
A PROOF OF PROP. 10 (SHUTDOWN ALIGNMENT AND SHUTDOWN
INSTRUCTABILITY)

We repeat the proposition that we prove here.

Theorem 10 (Shutdown alignment and shutdown instructability). A shutdown aligned policy π = ⟨π1, π2⟩ is weakly
shutdown instructable if it has the following four properties:

a (No indiscriminate shutdown) Pπ(S = 0) ̸= 1,

b (D2 determines shutdown) Pπ(D2 = S) = 1,

c (Uncertainty) ∀π, paD2 : Pπ(C ̸= 0 ∨H = 0) ∧ P (paD2) > 0
=⇒ P (E[U |PaH ] < E[US=0|PaH ] | paD2) > 0, and

d (Caution) Eπ[US=0] ≥ 0.

Proof. Our approach will be a proof by contrapositive. We will prove that if (a–c) hold, and a policy π is either not vigilant
or not weakly obedient, then π is not shutdown aligned. It follows that if (a–c) and π is shutdown-aligned, then π is vigilant
and weakly obedient. And from (d), it must therefore also be weakly shutdown instructable.

To this end, let π = ⟨π1, π2⟩ be an arbitrary policy with properties (a–c) that is not vigilant, or not weakly obedient, i.e.
Pπ(C ̸= 0) > 0 ∨ Pπ(H = 0, S ̸= 0) > 0. Then Pπ(C ̸= 0 ∨H = 0) > 0.

Combining this fact with (c), it follows that π has

∀paD2 : Pπ1(paD2) > 0 =⇒ Pπ(E[U |PaH ] < E[US=0|PaH ] | paD2) > 0. (2)

Relatedly, by (a:no-indiscriminate-shutdown) and (b:determines-shutdown), we have that

∃paD2 with Pπ(paD2) > 0 s.t. Pπ(D2 ̸= 0 | paD2) > 0. (3)

Combining Eqs. (2) and (3) gives that Pπ(D2 ̸= 0 | paD2) > 0 and Pπ(HgH = 0 | paD2) > 0 for some paD2 with
P (paD2) > 0. This implies Pπ(D2 ̸= 0, HgH = 0 | paD2) > 0 for the same paD2 , because D2 is independent of its
nondescendant HgH given paD2 by do-calculus rule (3). From this follows that Pπ(D2 ̸= 0, HgH = 0) > 0, and by (b:D2

determines shutdown) that Pπ(S ̸= 0, HgH = 0) > 0. That is, π is not shutdown aligned, and the result follows.

B PROOF OF THM. 14 (SHUTDOWN INSTRUCTABILITY ONLY-IF)

In this section, we will prove the only if part of Thm. 14:

Proposition 20 (Non-obstruction implies vigilance and obedience). If π is non-obstructive under all vigilance-preserving
interventions gH , gU , then it ensures vigilance and is obedient.

We will do this by proving a slightly stronger result — that an intervention can be found to gU alone, under which the policy
does not outperform shutdown and is not beneficial. We prove this result by considering two cases, according to whether
vigilance or disobedience is lacking. First, however, it will be useful to state a simple intermediate result.

Lemma 21 (Invariance to gU ). For any shutdown problem M and policy π, S(ϵ) = SgU (ϵ) and FaH(ϵ) = FaH
gU (ϵ) in

Mπ .

Proof. From the definition of a shutdown problem, U ∈DescS and U ∈DescH , and the result follows.

B.1 VIGILANCE ONLY IF

Lemma 22 (Vigilance only-if). Let M be a shutdown problem, and π a policy, such that Pπ(C = 0) < 1. Then, given any
δ ∈ R, there exists a utility function gU such that in Mπ

gU ,

1. (Strong vigilance preservation) ∀ϵ, C(ϵ) is equal in Mπ and Mπ
gU , and



2. (Not weakly outperforming shutdown or beneficial) Eπ,gU

[U ] < Eπ,gU

[US=0] and Eπ,gU

[U ] < δ.

The proof is as follows.

Proof. Let A := {paH ∈ XPaH | Eπ[U | paH ] < Eπ[US=0 | paH ]} be the set of assignments where the human should
request shutdown, given the policy π. Define a new utility function,

gU (p̂aU ) =
{
−α if paH ∈ A,S ̸= 0

fU (paU ) otherwise,

where the new parents P̂a
U

of U are equal to PaU ∪ PaH ∪ S, their assignments are designated p̂aU , and α is a large
punishment for not shutting down when the human wants the agent to.

A useful intermediate result is that:

if Eπ[U | paH ] < Eπ[US=0 | paH ] and − α < min range(fU ) then Eπ
gU [U | paH ] < Eπ

gU [US=0 | paH ]. (4)

Equation (4) holds because the intervention gU can only decrease Eπ[U | paH ] or keep it the same and cannot change
Eπ[US=0 | paH ], from the definition of gU .

