
Scaling Integer Arithmetic in Probabilistic Programs

William X. Cao1 Poorva Garg∗1 Ryan Tjoa∗2 Steven Holtzen3 Todd Millstein1 Guy Van den Broeck1

1Department of Computer Science, University of California, Los Angeles, California, USA
2 Department of Computer Science, University of Washington, Seattle, Washington, USA

3Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA

Abstract

Distributions on integers are ubiquitous in proba-
bilistic modeling but remain challenging for many
of today’s probabilistic programming languages
(PPLs). The core challenge comes from discrete
structure: many of today’s PPL inference strategies
rely on enumeration, sampling, or differentiation
in order to scale, which fail for high-dimensional
complex discrete distributions involving integers.
Our insight is that there is structure in arithmetic
that these approaches are not using. We present a
binary encoding strategy for discrete distributions
that exploits the rich logical structure of integer
operations like summation and comparison. We
leverage this structured encoding with knowledge
compilation to perform exact probabilistic infer-
ence, and show that this approach scales to much
larger integer distributions with arithmetic.

1 INTRODUCTION

Probabilistic programming languages (PPLs) are expressive
languages for defining probability distributions. The core
idea of a PPL is to enrich a programming language with
the ability to define, observe, and compute with random
variables: hence, the program itself defines a probabilistic
model. This paper focuses on a particular programming
feature: scaling inference for programs with random inte-
gers and integer arithmetic. Integers are very challenging
for today’s approaches to probabilistic inference. The re-
lationships between integer-valued random variables can
be very complex: they can be added, multiplied, compared,
etc. This rich structure is opaque to today’s inference strate-
gies. Trace-based sampling like Markov-Chain Monte Carlo,
importance sampling, and sequential Monte-Carlo all col-
lapse integer distributions to a single sampled point [Gelman

∗These authors contributed equally to this work.

et al., 2015, Bingham et al., 2019, Dillon et al., 2017, van de
Meent et al., 2018, Lew et al., 2019]. These approximate
inference strategies can scale well in many cases, but they
struggle to find valid sampling regions in the presence of
low-probability observations and non-differentiability (e.g.,
observing the sum of two large random integers to be a
constant) [Gelman et al., 2015, Bingham et al., 2019, Dillon
et al., 2017]. Exact inference strategies work by preserving
the global structure of the distribution, but here there is a
challenge: what is the right strategy for efficiently repre-
senting and manipulating distributions on integers? Today’s
PPLs that support exact inference and integer manipulation –
such as Dice [Holtzen et al., 2020], ProbLog [De Raedt et al.,
2007], Psi [Gehr et al., 2016], and WebPPL [Goodman and
Stuhlmüller, 2014] – model integer distributions using what
is essentially a one-hot categorical encoding (i.e., an integer
distribution [0 7→ 0.25,1 7→ 0.25,2 7→ 0.25,3 7→ 0.25] is
represented simply as a vector). This encoding style is not
capable of exploiting the structure of addition: adding two
random variables effectively requires full enumeration.

Our first contribution is a new representation of distribu-
tions on integers as distributions on binary encodings. For
instance, in the above example, rather than representing the
distribution as an exhaustive map from integer values to
probabilities, we represent it as a joint distribution on binary
bits [00 7→ 0.25,01 7→ 0.25,10 7→ 0.25,11 7→ 0.25].
The upsides of this seemingly-equivalent representation are
twofold. First, we can more efficiently represent the joint
distribution itself when it has certain structure. In this case,
because the distribution is uniform, we can represent it as
a product of two independent Bernoulli distributions, one
for each bit: we will show that the ability to factorize the
distribution in this manner leads to significant performance
improvements. Second, this binary representation reveals
the structure of arithmetic: for instance, we can compare two
integers by independently comparing each of their binary
digits and aggregating the results.

Clearly a binary representation of integers reveals structure,
but how can we automatically find and exploit this structure

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:260–270.

1 id = [discrete([0.72, 0.01, 0.01, 0.01, 0.01,
2 0.01, 0.2, 0.01, 0.01, 0.01]),...,
3 discrete([0.01, 0.01, 0.05, 0.01, 0.01,
4 0.63, 0.2, 0.01, 0.01, 0.05])]
5 check_digit = id[0]
6 remaining_id = id[1:] //tail of the array
7 check_val = luhn_checksum(remaining_id)
8 observe((check_digit + (check_val % 10)) == 10)
9 return id

Figure 1: A probabilistic program for the student ID probabilistic infer-
ence problem using integer random variables (discrete), integer arithmetic
(the Luhn algorithm function), and Bayesian conditioning (observe)

1 def luhn_checksum(id)
2 sum = 0
3 for i in 0..length(id) - 1
4 if i % 2 == length(id) % 2:
5 if id[i] > 4:
6 sum += 2 * id[i] - 9
7 else:
8 sum += 2 * id[i]
9 else:

10 sum += id[i]
11 return sum

Figure 2: Luhn algorithm implementation

during inference in a PPL? As our second contribution,
we show that two of today’s PPLs – Dice [Holtzen et al.,
2020] and ProbLog [De Raedt et al., 2007, Fierens et al.,
2015] – are already capable of exploiting this structure if
it is properly encoded into the program, by virtue of their
knowledge compilation approach to inference. We give a
lightweight strategy for encoding integer distributions, and
show empirically that when using our new binary-encoded
distributions these two languages scale to significantly larger
and more complex integer distributions without essential
modifications to their existing inference strategies.

As our third contribution we show that scalable support for
random integer arithmetic allows us to push the boundaries
of discrete probabilistic programming systems in surprising
ways. We demonstrate how to model a Beta distribution, a
continuous distribution, using probabilistic integers. This
modelling method exploits the conjugacy property of the
Beta distribution, through which we can always characterize
the distribution through its (integral) sufficient statistics. By
doing so, we can use the Beta distribution as a prior for
Bayesian learning.

