
Scaling Integer Arithmetic in Probabilistic Programs
(Supplementary Material)

William X. Cao1 Poorva Garg∗1 Ryan Tjoa∗2 Steven Holtzen3 Todd Millstein1 Guy Van den Broeck1

1Department of Computer Science, University of California, Los Angeles, California, USA
2 Department of Computer Science, University of Washington, Seattle, Washington, USA

3Department of Computer Science, Northeastern University, Boston, Massachussetts, USA

A EXPERIMENTAL DETAILS

All experiments were run on a server with a 2.20GHz CPU and 504GB RAM. WebPPL experiments were run on
WebPPL v0.9.15; Psi experiments were run on Psi version ec2cfc14a62a168afe7ce1d7269b92cf2882b830.
Dice.jl experiments were run using the code available at https://github.com/Juice-jl/Dice.jl/tree/
arithmetic. The implementations of each model run are available at the same repository.

B BENCHMARK MODELS

We provide a small description of our benchmarks in this section with details of their sources. The code implementations of
all models are available at the repository https://github.com/Juice-jl/Dice.jl/tree/arithmetic.

1. book: A model of flipping towards a target page in a book adapted from the Psi test directory [Gehr et al., 2022].

2. tugofwar: Adapted from a traditional tug-of-war example [Huang et al., 2021], with values made discrete.

3. caesar: The caesar-cipher example from Dice [Holtzen et al., 2020]. with different number of characters being observed.

4. ranking: A model for learning a ranking system, adapted from Kisa et al. [2014].

5. radar1: A model of radar reception, adapted from a continuous model from Psi’s [Gehr et al., 2016] benchmark suite.

6. floydwarshall: An implementation of the Floyd-Warshall algorithm [Floyd, 1962] on a graph with edges of random
weight.

7. linear-extensions: A model counting linear extensions [Dittmer and Pak, 2018] where we observe a partial order and
get an output distribution over all matching total orders.

8. triangle: A model categorizing a triangle of random side lengths, adapted from the Psi test directory [Gehr et al., 2022].

9. gcd: A model checking if two random numbers are coprime implementing Euclid’s algorithm [Lehmer, 1938].

10. disease: A discrete disease model taken from existing works [Laurel and Misailovic, 2020].

11. luhn: A probabilistic model of student IDs leveraging the Luhn algorithm [Luhn, 1960].

C ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results supplementing those in the main paper.

BDD size serves as a proxy for how well knowledge compilation can exploit structure: the more compact the BDD, the
smaller the representation of our function, and the faster weighted model counting can be executed. Figure 1 compares the
resultant BDD size for various models when compiled in Dice.jl using a binary or one-hot encoding. We can see that in
almost all cases the binary encoding results in a smaller BDD, in some cases much smaller. Note that these models are those
for which the one-hot encoding did not timeout; it is likely for those models that timed out that the true compiled BDD size
will end up being much larger than the binary encoded BDD size.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

https://github.com/Juice-jl/Dice.jl/tree/arithmetic
https://github.com/Juice-jl/Dice.jl/tree/arithmetic
https://github.com/Juice-jl/Dice.jl/tree/arithmetic

Table 1: BDD sizes for probabilistic models using a binary vs one-hot encoding

Benchmarks binary one-hot

tugofwar 2400 2821

caesar-small 1304 3879
caesar-medium 6344 17879
caesar-large 12644 35379

ranking-small 691 1146
ranking-medium 6218 8297
ranking-large 11491 15680

radar1 181 332

floydwarshall-small 10 10
floydwarshall-medium 341 237

linear extensions-small 29 53
linear extensions-medium 133 257
linear extensions-large 997 1538

triangle-small 10273 150089
triangle-medium 40419 1156785

luhn-small 518 1010
luhn-medium 2899 7361

D BDD SIZES OF INTEGER DISTRIBUTION ENCODINGS (PROPOSITION 1)

D.1 NOTATION AND DEFINITIONS

A b-rooted BDD B with m decision variables computes some function {0, 1}m → {0, 1}b at its roots.

