategy on the
in-distribution dataset. On VQA v2, most ensemble-based
methods do worse than UpDn Anderson et al. [2018]. Al-
though LRLGC performs less well than UpDn Anderson
et al. [2018], it still outperforms the majority of ensemble-
based models, including LMH Clark et al. [2019], RUBi
Cadene et al. [2019], and LPF Liang et al. [2021]. This sug-
gests that LRLGC has some potential to address the overcor-
rection issue. To avoid significant performance degradation,
LRLGC can reduce most VQA CP v2 statistical priors while
retaining most VQA v2 global information.

From the combined results of the two datasets, (1) our
method can effectively reduce the performance gap on both
datasets to 0.1%. (2) Among all the compared methods, our
LRLGC has the highest average score of 60.86% on both
datasets. All these results further show that our LRLGC
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Table 1: Comparison results for the VQA-CP v2 test split and the VQA v2 validation split. The highest score is displayed in
bold, while the second-highest score is underlined. All models below use UpDn [Antol et al., 2015] as the backbone. I –
IV denote plain methods, methods based on strengthening visual information (annotation-based), methods based on data
augmentation (data-balanced), and methods based on training strategies (ensemble-based), respectively.

Case Model
VQA-CP v2 test VQA v2 val Comparison

Overall Yes/No Number Other Overall Yes/No Number Other Gap↓ Mean

I
SAN [Yang et al., 2016] 24.96 38.35 11.10 21.74 52.41 70.06 39.28 47.84 27.45 38.69
BAN [Kim et al., 2018] 37.03 41.55 12.43 41.40 63.90 81.42 45.18 55.54 26.87 50.47

UpDn [Anderson et al., 2018] 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 23.74 51.61

II
AttAlign [Selvaraju et al., 2019] 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22 23.87 51.31

HINT [Selvaraju et al., 2019] 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56 16.65 55.06
SCR [Wu and Mooney, 2019] 49.45 72.36 10.93 48.02 62.20 78.80 41.60 54.50 12.75 55.83

III

Unshuffling [Teney et al., 2021] 42.39 47.72 14.43 47.24 61.08 78.32 42.16 52.71 18.69 51.74
RandImg [Teney et al., 2020b] 55.37 83.89 41.60 44.20 57.24 76.53 33.87 48.57 1.87 56.31

CSS [Chen et al., 2020] 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 0.96 59.43
CL-VQA [Liang et al., 2020] 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71 1.89 58.24
SSL-VQA [Zhu et al., 2020] 57.59 86.53 29.87 50.03 63.73 - - - 6.14 60.66

IV

AdvReg [Ramakrishnan et al., 2018] 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 21.58 51.96
RUBi [Cadene et al., 2019] 45.42 63.03 11.91 44.33 58.19 63.04 41.00 54.43 12.77 51.81
LMH [Clark et al., 2019] 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69 4.34 54.18

CF-VQA [Niu et al., 2021] 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30 9.99 58.55
GGE-DQ [Han et al., 2021] 57.32 87.04 27.75 49.59 59.11 73.27 39.99 54.39 1.79 58.22

LPF [Liang et al., 2021] 55.34 88.61 23.78 46.57 55.01 64.87 37.45 52.08 0.33 55.18
Loss-Rescaling [Guo et al., 2022] 53.26 72.82 48.00 44.46 56.81 68.21 36.37 52.29 3.55 55.04

LP-Focal [Lao et al., 2021] 58.45 88.34 34.67 49.32 62.45 - - - 4.00 60.45
CCB-VQA [Yang et al., 2021] 59.12 89.12 51.04 45.62 59.17 77.28 33.71 52.14 0.05 59.15

SBS [Ouyang et al., 2022] 59.57 87.44 52.96 46.79 61.97 78.80 42.17 54.41 2.40 60.77

LRLGC (Ours) 60.91 89.95 45.13 50.03 60.81 77.65 39.25 53.71 0.10 60.86

not only decreases training bias but also enhances model
robustness.

4.5 ABLATION STUDIES

Effect of different backbones. To demonstrate that our
LRLGC works effectively on a variety of VQA models, we
built LRLGC frameworks on SAN [Yang et al., 2016], BAN
[Kim et al., 2018], and UpDn [Anderson et al., 2018] and
ran experiments on the VQA-CP v2. From the results in
Table 2, LRLGC significantly improves the model’s accu-
racy regardless of the backbone, indicating that LRLGC is
model-agnostic.

Performance on different scales of the dataset. We ran
experiments on VQA-CP v2 with varying training sizes to
further prove our method’s superiority. As shown in Table
3, the percentage results of the training split variables show
that our LRLGC improves the three benchmark models by
18.8% on average. Even with less training data (20% and
40%), LRLGC can overcome the language priors and exploit
the global context to improve overall average performance
(12.7% and 17.4%).

Each LRLGC module’s effect on the model performance.
We conducted an ablation study on the VQA-CP v2 to
demonstrate the effectiveness of each component in our

LRLGC. The results are shown in Table 4. The following
findings can be drawn from these results: (1) LRL can help
the model overcome the language priors (rows 1-3), reduc-
ing the proportion of biased samples in the total loss. (2)
Including random images in the bias model is better than
question-only (rows 2-3), proving the importance of the vi-
sual modality in capturing language priors. (3) LRL+FBS
has essentially no effect on performance (rows 2-5), demon-
strating that unbiased samples need not be overly penalized.
(4) Global context can help the model perform better (rows
4-7). In particular, FBS+Context works better (rows 6-9),
indicating that biased samples need more context. Over-
all, these results are evidence of the effectiveness of each
component of our LRLGC in the improvement of model
performance.