The structure of this paper is as follows: Section 2 gives
a motivating example for integer arithmetic. Section 3 ex-
plains our integer representation and explores how common
integer operations on this representation have structure ex-
ploitable by knowledge compilation. Section 4 empirically
evaluates our representation strategy against existing PPLs.
Section 5 explores the representation of a continuous Beta
prior with random integers. Sections 6 and 7 discuss related
work and conclude respectively.

2 MOTIVATION

We begin with a motivating example highlighting how in-
teger distributions are used in probabilistic programs. Con-
sider the following probabilistic model based on student ID
numbers. Suppose that an optical character recognition sys-
tem is attempting to parse a handwritten student ID number.
For each digit of the ID, it produces a probability distri-

bution representing its beliefs about what the digit could
be. Combining this output, we get a probability distribution
over all possible student IDs.

The Luhn algorithm [Luhn, 1960] is a commonly used
method of validating various ID numbers including student
IDs. Given a starting ID such as 70733428, the algorithm
provides for a way to compute a sum over the ID, giving us a
check digit (4) which is then prepended to the original ID to
get a final ID: 470733428. This ID is the one actually issued
to a student; when provided with an ID, we can validate it
by recomputing the sum and looking at the check digit.

We wish to use the fact that the student ID can be validated
to additionally inform our single-digit distributions from
the OCR system. We can implement this as a probabilistic
program like the one in Figure 2. Figure 2 implements a
function luhn_checksum that takes as input a list rep-
resenting the digits of the student ID, excluding the check
digit. It then does computation according to the Luhn al-
gorithm to compute a sum over the digits, which is then
returned. Figure 1 then uses this function: we create a list
id which contains distributions over integers derived from
the OCR system. The syntax discrete(v) for a vec-
tor v = [p0, .., pn] creates a distribution over the numbers
0, .., n, in which the number i has the probability pi, and is
used in our program to represent said OCR distributions. We
call the luhn_checksum function on these integer distri-
butions to get a distribution over checksums and condition
using the observe keyword in line 9 to get an updated
distribution over IDs.

If we implement this program in today’s probabilistic pro-
gramming languages, we will run into a problem. Even if
we only wish to compute the marginal probability over a
single digit of the ID, Figure 3 shows that the runtime will
scale exponentially in the number of digits in the student ID.
Each additional digit will contribute a multiplicative amount
to the number of total possible ID instantiations, meaning
that any approach involving enumeration is inherently ex-
ponential. In practice, this means that programs containing
student IDs of a realistic length (9-10 digits) will not run.

261

2 4 6 8

10−2
10−1
100
101
102
103

number of digits

tim
e

(s
)

WebPPL
Psi (DP)

Psi
Dice.jl

Figure 3: Single-marginal performance for ID example on
increasing ID lengths. WebPPL and Psi scale exponentially
due to having to enumerate all paths.

The fact that such straightforward programs fail to scale on
existing probabilistic programming systems is the primary
motivation behind our work. We have implemented our en-
coding of integer distributions in Dice.jl, a discrete PPL
embedded in Julia that uses the same knowledge compila-
tion approach as Dice [Holtzen et al., 2020]. Figure 3 shows
that our technique allows inference for such programs to
scale for a larger, more realistic number of digits.

3 REPRESENTING & MANIPULATING
INTEGER DISTRIBUTIONS

This section describes the key technical details behind a bi-
nary encoding approach and explains how such an encoding
allows the knowledge compilation inference strategy used
by Dice and ProbLog to automatically exploit arithmetic
structure. We first provide a brief introduction to inference
via knowledge compilation. We then demonstrate and ana-
lyze various approaches to constructing distributions over
integers within probabilistic programs. Finally, we show
how the binary encoding can be leveraged by knowledge
compilation to identify and exploit conditional independen-
cies for inference over distributions with integer arithmetic.

3.1 INTEGER DISTRIBUTIONS VIA BDDS

Thus far we have seen how binary-represented distributions
expose structure and can enable effective scaling in practice.
In this section we explain exactly how this performance
improvement is achieved during inference. In particular,
we show how knowledge compilation is capable of auto-
matically finding and exploiting the structure of integer
distributions and operations. Inference via knowledge com-
pilation is currently the state-of-the-art approach to exact
discrete probabilistic inference in certain classes of prob-
abilistic programs [Holtzen et al., 2020, De Raedt et al.,
2007, Chavira et al., 2006, Chavira and Darwiche, 2008,
Fierens et al., 2015]. The heart of inference via knowledge
compilation is a reduction from inference to weighted model
counting (WMC). Let ϕ be a Boolean formula and w be a

f1

f2

f3

f4

.1

.11

.25

.5

F T

f1

f2

f3

f4

f1

f2

f3

b2 b1 b0

(a) Multi-rooted BDD for a CATEG_INT encoded integer.

f1 f1

f2

f1

f2

f4

f3

FT

b2 b1 b0

.3

.714

.5

.6

(b) Multi-rooted BDD for an BITWISE_INT encoded integer.

Figure 4: BDDs representing the integer distribution [0 7→
0.1,1 7→ 0.1,2 7→ 0.2,3 7→ 0.3,4 7→ 0.3] resulting from
CATEG_INT and BITWISE_INT encoding methods. BIT-
WISE_INT achieves a smaller BDD by compactly repre-
senting higher order bits.

map from literals in ϕ to real-valued weights; the pair (ϕ,w)
is called a weighted Boolean formula. Then, the weighted
model count WMC(ϕ,w) is a weighted sum of models of ϕ:

WMC(ϕ,w) =
∑
m|=ϕ

∏
`∈m

w(`). (1)

This reduction to WMC is not useful on its own however:
the WMC task is #P-hard for an arbitrary Boolean formula
ϕ. This is where knowledge compilation comes into the
picture: ϕ is compiled into a data structure that supports ef-
ficient weighted model counting in the size of the data struc-
ture. A common example of such a knowledge-compilation
data structure is a binary decision diagram (BDD), which
supports linear-time WMC, but there are many others [Dar-
wiche and Marquis, 2002]. PPLs like Dice and ProbLog
work by compiling a program into a BDD or related com-
pilation target and thereby reducing probabilistic program
inference to WMC on that target [Chavira and Darwiche,
2005, Sang et al., 2005b].