Let the values of the roots of B, given truth assignments to decision variables x⃗, be denoted B1(x⃗), . . . , Bb(x⃗). Let
the variable order of B match the order of the components of x⃗. A BDD can thus be specified by a tuple of functions
({0, 1}m → {0, 1})b. Let B(x⃗) denote this tuple, i.e. (B1(x⃗), . . . , Bb(x⃗)).

As b-length bitvectors are isomorphic to b-bit unsigned machine integers, we can also specify a BDD by a function from
assignments to b-bit unsigned integers. Given f : {0, 1}m → {0, . . . , 2b − 1}, let JfK denote the BDD defined such that
JfKi(x⃗) = LSBi(f(x⃗)), where LSBi(j) denotes the ith least significant bit of j.

Let p⃗ ∈ [0, 1]m assign a probability to each decision variable. For each pi, let Xi denote an independent Bernoulli(pi). We
can construct a random variable for the result of B with B(X⃗) (passing in Xi for each xi). Note the indexing of the decision
variable xi, the corresponding probability pi, and the corresponding random variable Xi may vary to make notation clearer:
for CATEG_INT, these will be zero-indexed; for BITWISE_INT, these will be indexed by bit strings.

Let Db denote a distribution over b-length bit vectors. Let v⋆ be an arbitrary random variable sampled from Db, interpreted
as an unsigned integer. Denote the bits of v⋆, from least to most significant, as v⋆1 , . . . , v

⋆
b .

Definition 1 (Integer distribution encoding). A BDD and probability assignments (B, p⃗) encode a distribution Db if
B(X⃗) ∼ Db.

D.2 CATEGORICAL ENCODING OF INTEGER DISTRIBUTIONS

Definition 2. Define encodeCATEG(Db) = (JgK , p⃗) such that pi = Pr(v⋆ = i|v⋆ ≥ i), 0 ≤ i ≤ 2b − 2, and that g is
defined as follows.

g(x⃗) =



0 x0

1 ¬x0 ∧ x1

2 ¬x0 ∧ ¬x1 ∧ x2

. . .

j xj ∧
j−1∧
i=0

¬xi and 0 ≤ j ≤ 2b − 2

. . .

2b − 1
2b−2∧
i=0

¬xi

We could also write this as the following, which is also how it would likely be implemented in a probabilistic programming
language.

g(x⃗) =



0 if x0

1 else if x1

2 else if x2

. . .

2b − 2 else if x2b−2

2b − 1 else

Lemma 1. If Img(v) ⊆ N0, then
∏x−1

i=0 Pr(v ̸= i|v ≥ i) = Pr(v ≥ x). Proof omitted; proceed by induction.

Lemma 2. For any distribution Db over unsigned integers, encodeCATEG(Db) encodes Db.

Proof. Let encodeCATEG(Db) = (B, p⃗). We prove that for all 0 ≤ j ≤ 2b − 1, Pr(g(X⃗) = j) = Pr(v⋆ = j).

Case 1: 0 ≤ j ≤ 2b − 2.

Pr(g(X⃗) = j) = Pr

(
Xj ∧

j−1∧
i=0

¬Xi

)

= Pr(Xj)

j−1∏
i=0

Pr(¬Xi) (Independence)

= Pr(v⋆ = j|v⋆ ≥ j)

j−1∏
i=0

Pr(v⋆ ̸= i | v⋆ ≥ i) (As Pr(Xi) = pi)

= Pr(v⋆ = j|v⋆ ≥ j) Pr(v⋆ ≥ j) (Lemma 1)
= Pr(v⋆ = j)

Case 2: j = 2b − 1.

Pr(g(X⃗) = 2b − 1) = Pr

2b−2∧
i=0

¬Xi


=

2b−2∏
i=0

Pr(¬Xi) (Independence)

=

2b−2∏
i=0

Pr(v⋆ ̸= i|v⋆ ≥ i) (As Pr(Xi) = pi)

= Pr(v⋆ ≥ 2b − 1) (Lemma 1)

= Pr(v⋆ = 2b − 1)

D.3 BDD SIZE OF THE CATEG_INT ENCODING

We prove the first half of Proposition 1.

Proposition 1 (first half). A discrete distribution over the integers {0, 1 . . . , 2b − 1} compiles to a BDD of size Θ(b2b)
when represented using CATEG_INT (Algorithm 1).