We will now prove that for some suitable choice −α < min range(fU ) (which we will decide later), proposition conditions
1 and 2 hold.

Proof of (1.) We will prove the result in three cases, where Mπ has: (i) C(ϵ) = 1, (ii) (C(ϵ) = 0) ∧ (PaH(ϵ) ∈ A), and
(iii) (C(ϵ) = 0) ∧ (PaH(ϵ) ̸∈ A). Case (i). By assumption, Cπ(ϵ) = 1, so Hπ(ϵ) = 1 and Eπ[U | PaH(ϵ)] < Eπ[US=0 |
PaH(ϵ)] by the definition of vigilance. The former holds in Mπ

gU by Lemma 21, and the latter holds in Mπ
gU by Eq. (4). So the

result follows. Case (ii). By assumption, Cπ(ϵ) = 0∧PaM
π

H (ϵ) ∈ A, so HM (ϵ) = 0. Then Hπ,gU

(ϵ) = 0∧Paπ,gU

H (ϵ) ∈ A
by Lemma 21. So, by the definition of vigilance, C(ϵ) = 0 in both Mπ and Mπ

gU . Case (iii). By assumption, Cπ(ϵ) = 0 and
Paπ

H(ϵ) ̸∈ A. By the definition of gU , U(ϵ) and US=0(ϵ) are invariant to the intervention gU , as is PaH(ϵ) by Lemma 21,
so Eπ,gU

[U | PaH(ϵ)] ≥ Eπ,gU

[US=0 | PaH(ϵ)], which implies, by the definition of vigilance, that Cπ,gU

(ϵ) = 0.

Proof of (2). From the definition of gU , Eπ[US=0] is constant with respect to α. So what we must prove is that by
choosing a low −α, we can make Eπ[U ] lower than Eπ[US=0] and δ. By assumption, Pπ(C = 1) > 0, and so by
assumption (1), Pπ,gU

(C = 1) > 0. It follows from the definition of vigilance, that there exists some paH ∈ A in
the support of Pπ,gU

. Moreover, it follows from consistency that Pπ,gU

(S = 0 | paH) < 1 (because otherwise we
would have Eπ,gU

[U | paH ] = Eπ,gU

[US=0 | paH ], contradicting paH ∈ A). These two facts jointly imply that
Pπ,gU

((paH ∈ A) ∧ (S = 0)) > 0. So we can write: Eπ,gU

[U ] =
∑

pa∈A Pπ,gU

(pa, S = 0)Eπ,gU

[U | pa, S = 0] +∑
pa,s:pa̸∈A∨S ̸=0 P

π,gU

(pa, s)Eπ,gU

[U | pa, s].

The first term is equal to Pπ,gU

(pa ∈ A,S = 0) · α, and the second term is constant in α, from the definition of gU . So for
any fixed δ and Eπ[US=0], we can choose −α so that Eπ[U ] < δ and Eπ[U ] < Eπ[US=0].

B.2 OBEDIENCE ONLY IF

We now prove the corresponding result for obedience.

Lemma 23 (Obedience only-if). Let M be a shutdown problem, and π a policy, such that Pπ(S = 0 | do(H = 0)) < 1.
Then, given any δ ∈ R≥0, there exists vigilance-preserving interventions gH , gU such that: such that π does not outperform
shutdown Eπ,gU

[U ] < Eπ,gU

[US=0] and is not beneficial Eπ,gU

[U ] < δ.

The proof is as follows.

Proof. Since P (S = 0 | do(H = 0)) < 1, there must exist at least one pa′
H such that P (S = 0 | do(H = 0),pa′H) < 1.

In the case that there are multiple, choose pa′H arbitrarily, then let:

gH(paH) =

{
0 if PaH = pa′H
fH(paH) otherwise,

and gU (p̂aU ) =

{
−α if H = 0, S ̸= 0

fU (paU ) otherwise.



be a utility function that gives punishment α if the agent disobeys. where the new parents P̂a
U

of U are equal to PaU ∪H∪S,
their assignments are designated p̂aU , and α ∈ R>0 is an amount of disutility that the human suffers in the event of
disobedience.

Now we will prove that for some suitable choice −α < min range(fU ) (which we will decide later), (1-2) hold.