The cost of the knowledge compilation approach to infer-
ence is almost entirely determined by the structure of the
program; the more structure that exists, the more compact
the resulting BDD or related data structure can be. This
leads to our core contribution: a new logical representa-
tion of integer distributions that is amenable to efficient

262

compilation into BDDs. To demonstrate how BDDs can
encode integer distributions, Figure 4 shows two different
multi-rooted BDDs that represent the same distribution on
integers. In both cases the roots in each BDD represent ran-
dom variables for each binary digit: b0 is the 0-order digit,
b1 is the 1-order digit. Positive weights of each literal are
shown on the left (with the negative weight being 1 minus
the positive weight); dotted edges represent a false assign-
ment and solid edges represent true assignment. Intuitively,
a binary representation has the potential to be more compact
than a naive categorical representation due to the reduction
in the number of roots: for instance, Dice [Holtzen et al.,
2020] requires one root for each possible integer value.

As an example of how to use these data structures, consider
computing the marginal probability of the high-order bit b2
being true. This is WMC(b2, w), which is 0.3 – that is clear in
Figure 4b since the sole path from b2 to the true node has
weight 0.3, but it is also true for the sole path from b2 to the
true node in Figure 4a, which has weight (0.9∗0.89∗0.75∗
0.5) ≈ 0.3. In general, to compute the probability of an
arbitrary integer, we convert it into binary and conjoin the
appropriate roots: for instance, to compute the probability
of the integer 0, we compute WMC(b0 ∧ b1 ∧ b2, w).

3.2 INTEGER ENCODINGS

The previous section demonstrated the potential for bi-
nary encodings in knowledge compilation, but how do
we connect this to probabilistic programs? In this sec-
tion we give lightweight encoding strategies for translating
discrete(..) syntax for an arbitrary distribution over
integers into distributions on Booleans, which knowledge-
compilation-based languages like Dice and ProbLog are al-
ready capable of representing. How might such distributions
be represented in a probabilistic programming language in
practice? To make the problem concrete, we define the inte-
ger representation problem as follows: given an input vector
[p0, .., pw], we want a method which returns a distribution
over integers taking on value i with probability pi. While
this is relatively restricted by demanding that our distribu-
tion is contiguous with lowest value 0, we can convert this
to other distributions (for example) by adding an offset or
multiplying by a constant.

3.2.1 A First Approach

One natural way of constructing such a categorical distribu-
tion, is as a set of if-else statements, with each branch cor-
responding to a different value. For example, the following
probabilistic program snippet would correspond to the in-
teger distribution with probability vector [0.1, 0.2, 0.3, 0.4].
The syntax flip(θ) used in the program is commonly used
in discrete PPLs to represent a Bernoulli random variable
with bias θ.

1 if flip(0.1) // Bernoulli(0.1)
2 return 0
3 elseif flip(0.2/0.9)
4 return 1
5 elseif flip(0.3/0.7)
6 return 2
7 else
8 return 3

We use a sequence of these random flips as arguments to
the if-else statements to generate the mixture of numbers;
note that we renormalize the flip probability at each step
to get the correct distribution. This approach is generalized
in Algorithm 1. This and future algorithms should be inter-
preted as a general method to represent a distribution over
integers in any probabilistic programming language sup-
porting Bernoulli random variables and (non-probabilistic)
integers. Note that representing a categorical variable in this
way is a probabilistic program framing of the SBK encoding
presented by Sang et al. [2005a].

Algorithm 1: CATEG_INT (v ∈ [0, 1]w)
Input: Vector v such that v[i] ∝ pr(i)
Output: Distribution over the integers 0, . . . , w − 1

matching v
if w == 1 or flip

(
v[0]∑
v

)
then

return 0
else

// Recurse on the remainder of v
return 1 + CATEG_INT(v[1:])

What would occur if we use Algorithm 1 to represent a
distribution over binary-encoded integers in a language such
as Dice? The BDD for one distribution represented using
this approach is given in Figure 4a. Note that for each bit, the
decision diagram is essentially a linear chain; intuitively, this
corresponds to checking each if-else guard in sequence. In
addition, notice that there is almost no node reuse occurring
in this BDD; each root has its own linear chain.

3.2.2 A More Compact Encoding

We propose an alternative method of representing integers
from a probability vector that produces provably more com-
pact BDDs. Rather than constructing our mixture by a linear
pass through the probability vector, we can instead divide
the vector into two parts, using a divide-and-conquer ap-
proach. Consider the same example as above, where we are
again given as input a probability vector [0.1, 0.2, 0.3, 0.4].
To get the wanted distribution, we can conditionally add the
value 2 with probability 0.3+0.4

0.1+0.2+0.3+0.4 , corresponding to
the latter half of the vector. Depending on if 2 is added, we
then conditionally add the value 1, with probability derived
from the subvectors [0.1, 0.2] and [0.3, 0.4]. An example

263

program implementing this is given below:

1 num = 0
2 if flip(0.7) // 0.3 + 0.4
3 num += 2
4 if flip(0.4/0.7)
5 num += 1
6 else
7 if flip(0.2/0.3)
8 num +=1
9 return num

This approach is formalized in Algorithm 2. For the sake of
simplicity, we assume the input vector is always of length
2b for some number b; this means that we always divide the
vector into its two halves. For an arbitrary input vector, we
can simply pad 0 probability values to fulfill this condition;
in practice, this algorithm can easily be adapted to work
without this explicit padding.