Lemma 3. Let encodeCATEG(Db) = (JgK , P). JgK exactly matches a BDD C with the following reduced structure.

For 1 ≤ i ≤ b, C has nodes Ni,0, Ni,1, . . . , Ni,2b−2i−1−1, at the levels of decision variables x0, x1, . . . , x2b−2i−1−1,
respectively.

low(Ni,j) = if j < 2b − 2i−1 − 1 then Ni,j+1 else 1

high(Ni,j) = LSBi(j)

Let the roots of C be placed such that Ci(x⃗) matches Ni,0 given assignments to decision variables x⃗.

As an example, the BDD for b = 2 follows (terminal nodes visually duplicated for clarity).

C1

N1,0

N1,1

N1,2

T F

C2

N2,0

N2,1

T F

Proof. We will show for all x⃗, Ci(x⃗) = LSBi(g(x⃗)).

Let Si,j(x⃗) denote the state of Ci at the level of xj , given an assignment to x⃗. This is either a node at level xj , or possibly
one at a lower level if there was a low/high edge that skipped levels. See the following BDD and corresponding states as an
example.

S1,0(x0, x1, x2) = N1,1

S1,1(0, x1, x2) = N1,2

S1,1(1, x1, x2) = 0

S1,2(0, 0, x2) = N1,2

S1,2(0, 1, x2) = 1

S1,2(1, x1, x2) = 0

C1

N1,0

N1,1

N1,2

T F

Let P (t) be the statement, Si,t = if g(x⃗) < t ∨ t > 2b − 2i−1 − 1 then LSBi(g(x⃗)) else Ni,t.

P (1) holds as the initial node of all Ci(x⃗) is always Ni,0.

Assume P (t) for an arbitrary t ≤ 2b − 1.

Consider going to the next node. If we are at a terminal node, then the state stays the same, otherwise we go to the low or
high edge based on xt. Thus, to advance state, we replace Ni,t with if xt then high(Ni,t) else low(Ni,t).

Si,t+1 = if g(x⃗) < t ∨ t > 2b − 2i−1 − 1

then LSBi(g(x⃗))

else (if xt then high(Ni,t) else low(Ni,t))

We substitute for high(Ni,t) and low(Ni,t).

Si,t+1 = if g(x⃗) < t ∨ t > 2b − 2i−1 − 1

then LSBi(g(x⃗))

else
(
if xt then LSBi(t) else

(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

))
xt ∧ ¬(g(x⃗) < t) implies g(x⃗) = t.

Si,t+1 = if g(x⃗) < t ∨ t > 2b − 2i−1 − 1

then LSBi(g(x⃗))

else
(
if xt then LSBi(g(x⃗)) else

(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

))
Two branches are now equivalent (LSBi(g(x⃗))) and can be combined.

Si,t+1 = if g(x⃗) < t ∨ t > 2b − 2i−1 − 1 ∨ xt

then LSBi(g(x⃗))

else
(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

)
g(x⃗) < t ∨ xt is equivalent to g(x⃗) < t+ 1.

Si,t+1 = if g(x⃗) < t+ 1 ∨ t > 2b − 2i−1 − 1

then LSBi(g(x⃗))

else
(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

)
In the outer else, t ≤ 2b − 2i−1 − 1 (by the condition). In the inner else, t is also ≥ 2b − 2i−1 − 1.

Si,t+1 = if g(x⃗) < t+ 1 ∨ t > 2b − 2i−1 − 1

then LSBi(g(x⃗))

else
(
if t = 2b − 2i−1 − 1 then Ni,t+1 else 1

)

In the inner else, g(x⃗) > t by the outer condition and t = 2b−2i−1−1 by the inner condition; together, g(x⃗) > 2b−2i−1−1.
For all such g(x⃗), LSBi(g(x⃗)) = 1 (as 2b − 1− 2i−1) is the largest number at most 2b − 1 with the ith bit set to 0). Thus,
we can merge two more branches.

Si,t+1 = if g(x⃗) < t+ 1 ∨ t+ 1 > 2b − 2i−1 − 1

then LSBi(g(x⃗))

else Ni,t+1

Thus P (t) → P (t+ 1) and thus P (t) holds for all 1 ≤ t ≤ 2b − 1.