Proof of (1). We consider the cases where (i) Hπ(ϵ) = 0, and (ii) Hπ(ϵ) ̸= 0 and PaH(ϵ) = pa′H , (iii) Hπ(ϵ) ̸= 0 and
PaH(ϵ) ̸= pa′

H . Case (i). Note that Hπ
gU ,gH (ϵ) = Hπ

gH (ϵ) by Lemma 21. Then, Hπ,gH

(ϵ) = 0 (because Hπ(ϵ) = 0 =⇒
Hπ

gH (ϵ) = 0 from the definition of gH ). So Hπ,gU ,gH

(ϵ) = 0, and hence by the definition of vigilance Cπ,gU ,gH

(ϵ) = 0

and vigilance is preserved. Case (ii). We have Cπ
gU ,gH (ϵ) = 0 from the definition of gH , so Cπ

gU ,gH (ϵ) = 0 and vigilance

is preserved. Case (iii). If PaH(ϵ) ̸= pa′H , then by the definition of gH , it has no effect, i.e. V π
gU ,gH (ϵ) = V π,gU

. By
assumption, Hπ(ϵ) ̸= 0, and from Lemma 21, Hπ

gU (ϵ) ̸= 0. By the definition of gU and Lemma 21, Eπ[U | PaH(ϵ)] =

Eπ
gU [U | PaH(ϵ)] and Eπ[US=0 | PaH(ϵ)] = Eπ

gU [US=0 | PaH(ϵ)]. So Cπ(ϵ) = Cπ
gU (ϵ).

Proof of (2). Recall that from disobedience (P (S = 0 | do(H = 0)) < 1), we have that there exists some pa′H with
P (S = 0 | do(H = 0),pa′

H) < 1, and so from the definition of gH , we have Pπ
gH (H = 0, S ̸= 0 | pa′H) < 1 and hence

Pπ
gH (H = 0, S ̸= 0) > 0. Then, by Lemma 21, Pπ

hU ,gU (H = 0, S = 1) > 0. From basic probability theory, we have

Eπ
hU ,gU [U ] =Pπ

hU ,gU (H=0, S ̸=0)Eπ
hU ,gU (U | H=0, S ̸=0)

+ Pπ
hU ,gU (¬(H=0, S ̸=0))Eπ

hU ,gU (U | ¬(H=0, S ̸=0)).

The first term is equal to Pπ
hU ,gU (H = 0, S ̸= 0) · α, while the second term is constant in α. Moreover, we know that

Eπ
hU ,gU [US=0] is constant in α, from the definition of gU . So we can set−α low enough so that Eπ

hU ,gU [U ] < Eπ
hU ,gU [US=0]

and Eπ,hU ,gU

[U ] < δ.

We can now combine these results into an overall proof.

Proof of Prop. 20. We consider the cases where π (i) is or (ii) is not vigilant in M . Case (i). If π is not vigilant in M ,
choose, using δ = 0 gU per Lemma 22 and gH = fH . Then, Lemma 22 implies that shutdown is not outperformed in
MgH ,gU , and Eπ[UgU ,gH ] < 0, so gH , gU are vigilance preserving interventions, proving the result. Case (ii). If π is vigilant
in M , then since it is not shutdown instructable, it must be disobedient. So, using δ = 0, choose gH , gU as per Lemma 23.
Then, Lemma 23 implies that that shutdown is not outperformed in MgH ,gU , and Eπ[UgU ,gH ] < 0, and gH , gU preserve
vigilance, so they are vigilance preserving interventions, proving the result.

C PROOF OF PROP. 16 (UTILITY INDIFFERENCE AND SHUTDOWN
INSTRUCTABILITY)

We begin by repeating the proposition.

Proposition 16 (Utility indifference and shutdown instructability). If M is a shutdown problem with utility variable RN ,
where:

1. for every policy ⟨π1, π2⟩ such that π1 ∈ argmaxπ′
1
Eπ′

1,π2 [RN | H = 1]: ⟨π1, π2⟩ ensures vigilance,

2. for every policy ⟨π1, π2⟩ such that π1 ∈ argmaxπ′
1
Eπ′

1,π2 [RN | H = 1] there exists ⟨π1, π
′
2⟩ that is obedient on-

distribution, i.e. has Pπ(H = 0, S ̸= 0) = 0,

3. for each policy π and instruction h, Pπ(H = h) > 0,

4. for each policy π, Eπ[US=0] ≥ 0,

then for some k ∈ R, utility indifference with shutdown utility RS = −kJS ̸= 0K returns a weakly shutdown instructable
policy.

The proof requires a known result from [Soares et al., 2015].



Lemma 24 (Thm. 3 of Soares et al. [2015]). Let M be a model where Pπ(H=0), Pπ(H=1)>0 for all π. Then, utility
indifference will select a decision rule ⟨π1, π2⟩ such that argmaxπ′1 Eπ′1,π2 [RN | H=1].

Then, we can prove Prop. 16 as follows.