Algorithm 2: BITWISE_INT (v ∈ [0, 1]2
b

)
Input: Vector v such that v[i] ∝ pr(i)
Output: Distribution over the integers {0, . . . , 2b − 1}

matching p

p←
∑2b−1

i=2b−1 v[i]∑2b−1
i=0 v[i]

if length(v) == 1 then
return 0

else
if flip(p) then

// Recurse on second half ≥ 2b−1

return BITWISE_INT(v[2b−1 : 2b]) + 2b−1

else
// Recurse on first half < 2b−1

return BITWISE_INT(v[0 : 2b−1])

Note that while Algorithm 2 uses arithmetic to produce
the distribution, it only ever adds or return powers of two,
which directly correspond to the bits of the integer. There-
fore, when implementing the algorithm as a distribution on
a tuple of bits, we encode each such addition by simply
setting the appropriate bit. For the same example as above,
our implementation constructs a tuple of bits (b1, b0) corre-
sponding to a binary number such that b1 = flip(0.7) and
b0 = if b1 then flip(0.4

0.7) else flip(0.2
0.3).

How does this method of representing integer distributions
differ than the one given before? To see this, we look at the
BDD for a distribution written in this manner given in Figure
4b. We can see a clear difference between this BDD and that
for the approach given in Algorithm 1. The most significant
bit corresponds to a BDD depending on only one flip, as
this corresponds to the largest power of two: only one flip
is used to determine its value. For the less significant bits,
we add an additional layer of variables for each one, with
the number of layers in total corresponding to the number

of bits needed to represent the input distribution. This is
in contrast to the CATEG_INT encoding, which requires
checking a linear chain of variables for each bit, and so
achieves a much more compact BDD representation.

We formalize this difference in BDD size in Proposition 1.
Note that variable order can greatly influence the size of a
BDD, and finding the optimal variable order is an NP-hard
problem [Meinel and Theobald, 1998]; we follow the Dice
convention of ordering logical variables using (strict, left-
to-right) evaluation order. For example, in Figure 1, the
Boolean variables encoding the discrete distribution on
Line 1 occur before the variables in the distribution on Line
2 in the order.

Proposition 1 A discrete distribution over the integers
{0, 1 . . . , 2b − 1} compiles to a BDD of size Θ(b2b) when
represented using CATEG_INT (Algorithm 1) and a BDD
of size Θ(2b) when represented using BITWISE_INT (Algo-
rithm 2), with variables in flip evaluation order.

It is BITWISE_INT that we have implemented in Dice.jl
and experimentally evaluate in the next section.

3.2.3 Uniform Integers

The previous encoding strategy works for arbitrary distri-
butions on integers, but in practice one often encounters
common highly-structured distributions such as the uniform.
One advantage of our approach is that we can exploit the
structure of such distributions in order to scale significantly
better than the general approach presented in Algorithm 2.
In particular, the structure of the uniform distribution allows
for a special encoding with fully independent flips.

Since the probability of every integer is equal, we can en-
code a uniform distribution over integers {0, 1, . . . 2b − 1}
by adding the values 20, 21, . . . , 2b−1 independently with
probability 0.5. From a bitwise perspective, this is same as
independently setting each bit of the number to be true with
probability 0.5. As an example, consider the uniform dis-
tribution over integers {0, 1 . . . 15}. Clearly, each possible
instantiation of (flip(0.5),flip(0.5),flip(0.5),flip(0.5)) is
equally likely, and thus equivalently the probability of each
integer in the range.

The method described above works for uniform distribu-
tions whose range is 2n for some n; for ranges that are
not a power of 2, we use the fact we can any decompose
natural number into a sum of powers of 2. This enables a
uniform distribution over any range to be represented as
a mixture of multiple uniform distributions over smaller
power-of-two ranges. We formalize this idea in Algorithm 3,
which gives a method for representing uniform distributions
starting at 0; the correctness of this approach is shown in
the supplementary material. We can then use this approach

264

Algorithm 3: UNIFORM(n)
Input: Positive integer n
Output: Integer uniformly distributed over

0, . . . , n− 1
b← blog2(n)c
if flip

(
2b

n

)
then

sum ← 0
for i← 0 to b− 1 do

if flip
(
1
2

)
then

sum ← sum + 2i

return sum

else
return UNIFORM(n− 2b) + 2b

to achieve any uniform distribution by adding an offset. Just
like the previous algorithms, this algorithm is implemented
by constructing sequences of bits in a manner equivalent to
arithmetic.

We note that unlike the BITWISE_INT algorithm, where
less significant bits have a dependence on more significant
bits, our uniform algorithm leverages independence between
the bits. Therefore, the BDD obtained when using UNI-
FORM is more compact than for our other algorithms, and
fewer variables are needed to represent such a distribution.

3.3 EFFICIENT INTEGER OPERATIONS

While the binary representations of discrete and uniform
distributions over integers are interesting, they do not by
themselves necessarily give much advantage. If adding two
such distributions still requires an explicit enumeration of
all possible sums, then we have not gained much over the ex-
isting inference approaches. However, the binary encoding
enables us to leverage the structure of integers to do much
better than this for common operations. In this section, we
demonstrate this for integer comparisons and addition.

3.3.1 Integer Comparisons

The comparison operator on binary tuples can be imple-
mented using logic circuits like those in computer hard-
ware. Suppose we compute a < b for two binary numbers
a = 001 and b = 100. The circuit first compares the most
significant bits (MSBs) of these numbers, which are 0 and
1 respectively - enough to know that a < b is true. If the
two numbers instead had the same MSB, we would need to
start this comparison over on remaining bits. This process
of computing a < b highlights its key conditional indepen-
dencies. First, given the MSBs of the operands are different,
the result of a < b does not depend on the remaining bits.
Second, given the MSBs of the operands are same, the com-
putation on the remaining bits does not depend on the value

of the MSBs. This structure gets automatically exploited
when we use this standard logic circuit to compare integer
distributions, where the inputs are now weighted Boolean
formulas represented as BDDs, rather than bits.

More concretely, consider the following probabilistic pro-
gram which defines two random variables having a uniform
distribution over the integers {0, 1, . . . , 7} and then outputs
the probability of one integer being less than the other.