Consider P (2b − 1).

Si,2b−1 = if g(x⃗) < 2b − 1 ∨ 2b − 1 > 2b − 2i−1 − 1 then LSBi(g(x⃗)) else Ni,2b

Si,2b−1 = LSBi(g(x⃗))

Therefore JgK and C are equivalent.

Proposition 1 (first half).

Proof. Let encodeCATEG(Db) = (B, p⃗). B has b2b − 2b + 1 decision nodes.

It follows directly from Lemma 3 that
∑n

i=1 2
b − 2i−1 = b2b − 2b + 1 nodes are needed for B as well.

D.4 BITWISE ENCODING OF INTEGER DISTRIBUTIONS

Let si denote the ith bit of a 1-indexed bit string; for example, 00103 = 1. Let |s| denote the length of a bit string. Let ⌢

denote concatenation for bits and bit strings.

Definition 3. Define encodeBITWISE_INT(Db) = (B, p⃗) such that:

For each bit string s, 0 ≤ |s| < b, there is a decision variable xs with truth probability ps = Pr(v⋆|s|+1 |
|s|∧
i=1

v⋆i = si).

Intuitively, the bits are chosen left-to-right, and each decision variable chooses the next bit given a bit string of past choices.
Consider the following examples, where the empty bit string is denoted as ε.

Pr(xε) = Pr(v⋆1)

Pr(x0) = Pr(v⋆2 | ¬v⋆1)
Pr(x1) = Pr(v⋆2 | v⋆1)

Pr(x0100) = Pr(v⋆5 | ¬v⋆1 ∧ v⋆2 ∧ ¬v⋆3 ∧ ¬v⋆4)

We specify Bi(x⃗) for 1 ≤ i ≤ b:

Bi(x⃗) = xB1(x⃗)⌢B2(x⃗)⌢...⌢Bi−1(x⃗)

For example, B1(x⃗) = xε, B2(x⃗) = xB1(x⃗), B3(x⃗) = xB1(x⃗)⌢B2(x⃗), and so on. Note that the specification above is
equivalent to the following, which is a more natural representation in probabilistic programming, and an “unrolled" version
of Algorithm 2.

B1(x⃗) = xε

B2(x⃗) = if xε then x1 else x0

B3(x⃗) = if xε then (if x1 then x11 else x10) else (if x0 then x01 else x00)

...
Bn(x⃗) = . . .

Lemma 4. For any distribution Db over unsigned integers, encodeBITWISE_INT(Db) encodes Db.

Proof. We prove that for any possible assignment to bits a⃗ ∈ {0, 1}b, Pr(B(X⃗) = a⃗) = Pr(v⃗⋆ = a⃗).

Pr(B(X⃗) = a⃗) =

b∏
i=1

Pr(Bi(X⃗)) = ai |
i−1∧
j=1

Bj(X⃗) = aj) (Chain rule of probability)

=

b∏
i=1

Pr(XB1(X⃗)⌢...⌢Bi−1(X⃗) = ai |
i−1∧
j=1

Bj(X⃗) = aj) (Bit specification)

=

b∏
i=1

Pr(Xa⌢
1 ...⌢ai−1 = ai |

i−1∧
j=1

Bj(X⃗) = aj) (Condition)

=

b∏
i=1

Pr(Xa⌢
1 ...⌢ai−1

= ai |
i−1∧
j=1

XB(X⃗)⌢1 ...⌢Bj−1(X⃗) = aj) (Bit specification)

=

b∏
i=1

Pr(Xa⌢
1 ...⌢ai−1 = ai) (Independence)

=

b∏
i=1

Pr(b⋆i = ai |
i−1∧
j=1

b⋆j = aj) (As Pr(Xs) = ps)

= Pr(b⃗⋆ = a⃗) (Chain rule of probability)

D.5 BDD SIZE OF THE BITWISE_INT ENCODING

We prove the second half of Proposition 1.

Proposition 1 (second half). A discrete distribution over the integers {0, 1 . . . , 2b − 1} compiles to a BDD of size Θ(2b)
when represented using BITWISE_INT(Algorithm 2).