Effect of hyperparameters α and β. As Table 5 shows, we
tested different combinations of α and β on the VQA-CP v2
split. α is used to control the judgment threshold of biased
samples, and β indicates the strength of penalizing biased
samples. An appropriate ratio between α and β will lead
to better performance of LRLGC. From the experimental
results, the highest performance is the combination of α =
0.5 and β = 4.
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Table 2: The effect of different backbones on model perfor-
mance on the VQA-CP v2 test set.

Model Yes/No Number Other Overall Gap↑
SAN† [Yang et al., 2016] 40.86 13.43 46.98 40.08

+18.48SAN+LRLGC 88.03 42.05 47.65 58.56

BAN† [Kim et al., 2018] 43.53 13.60 46.35 40.53
+18.66BAN+LRLGC 89.85 42.74 47.64 59.19

UpDn† [Anderson et al., 2018] 43.32 13.41 48.32 41.54
+19.37UpDn+LRLGC 89.95 45.13 50.03 60.91

Table 3: Results of the LRLGC on the VQA-CP v2 test set
with different proportions of training split. † denotes the
model we have re-implemented.

Model
Proportion of Training Set

20% 40% 60% 80% 100%

SAN† [Yang et al., 2016] 33.15 36.62 39.11 39.71 40.08
SAN+LRLGC 43.80 53.19 56.67 57.13 58.56

BAN† [Kim et al., 2018] 33.05 37.28 38.52 40.00 40.53
BAN+LRLGC 42.66 54.16 56.91 58.65 59.19

UpDn† [Anderson et al., 2018] 36.37 38.72 39.91 40.53 41.54
UpDn+LRLGC 54.10 57.57 59.02 59.96 60.91

Table 4: Each LRLGC module’s effect on the model perfor-
mance. UpDn† as the backbone. And q denotes question-
only, qv denotes question and random image.

LRL FBS GC VQA-CP v2 test (%)

1 41.54
2 q 57.83
3 qv 58.90
4 q X 58.17
5 qv X 58.77
6 q X 59.43
7 qv X 59.81
8 q X X 59.84
9 qv X X 60.91

Table 5: Results for various α and β combinations.

Model α vs. β VQA-CP v2 test (%)

LRLGC

0.1 : 4 59.58
0.3 : 4 60.08
0.5 : 4 60.91
0.7 : 4 60.28
0.5 : 3 60.65
0.5 : 5 60.08

Table 6: Comparison of LRLGC and other re-weighting
methods

Model Adaptive q v FBS GC VQA-CP v2 test (%)

Loss-Rescaling [Guo et al., 2022] X 53.26
LPF [Liang et al., 2021] X X 55.34

LP-Focal [Lao et al., 2021] X X 58.45
LRLGC (Ours) X X X X X 60.91

4.6 LRLGC VS. OTHER RE-WEIGHTING
METHODS

In this part, we further compare our LRLGC with other
re-weighting methods, and the results are shown in Table 6.
Loss-Rescaling [Guo et al., 2022] takes full advantage of
the spurious statistical relationship between question types
and answers, from which bias values are calculated for each
sample. However, the bias values are pre-calculated based
on the dataset and are not adaptively adjusted during training.
Both LPF [Liang et al., 2021] and LP-Focal [Lao et al.,
2021] use question-only branches to dynamically capture
language biases during training and are able to adaptively
adjust loss values for each sample. However, LPF and LP-
Focal lack the filtering of biased samples, which can easily
lead to over-correction of unbiased samples and degrade
the performance in in-distribution datasets. In addition, the
introduction of the visual modality captures the bias in the
sample more adequately than language modality alone (rows
2-3 of Table 4). Moreover, our LRLGC incorporates global
context and, through ensemble-based training, can minimize
the negative effects of biased samples on the model while
retaining their useful information.

4.7 QUALITATIVE ANALYSIS

We provide qualitative results from the VQA-CP v2 in Fig.
3 to demonstrate our LRLGC’s validity further. The predic-
tion results are based on UpDn and LRLGC. These exam-
ples cover “yes/no,” “num,” and “other”. We visualize the
model’s top 3 important regions, output attention weights,
and show the top 4 answers. For the question “What color
is the mouse pad?”, LRLGC accurately located the key vi-
sual object and answered. For the “yes/no” questions, “yes”
has relatively more priors than other answers. For example,
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UpDn LRLGC
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Figure 3: Qualitative comparison results of UpDn [Anderson
et al., 2018] and LRLGC on VQA-CP v2 test set.

“Does this horse have a saddle on its back?” the baseline
predicted answer is “yes” but it does not locate the critical
visual object (there is no “look” image), indicating language
priors interference. Even for counting questions like “How
many planes are there?” that require visual understanding,
LRLGC gives the right answer. By using our LRLGC, the
VQA model can avoid overfitting of data biases and show
better results on out-of-distribution datasets.

5 CONCLUSION

This paper proposes a general training strategy called
LRLGC to address the language priors problem in VQA.
LRLGC applies dynamic weighting to each biased sample
and integrates global context to guide the model in answer-
ing questions. Experimental results show that our method
achieves promising results on both VQA-CP v2 and VQA
v2. In the future, we plan to improve our method and use it
for other multimodal deep-learning tasks with single-peak
bias.
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