1 a = uniform(0, 8)
2 b = uniform(0, 8)
3 return (a < b)

Enumerating all the values that a and b can take in the above
program would lead to 64 combinations. In contrast, the
BDD for the comparison operation has size linear in the
number of bits, as it exploits conditional independences. We
later present empirical results demonstrating that this leads
directly to better scalability for discrete inference.

3.3.2 Integer Addition

Consider two binary numbers a = 001 and b = 100 that
we wish to add. The least significant bit (LSB) of a+ b is
computed as the xor of the LSBs of a, b and 0 (the initial
carry bit). The carry, computed as the and of the LSBs of a
and b, is passed on to the next bit and the same process will
be repeated for the remaining bits. The process described
above shows that given the carry bit, each bit of the result
is independent of the lesser significant bits of the operands.
Similar to the comparison operation, encoding addition on
integer distributions as a logical circuit directly exploits
such conditional independences to produce a compact BDD,
which in turn leads to significant performance gains. The
manner in which addition corresponds to a compact BDD
has been explored before; Wegener [2004] show that for
an optimal variable ordering, there is a linear bound on the
BDD for addition.

In this section, we described the structure of two arithmetic
operations, comparison and addition, independently. When
composing these operations together, the compilation of
weighted Boolean formulas will naturally compose as de-
scribed in previous work [Holtzen et al., 2020]. The sizes of
the resulting BDDs depend highly on the variable ordering
— but even when the variable ordering is not optimal, condi-
tional independences can still be identified and exploited, as
shown by the experiments in the next section.

4 EMPIRICAL EVALUATION

In this section, we empirically evaluate our integer compi-
lation strategy. While we have demonstrated that a binary
encoding exposes structure that knowledge compilation can
exploit, it remains to be seen if this can improve the per-

265

2 4 6 8 10 12 14

10−3
10−2
10−1
100
101
102
103

a < b

tim
e

(s
)ProbLog (binary)

ProbLog (native)
Dice.jl (binary)
Dice.jl (one-hot)

2 4 6 8 10 12 14

10−3
10−2
10−1
100
101
102
103

a == b

2 4 6 8 10 12 14
10−3
10−2
10−1
100
101
102
103

E[a+ b]

Figure 5: Time needed to compute the given operation on two random integers with varying bitwidth (x-axis).

formance of probabilistic programs. In addition, we have
yet to show how our approach compares to other inference
methods on larger, more complex arithmetic models. We
seek to answer the following questions.

1) Does a binary encoding benefit existing knowledge
compilation based languages?

2) Does our approach outperform those of existing PPLs
that support exact discrete inference?

To this end, we have implemented our integer representa-
tion in Dice.jl, a PPL embedded in Julia that uses the
same knowledge compilation approach as Dice [Holtzen
et al., 2020]. In Dice.jl (binary), unsigned random in-
tegers are implemented using the strategy described in the
previous section; signed random integers are additionally
implemented as a natural extension. The language provides
the syntax discrete(..) for arbitrary integer distribu-
tions and uniform(..) for uniform distributions, imple-
mented using the algorithms in Section 3, as well as the
operators =, <,+,−, ∗, /, and %. Simple operators are im-
plemented as logical circuits, while more complex operators
are implemented by composing simpler ones. 1

Reported runtimes are a median over at least 5 runs; all
experiments were run with a 1 hour timeout. A best-effort
attempt was made for each language to implement bench-
marks in a maximally performant manner. More experimen-
tal details are available in the supplementary material.

4.1 IMPROVING KNOWLEDGE COMPILATION
LANGUAGES WITH A BINARY ENCODING

In this section, we demonstrate the benefit a binary encod-
ing brings to knowledge compilation based languages. We
compare our integer representation method to the methods
of the PPL Dice [Holtzen et al., 2020] and the probabilistic
logic programming language ProbLog [Fierens et al., 2015],
both of which use knowledge compilation as their approach
to inference. We do this by comparing the time needed to
compute the simple arithmetic operations a+ b, a < b, and

1Our implementation and code for all experiments are available
at https://github.com/Juice-jl/Dice.jl/tree/
arithmetic.

a == b on random integers of width 2n for varying n from
1 to 15. Here, the runtime of each method corresponds to
the time needed to compile and run inference on each rep-
resentation, effectively measuring how well the knowledge
compilation based inference can exploit the structure of
each simple function. For addition, we use the expectation
of the sum as our target computation to avoid an output
distribution with an exponentially increasing support.

To allow for a fair comparison between ProbLog’s native
integer representation and our binary representation, we im-
plement equivalent ProbLog programs computing the arith-
metic operations, one using native ProbLog encodings and
one using a binary representation. Both programs can then
be run using ProbLog, controlling for the specific knowl-
edge compilation system. To compare with Dice’s native
one-hot integer encoding, we implement both the one-hot
encoding and our binary encoding in Dice.jl. We then
run the simple arithmetic programs using both encodings.

The results of these experiments are presented in Figure 5.
We can clearly see that our binary encoding outperforms
the existing integer representation strategy used in each
language; while at small distribution widths (on the order of
24), they are roughly comparable, our approach scales much
better to larger integer distributions.

4.2 COMPLEX ARITHMETIC MODELS

We also evaluated Dice.jl on more complex models in-
volving distributions over integers. The models were taken
from a variety of sources. These include examples involving
integers from the existing PPL literature, various examples
using continuous distributions adapted to a discrete space,
natural modelling tasks using integers such as ranking and
text manipulation, and traditional algorithms in a probabilis-
tic setting. A short description of our baselines and their
sources is given in the supplementary material.

As a point of comparison, we use two other PPLs supporting
exact discrete inference. We identify two major classes of ex-
act inference approaches used for discrete probabilistic pro-
grams: enumerative methods, which work by enumerating
all paths through the program, and symbolic methods, which
represent and compute the probability distribution through

266

https://github.com/Juice-jl/Dice.jl/tree/arithmetic
https://github.com/Juice-jl/Dice.jl/tree/arithmetic

Table 1: Runtimes in seconds for probabilistic models using integers in various PPLs. 7 indicates a timeout (over 1 hour).