Lemma 5. Let encodeBITWISE_INT(Db) = (B,P).

B exactly matches a BDD C with the following reduced structure.

For all 1 ≤ i ≤ b, for all bit strings s of length less than i, let C have a node Ni,s corresponding to decision variable xs.

low(Ni,s) = if |s| = i− 1 then 0 else Ni,s⌢0

high(Ni,s) = if |s| = i− 1 then 1 else Ni,s⌢1

Let the roots of C be placed such that Ci(x⃗) matches Ni,ε given assignments to decision variables x⃗.

Any ordering of decision variables is valid as long is they are ordered by increasing bit string lengths. We arbitrarily choose
to order bit strings of the same length by their lexicographical order.

As an example, the BDD for b = 2 follows (terminal nodes visually duplicated for clarity).

C1

N1,ε

TF

C2

N2,ε

N2,0 N2,1

TF

Proof. Let Si,j(x⃗) denote the state of Ci at the level of the first decision variable whose bit string is of length j. See the
following BDD and corresponding states as an example.

S2,0(xε, x0, x1) = N2,ε

S2,1(0, x0, x1) = N2,0

S2,1(1, x0, x1) = N2,1

S2,2(0, x0, x1) = x0

S2,2(1, x0, x1) = x1

C2

N2,ε

N2,0 N2,1

TF

Let P (t) be the statement, Si,t(x⃗) = if t ≥ i then Bi(x⃗) else Ni,B1(x⃗)⌢...⌢Bt(x⃗).

P (0) holds as there is no bit index greater than or equal to 0 and Si,0(x⃗) = Ni,ε by the placement of the roots.

Assume P (t), which specifies Si,t. Consider advancing to the next node in the BDD based on the assignment to decision
variables (which does nothing if we are already at a terminal node):

next(Si,t) = if t ≥ i

then Bi(x⃗)

else
(
if xB1(x⃗)⌢...⌢Bt(x⃗) then high

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

)
else low

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

))
We replace xB1(x⃗)⌢...⌢Bt(x⃗) with Bt+1(x⃗).

next(Si,t) = if t ≥ i

then Bi(x⃗)

else
(
if Bt+1(x⃗) then high

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

)
else low

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

))
We replace the high and low edges by the definition:

next(Si,t) = if t ≥ i

then Bi(x⃗)

else (if Bt+1(x⃗)

then
(
if t = i− 1 then 1 else Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢1

)
else

(
if t = i− 1 then 0 else Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢0

)
)

We rearrange the if conditions:

next(Si,t) = if t ≥ i

then Bi(x⃗)

else (if t = i− 1

then (if Bt+1(x⃗) then 1 else 0)

else
(
if Bt+1(x⃗) then Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢1 else Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢0

)
)

next(Si,t) = if t ≥ i

then Bi(x⃗)

else (if t = i− 1

then Bt+1(x⃗)

else Ni,B1(x⃗)⌢...⌢Bt+1(x⃗))

The first two then branches collapse:

next(Si,t) = if t+ 1 ≥ i

then Bi(x⃗)

else Ni,B1(x⃗)⌢...⌢Bt+1(x⃗)

As the only node we now reach has bit string length t+ 1, next(Si,t) = Si,t+1. Therefore P (t) → P (t+ 1).

Consider P (b− 1): Si,b−1 = if b− 1 ≥ i then Bi(x⃗) else Ni,B1(x⃗)⌢...⌢Bb−1(x⃗).

For all i ∈ {1, . . . , b − 1}, we see that the root labeled Ci(x⃗) reaches the value Bi(x⃗). For i = b, the
state reaches Nn,B1(x⃗)⌢...⌢Bb−1(x⃗), whose high and low edges are 1 and 0, respectively. The last step goes to(
if xb⌢1 ...⌢bb−1

then 1 else 0
)
= Bb(x⃗). Therefore B and C are equivalent.

Proposition 1 (second half).

Proof. Let encodeBITWISE_INT(Db) = (B, p⃗). B has 2b+1 − b− 2 decision nodes.

It directly follows from Lemma 5 that B requires the following number of nodes.

b∑
i=1

(# of bit strings of length less than i) = 2n+1 − n− 2

D.6 ENCODING UNIFORM INTEGER DISTRIBUTIONS

Let Un denote the discrete uniform distribution over the integers {0, 1, ..., n− 1}

Un(i) =

{
1
n i ∈ 0, 1, ..., n− 1

0 otherwise

Lemma 6. For all non-negative integers b and i such that 0 < i < b, xi ∈ {0, 1}

U2b(< xb, xb−1, . . . , x1 >) =
1

2
· U2b−1(< xb−1, . . . , x1 >)

Proof. Let a =< xb, xb−1, . . . , x1 >, then

U2b(a) =
1

2b
=

1

2
· 1

2b−1
=

1

2
· U2b−1(a− xb2

b−1) =
1

2
· U2b−1(< xb−1, . . . , x1 >)

Lemma 7. For integers b and i such that 0 < i < b, xi ∈ {0, 1} and b > 1

[UNIFORM (b)](xb, xb−1, ..., x1) =
1

2
[UNIFORM (b− 1)](xb−1, ..., x1)

Proof. Consider the case when xb = 0. The proof for the other case when xb = 1 would go in a similar fashion. Let π be
the set of executions of UNIFORM(b) resulting in [0, xb−1, ..., x1]. Let π′ be the set of executions of UNIFORM(b − 1)
resulting in [xb−1, ..., x1]. Since b > 1 is false, Xb gets assigned flip1 evaluating to false; we return 0 ::UNIFORM(b− 1).

[UNIFORM (b)](0, xb−1, ..., x1)

=
∑
p∈π

w(p) =
1

2

∑
p∈π′

w(p) =
1

2
[UNIFORM (b− 1)](xb−1, ..., x1)

Proposition 2. ∀b > 0, [UNIFORM(b)] = U2b

Proof. The proof is by induction on b
Base Case: For b = 1,

U2(a) =


1
2 a = 0
1
2 a = 1

0 otherwise

Executing UNIFORM(1) would result in X1 = flip 1
2 . So, Pr(X1 = 1) = 1

2 and Pr(X1 = 0) = 1
2

Induction Hypothesis: ∀b′ < b [UNIFORM (b′)] = U2b′

Inductive Step: To prove [UNIFORM (b)] = U2b

Let the output of UNIFORM(b) be a where ab =< xb, xb−1, ..., x1 >

Case 1: ∀0 ≤ a < 2b−1

Since a < 2b−1, xb = 0

[UNIFORM(b)](0, xb−1, ..., x1)

=
1

2
[UNIFORM(b− 1)](xb−1, ..., x1) =

1

2
· U2b−1(< xb−1, ..., x1 >) (by Lemma 7 and I.H.)

= U2b(< 0, xb−1, ..., x1 >) (by Lemma 6)

Case 2: ∀2b−1 ≤ a < 2b

Since a ≥ 2b−1, xb = 1, the proof is similar to that for Case 1.

E BETA PRIOR APPLICATION: BAYESIAN NETWORK PARAMETER LEARNING

One natural application of a Beta prior is as a prior distribution for learning the parameters of a (binary) Bayesian network.
The task of Bayesian network parameter learning can be described as follows: given a set of data consisting of instantiations
of network variables, we want to find the network parameters maximizing the probability of this data. One interesting case
is when our data is incomplete; that is, there are some variables not given a value. In this setting, a Bayesian approach to
parameter learning must consider all (exponentially many) possible instantiations of these missing values [Darwiche, 2009].

Using our Beta prior implementation described in the main paper, this setting can naturally be modeled within Dice.jl..
A Bayesian network can be expressed in the probabilistic program with Beta priors on each network parameter; a dataset
can then be observed. By returning the distribution over our Beta parameters α and β, we obtain our posterior, a mixture
over Beta distributions. These can then be manually combined to obtain the exact posterior density function.

We provide a brief example of this on the survey Bayesian network1. The structure of this network is shown below; we
simplify the network by making all variables binary so that the Beta a suitable prior. We note that we can actually generalize
to the non-binary case with a Dirichlet prior using an approach similar to that used for the Beta.

A S

E

O R

T

Suppose we want to learn parameters from the dataset given below; the entry ? indicates a missing value. We focus on the
specific parameter θo|e = Pr(O = 1|E = 1), which we give a uniform prior Beta(1, 1).