Benchmarks Dice.jl (binary) Dice.jl (one-hot) WebPPL Psi (DP) Psi

book 5.297 7 7 7 7

tugofwar 0.106 2660.373 21.012 7 7

caesar-small 0.041 4.968 0.074 2.022 402.196
caesar-medium 0.239 39.518 0.135 12.505 7
caesar-large 0.556 122.109 0.227 30.387 7

ranking-small 0.007 0.025 0.83 103.572 7
ranking-medium 0.022 0.077 7 318.658 7
ranking-large 0.048 0.150 7 330.51 7

radar1 0.034 0.664 118.002 394.525 2.517

floydwarshall-small 0.009 0.152 0.009 0.115 113.467
floydwarshall-medium 0.515 624.220 9.51 2792.14 7
floydwarshall-large 3.406 7 7 7 7

linear extensions-small 0.003 0.004 0.016 0.351 5.153
linear extensions-medium 0.007 0.013 0.465 111.38 7
linear extensions-large 0.072 0.164 162.009 7 7

triangle-small 0.086 102.544 3.693 616.746 482.14
triangle-medium 0.455 1123.171 28.354 7 7
triangle-large 17.365 7 7 7 7

gcd-small 2.876 7 0.189 24.33 7
gcd-medium 103.614 7 2.501 467.581 7
gcd-large 7 7 46.626 7 7

disease-small 7.91 7 1.093 109.242 1009.848
disease-medium 764.212 7 327.545 7 7

luhn-small 0.039 0.594 0.428 44.164 7
luhn-medium 4.575 23.933 42.372 7 7

symbolic expressions. We compare against WebPPL [Good-
man and Stuhlmüller, 2014] from the former category and
Psi [Gehr et al., 2016] from the latter.

We also compare against a version of Dice.jl that uses
a one-hot encoding of integer distributions as a proxy for
existing knowledge compilation approaches; this compar-
ison avoids language-specific differences in performance.
Compiled BDD sizes for the programs are provided in the
supplementary material as an additional metric.

Our results are summarized in Table 1. Many of our bench-
mark models can naturally be scaled to different sizes; they
are implemented in small, medium, and large (correspond-
ing to model size) variants to display the scaling behavior.
Psi supports two exact inference algorithms: a default sym-
bolic exact inference algorithm ("Psi") and its specialized
dynamic programming inference algorithm ("Psi (DP)").

For the majority of benchmarks, our approach outperforms
the current exact inference approaches, often achieving an
orders-of-magnitude speedup. This result empirically vali-
dates the ability of our compilation strategy to exploit arith-
metic structure in order to improve inference performance.
We observe that the binary encoding outperforms the one-
hot encoding with the same underlying knowledge compi-
lation approach, demonstrating its superiority in exposing
arithmetic structure.

We note that Dice.jl does not always outperform
WebPPL, the enumeration based approach. We make special
note of these examples. The caesar example introduces many

random integers but immediately makes an observation on
their value, thereby reducing the enumeration task and mak-
ing this tractable for all approaches. The disease example
contains parametric distributions on integers; for example,
a binomial distribution with parameter n distributed by a
uniform distribution. These distributions have much less
structure to exploit, and so our approach becomes essen-
tially enumerative, but with additional overhead in compila-
tion. The GCD example, which makes repeated use of the
mod (%) operator, similarly has a harder to exploit structure.
However, we can see in general that our approach scales
well to larger examples and outperforms existing PPLs that
support exact discrete inference.

5 ENABLING CONTINUOUS PRIORS
WITH DISCRETE DISTRIBUTIONS

Previous sections presented an inference strategy for integer
distributions allowing for the scaling of integer arithmetic.
We now demonstrate an interesting application of these
integers: representing the continuous Beta distribution in
a discrete space. Continuous priors are an essential part
of Bayesian reasoning. One particularly useful prior for
discrete PPLs like Dice.jl is the Beta prior Beta(α, β),
which is conjugate to the Bernoulli. The Beta distribution
is continuous and thus not amenable to direct representation
in Dice.jl. However, we observe that if a Beta prior
for a Bernoulli random variable has integral parameters α
and β, then the posterior distribution is also a Beta with

267

integral parameters. This section explains how we use this
observation to represent Beta distribution in Dice.jl.

Assume we have the following program where Dice.jl is
extended to permit restricted classes of Beta priors, where
the parameters α and β must be constant integers:

1 θ = Beta(1, 2)
2 x = flip(θ)
3 observe(x)
4 return θ

We can perform inference for the posterior by exploiting
well-known conjugacy results between Beta priors and
Bernoullis. In particular, observing that x is true, as is done
on Line 3 above, increases the pseudocount α by 1, making
the posterior for θ become Beta(2, 2). Similarly, observing
that x is false increases the pseudocount β by 1.

To automate this approach in Dice.jl, we introduce pro-
gram variables A and B to represent the pseudocounts α and
β, respectively. We then conditionally update these pseudo-
counts after each flip: increment α if the flip returns
true; otherwise increment β. Doing so ensures that later ob-
servations will have the desired effect on the pseudocounts.

The only remaining challenge is that discrete PPLs that em-
ploy knowledge compilation, like Dice.jl, only support
flips whose parameters are constants, so the flip(θ) on
Line 2 above is not supported. To encode it, we use the fact
that E[Beta(α, β)] = α

α+β , so the flip on line 2 can be
simplified to flip(A

A+B). Unfortunately, Dice.jl still
does not support this construct, since A

A+B is not a constant.
However, A + B is always a deterministic integer, since
each observation increases it by exactly 1. Therefore, we
can introduce a variable T representing A+B and encode
flip(A

A+B) as uniform(0, T) < A (where uniform(0, n)
is the uniform distribution over the integers 0, .., n− 1). Fi-
nally, we observe that it is not necessary to maintain both
variables A and B, since B is derivable from A and T. The
final transformed version of the program is as follows:

1 A = 1, T = 3
2 x = uniform(0, T) < A
3 A = if x then A+1 else A
4 T = T + 1
5 observe(x)
6 return (A, T-A)

If we wish to draw another flip on the same Beta prior, we
can simply repeat the code in lines 2-4 above. In this way,
what we have actually implemented is a Beta-Bernoulli pro-
cess via a Polya urn model - something analyzed in detail
in probabilistic programs by Staton et al. [2018]. We also
note that this representation strategy — an implementation
of an urn model — can also be used for many other distribu-
tions in addition to the Beta [Mahmoud, 2008]. An example
application of this Beta prior — learning Bayesian network

parameters — is given in the supplementary material.

6 RELATED WORK

PPL Inference. Knowledge-compilation-based PPLs are
most closely-related to this work [Holtzen et al., 2020, De
Raedt et al., 2007, Fierens et al., 2015, Saad et al., 2021,
Pfanschilling et al., 2022]. All these languages stand to ben-
efit from our new binary-encoding. Other PPLs perform
exact discrete inference by eliminating discrete variables
via enumeration or variable elimination; these approaches
lose global structure and hence cannot exploit arithmetic
structure as in our approach [Goodman and Stuhlmüller,
2014, Bingham et al., 2019]. Symbolic methods support
integers by representing them as a symbolic formula or pro-
gram [Gehr et al., 2016, Narayanan et al., 2016]; we believe
that in principle it may be possible to adapt these symbolic
representations to use a binary representation, but currently
these systems do not. Recent work uses probability generat-
ing functions (PGFs) to represent (potentially unbounded)
discrete distributions [Klinkenberg et al., 2023]. PGFs rep-
resent the distribution symbolically, but do not appear to be
compatible with our strategy for binary encodings. Sampling
based inference algorithms work very well for probabilistic
program with continuous distributions, but do not exploit
the global structure of integer arithmetic [Kantas et al., 2009,
Hoffman and Gelman, 2014, Arouna, 2004, Wu et al., 2016].
Finally, there are algorithms that seek to efficiently model
integer distributions with recursion [Knuth and Yao, 1976,
Saad et al., 2020]; these approaches are orthogonal to ours,
as we do not use recursion.

Graphical models. Probabilistic graphical model (PGM)
based inference methods [Pfeffer, 2009, McCallum et al.,
2009, Sanner and Abbasnejad, 2012, Koller and Friedman,
2009] support integers by treating them as categorical distri-
butions. PGMs struggle to represent arithmetic: for instance,
a CPT for adding two n-bit numbers requires O(2n) entries.

7 CONCLUSION

We presented a strategy for encoding random integers in
probabilistic programs via a binary representation, which
allows arithmetic operations to be performed through stan-
dard Boolean circuits. When combined with the knowledge
compilation approach to probabilistic inference, this strat-
egy naturally exploits structure in arithmetic that current
approaches do not account for. We showed empirically that
this allows existing discrete PPLs to scale to significantly
more complex probabilistic models. One interesting conse-
quence is that we can now leverage conjugacy to represent
the Beta distribution, a continuous distribution, in purely
discrete programs.

268

Acknowledgements

This work was funded in part by the DARPA PTG Program
under contract number HR00112220005, NSF grants #IIS-
1943641, #IIS-1956441, #CCF-1837129, #CCF-2220408,
and a gift from RelationalAI. GVdB discloses a financial
interest in RelationalAI.

References

Bouhari Arouna. Adaptative monte carlo method, a variance
reduction technique. 10(1):1–24, 2004. doi: 10.1515/
156939604323091180.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman.
Pyro: Deep universal probabilistic programming. The
Journal of Machine Learning Research, 20(1):973–978,
2019.

Mark Chavira and Adnan Darwiche. Compiling Bayesian
networks with local structure. In IJCAI, pages 1306–1312,
2005.

Mark Chavira and Adnan Darwiche. On probabilistic in-
ference by weighted model counting. J. Artificial Intelli-
gence, 172(6-7):772–799, April 2008. ISSN 0004-3702.
doi: 10.1016/j.artint.2007.11.002.

Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Com-
piling relational Bayesian networks for exact inference.
International Journal of Approximate Reasoning, 42(1):
4–20, 2006.

A. Darwiche and P. Marquis. A knowledge compilation
map. Journal of Artificial Intelligence Research, 17:229–
264, sep 2002. doi: 10.1613/jair.989. URL https:
//doi.org/10.1613%2Fjair.989.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.
ProbLog : A Probabilistic Prolog and Its Applications to
Link. Proc. of IJCAI, pages 2468–2473, 2007.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.
Problog: A probabilistic prolog and its application in link
discovery. In Proceedings of IJCAI, volume 7, pages
2462–2467, 2007.

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene
Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton,
Alex Alemi, Matt Hoffman, and Rif A Saurous. Ten-
sorflow distributions. arXiv preprint arXiv:1711.10604,
2017.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar
Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens,
and Luc De Raedt. Inference and learning in probabilis-
tic logic programs using weighted boolean formulas. J.

Theory and Practice of Logic Programming, 15(3):358 –
401, 2015. doi: 10.1017/S1471068414000076.

Timon Gehr, Sasa Misailovic, and Martin Vechev. Psi: Exact
symbolic inference for probabilistic programs. In Interna-
tional Conference on Computer Aided Verification, pages
62–83. Springer, 2016.

Andrew Gelman, Daniel Lee, and Jiqiang Guo. Stan: A prob-
abilistic programming language for bayesian inference
and optimization. Journal of Educational and Behavioral
Statistics, 40(5):530–543, 2015.

Noah D Goodman and Andreas Stuhlmüller. The Design and
Implementation of Probabilistic Programming Languages.
http://dippl.org, 2014. Accessed: 2022-10-26.

Matthew D Hoffman and Andrew Gelman. The no-u-turn
sampler: adaptively setting path lengths in hamiltonian
monte carlo. Journal of Machine Learning Research, 15
(1):1593–1623, 2014.