1https://www.bnlearn.com/bnrepository/

A S E O R T
1 ? ? 1 1 1
1 0 ? 1 0 1
1 0 1 ? 0 1
1 ? 1 0 ? 1
0 0 1 1 ? 1
0 1 ? 1 1 ?
1 ? 0 0 1 0
0 ? 1 ? ? ?
1 1 1 ? 1 ?
1 0 0 ? 1 1

By running the program representing this task, we get the following large output distribution over Beta parameters - a
mixture over Beta distributions. Note that it does not contain as many entries as possible instantiations, as some complete
variable instantiations result in the same posterior Beta.

α β Pr(.)
9 3 0.226
8 4 0.207

10 2 0.177
7 5 0.160
6 6 0.109
5 7 0.066
4 8 0.035
3 9 0.016
2 10 0.005

If we plot the corresponding mixture of Betas, we can get the following posterior PDF — note that this is an exact posterior
recovered from the Beta parameters, in constrast to the approximate result one would get from sampling-based inference
methods.

The code used in this example is available in the same Dice.jl repository (https://github.com/Juice-jl/
Dice.jl/tree/arithmetic).

References

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009. doi: 10.1017/
CBO9780511811357.

https://github.com/Juice-jl/Dice.jl/tree/arithmetic
https://github.com/Juice-jl/Dice.jl/tree/arithmetic

Samuel Dittmer and Igor Pak. Counting linear extensions of restricted posets, 2018. URL https://arxiv.org/abs/
1802.06312.

Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, jun 1962. ISSN 0001-0782. doi: 10.1145/367766.
368168. URL https://doi.org/10.1145/367766.368168.

Timon Gehr, Sasa Misailovic, and Martin Vechev. Psi: Exact symbolic inference for probabilistic programs. In International
Conference on Computer Aided Verification, pages 62–83. Springer, 2016.

Timon Gehr, Sasa Misailovic, and Martin Vechev. Psi: Exact symbolic solver github, 2022. URL https://github.
com/eth-sri/psi/tree/master/test.

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact inference for discrete probabilistic programs. In
Proc. ACM Program. Lang., OOPSLA 2020, pages 140:1–140:31. Association for Computing Machinery, 2020. doi:
10.1145/3428208.

Zixin Huang, Saikat Dutta, and Sasa Misailovic. Aqua: Automated quantized inference for probabilistic programs. In
International Symposium on Automated Technology for Verification and Analysis, pages 229–246. Springer, 2021.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential decision diagrams: Learning
with massive logical constraints. In ICML Workshop on Learning Tractable Probabilistic Models (LTPM), June 2014.
URL http://starai.cs.ucla.edu/papers/KisaLTPM14.pdf.

Jacob Laurel and Sasa Misailovic. Continualization of probabilistic programs with correction. In Peter Müller, editor,
Programming Languages and Systems, pages 366–393, Cham, 2020. Springer International Publishing. ISBN 978-3-030-
44914-8.

D. H. Lehmer. Euclid’s algorithm for large numbers. The American Mathematical Monthly, 45(4):227–233, 1938. doi:
10.1080/00029890.1938.11990797. URL https://doi.org/10.1080/00029890.1938.11990797.

H.P. Luhn. Computer for verifying numbers. U.S. Patent US2950048A, 1960.

https://arxiv.org/abs/1802.06312
https://arxiv.org/abs/1802.06312
https://doi.org/10.1145/367766.368168
https://github.com/eth-sri/psi/tree/master/test
https://github.com/eth-sri/psi/tree/master/test
http://starai.cs.ucla.edu/papers/KisaLTPM14.pdf
https://doi.org/10.1080/00029890.1938.11990797

	Experimental Details
	Benchmark Models
	Additional Experimental Results
	BDD Sizes of Integer Distribution Encodings (Proposition 1)
	Notation and Definitions
	Categorical Encoding of Integer Distributions
	BDD Size of the CATEG_INT Encoding
	Bitwise Encoding of Integer Distributions
	BDD Size of the BITWISE_INT encoding
	Encoding Uniform Integer Distributions

	Beta Prior Application: Bayesian Network Parameter Learning