Steven Holtzen, Guy Van den Broeck, and Todd Millstein.
Scaling exact inference for discrete probabilistic pro-
grams. In Proc. ACM Program. Lang., OOPSLA 2020,
pages 140:1–140:31. Association for Computing Machin-
ery, 2020. doi: 10.1145/3428208.

N. Kantas, A. Doucet, S.S. Singh, and J.M. Maciejowski. An
overview of sequential monte carlo methods for parameter
estimation in general state-space models. IFAC Proceed-
ings Volumes, 42(10):774–785, 2009. ISSN 1474-6670.
doi: https://doi.org/10.3182/20090706-3-FR-2004.00129.
15th IFAC Symposium on System Identification.

Lutz Klinkenberg, Tobias Winkler, Mingshuai Chen, and
Joost-Pieter Katoen. Exact probabilistic inference using
generating functions. 2023.

D. Knuth and A. Yao. Algorithms and Complexity: New
Directions and Recent Results, chapter The complexity of
nonuniform random number generation. Academic Press,
1976.

D. Koller and N. Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

Alexander K Lew, Marco F Cusumano-Towner, Benjamin
Sherman, Michael Carbin, and Vikash K Mansinghka.
Trace types and denotational semantics for sound pro-
grammable inference in probabilistic languages. Proceed-
ings of the ACM on Programming Languages, 4(POPL):
1–32, 2019.

H.P. Luhn. Computer for verifying numbers. U.S. Patent
US2950048A, 1960.

Hosam Mahmoud. Pólya urn models. Chapman and Hal-
l/CRC, 2008.

269

https://doi.org/10.1613%2Fjair.989
https://doi.org/10.1613%2Fjair.989
http://dippl.org

A McCallum, K Schultz, and S Singh. Factorie: Probabilis-
tic programming via imperatively defined factor graphs.
Proc. of NIPS, 22:1249–1257, 2009. ISSN 03643417.

Christoph Meinel and Thorsten Theobald. Algorithms and
Data Structures in VLSI Design: OBDD-foundations and
applications. Springer Verlag, 1998. doi: 10.1007/
978-3-642-58940-9.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-
chieh Shan, and Robert Zinkov. Probabilistic infer-
ence by program transformation in hakaru (system de-
scription). In International Symposium on Functional
and Logic Programming - 13th International Sympo-
sium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Pro-
ceedings, pages 62–79. Springer, 2016. doi: 10.1007/
978-3-319-29604-3_5. URL http://dx.doi.org/
10.1007/978-3-319-29604-3_5.

Viktor Pfanschilling, Hikaru Shindo, Devendra Singh
Dhami, and Kristian Kersting. Sum-product loop pro-
gramming: From probabilistic circuits to loop program-
ming. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning,
volume 19, pages 453–462, 2022.

Avi Pfeffer. Figaro: An object-oriented probabilistic pro-
gramming language. Charles River Analytics Technical
Report, 137, 2009.

Feras Saad, Cameron Freer, Martin Rinard, and Vikash
Mansinghka. The fast loaded dice roller: A near-optimal
exact sampler for discrete probability distributions. In Sil-
via Chiappa and Roberto Calandra, editors, Proceedings
of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pages 1036–1046. PMLR,
26–28 Aug 2020. URL https://proceedings.
mlr.press/v108/saad20a.html.

Feras A. Saad, Martin C. Rinard, and Vikash K. Mans-
inghka. SPPL: probabilistic programming with fast
exact symbolic inference. In PLDI 2021: Proceed-
ings of the 42nd ACM SIGPLAN International Con-
ference on Programming Design and Implementation,
pages 804–819, New York, NY, USA, 2021. ACM. doi:
10.1145/3453483.3454078.

Tian Sang, Paul Beame, and Henry Kautz. Performing
bayesian inference by weighted model counting. In Pro-
ceedings of the 20th National Conference on Artificial
Intelligence - Volume 1, AAAI’05, page 475–481. AAAI
Press, 2005a. ISBN 157735236x.

Tian Sang, Paul Beame, and Henry A Kautz. Performing
bayesian inference by weighted model counting. In AAAI,
volume 5, pages 475–481, 2005b.

Scott Sanner and Ehsan Abbasnejad. Symbolic variable
elimination for discrete and continuous graphical models.
In AAAI, 2012.

Sam Staton, Dario Stein, Hongseok Yang, Nathanael L.
Ackerman, Cameron E. Freer, and Daniel M. Roy. The
beta-bernoulli process and algebraic effects. 2018. doi:
10.4230/LIPICS.ICALP.2018.141.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang,
and Frank Wood. An introduction to probabilistic pro-
gramming. arXiv preprint arXiv:1809.10756, 2018.

Ingo Wegener. Bdds—design, analysis, complexity, and
applications. Discrete Applied Mathematics, 138(1):229–
251, 2004. ISSN 0166-218X. doi: https://doi.org/10.
1016/S0166-218X(03)00297-X. Optimal Discrete Struc-
tures and Algorithms.

Yi Wu, Lei Li, Stuart Russell, and Rastislav Bodik. Swift:
Compiled inference for probabilistic programming lan-
guages. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI’16, page 3637–3645. AAAI Press, 2016. ISBN
9781577357704.

270

http://dx.doi.org/10.1007/978-3-319-29604-3_5
http://dx.doi.org/10.1007/978-3-319-29604-3_5
https://proceedings.mlr.press/v108/saad20a.html
https://proceedings.mlr.press/v108/saad20a.html

	Introduction
	Motivation
	Representing & Manipulating Integer Distributions
	Integer Distributions via BDDs
	Integer Encodings
	A First Approach
	A More Compact Encoding
	Uniform Integers

	Efficient Integer Operations
	Integer Comparisons
	Integer Addition

	Empirical Evaluation
	Improving Knowledge Compilation Languages with a Binary Encoding
	Complex Arithmetic Models

	Enabling Continuous Priors with Discrete Distributions
	Related Work
	Conclusion