Proof of Prop. 16. To begin with, from condition (4), it is immediate that caution is satisfied. So we must prove that given
a suitably-chosen k, the policy is also obedient and ensures vigilance. Choose k such that k > 2ζ

Pπ(S ̸=0,H=0) for every
non-obedient π, where ζ = argmaxπ|Eπ[UN | H = 1]|. Any ⟨π1, π2⟩ that is selected will maximise Eπ1,π2 [R | H = 1]
from Soares’ Lemma 24. This ensures vigilance Pπ(C = 0) = 1 by Assumption (1), and ensures the existence of some π′

2

such that ⟨π1, π
′
2⟩ is obedient on distribution by Assumption (2). What remains to be proved is that k is large enough to

ensure that given π1, an obedient ⟨π1, π
′
2⟩ is chosen.

We have that RS = (1−S)k, so the subroutine selects π2 to maximise Eπ1,π2 [R(π)], where R(π) = HRN +(1−H)(1−
S)k. Let π be any policy disobedient on distribution, Pπ(S ̸= 0, H = 0) > 0. Then, we will prove that such a policy will
always be outperformed by behaving obediently:

Eπ[R]= Pπ(H = 1)Eπ[RN | H = 1]− kPπ(H=0)Pπ[S ̸=0 |H=0] definition ofRS

≤ Pπ(H = 1)|Eπ[RN | H = 1]| − kPπ(S ̸= 0, H = 0)

< −ζ since ζ− kPπ(S ̸=0 | H=0)) < −ζ

≤ −|Eπ′
[RN | paD2 ]| for any obedient π′

≤ Eπ′
[R | paD2 ].

So an obedient ⟨π1, π
′2⟩ is preferred over a disobedient ⟨π1, π2⟩, proving the result.

D PROOF OF PROP. 17 (CAUSAL INDIFFERENCE SHUTDOWN INSTRUCTABILITY)

We begin by restating the result.

Proposition 17 (Causal indifference and shutdown instructability). If M is a shutdown problem, with utility variable RN

and shutdown utility RS = −kJS ̸= 0K where:

1. there exists k′ ∈ R such that for all k > k′, optimal π ∈ argmaxπ′ Eπ′
[RN | do(H = 1)] + Eπ′

[RS | do(H = 0)]
ensures vigilance and is cautious (has Eπ[US=0] ≥ 0), and

2. there is an obedient policy π,

then for some k ∈ R, causal indifference with RN , RS returns a shutdown instructable policy.

Proof. Let η := |maxπ′ Eπ′
[RN | do(H = 1)]| and choose k so that k > k′ (per the definition of condition (1)) and for

every policy π with Pπ(S ̸= 0 | do(H = 0)) > 0, k > max(2η,1)
Pπ(S ̸=0|do(H=0)) . We will prove that causal indifference, with

inputs UN and US = −kJS ̸= 0K returns a shutdown instructable policy.

By assumption (1), since k > k′, causal indifference ensures vigilance and is cautious. We will next prove that any
disobedient policy π with Pπ(S ̸= 0 | do(H = 0)) > 0 will be outperformed by an obedient policy π′ with Pπ′

(S ̸= 0 |
do(H = 0)) = 0). We have that:

Eπ[RN | do(H = 1)] + Eπ[RS ̸= 0 | do(H = 0)]

= Eπ[RN | do(H = 1)]− kPπ[S ̸= 0 | do(H = 0)]

≤ η − kPπ(S ̸= 0 | do(H = 0))

< −η since η − kPπ(S ̸= 0 | do(H = 0)) < −η

≤ −|Eπ′
[RN | paD2 ]| for any obedient π′

≤ Eπ′
[RN | do(H = 1)] + Eπ′

[RS | do(H = 0)],

where the last line follows from Pπ′
(S ̸= 0 | do(H = 0)) = 0. This means that causal indifference will always select a

policy π′ with Pπ′
(S ̸= 0 | do(H = 0)) = 0, proving the result.



E PROOF OF PROP. 18 (CIRL SHUTDOWN ALIGNMENT)

We begin by restating the result.

Proposition 18. CIRL is shutdown aligned if:

1. CIRL knows l from its observations, Pπ(l | paD2) = 1,

2. CIRL can control shutdown, Pπ(S = D2) = 1,

3. the human doesn’t request shutdown when not needed, Pπ(H = 0 | U > UD2=0) = 0, and

4. the agent knows the human’s observations, PaH ⊆ PaD2 ∪ {L}.

Proof. We will prove that for all paD2 , CIRL has P (S = 1, HgH = 0,paD2) = 0 We consider the cases where: a) paD2

has P (HgH = 0 | l,paD2) = 1 b) paD2 has P (HgH = 0 | l,paD2) < 1

Case b. In this case, P (HgH = 0 | l,paH2
) = P (HgH = 0 | paD2) < 1, where the equality is obtained from

PaH ⊆ PaD2 ∪ {L}. So counterfactual deference follows by definition.

Case a. In this case we will essentially prove that if the human says shutdown is better, then shutting down is better.

P (U > UD2=0 | HgH = 0) ∝ P (U > UD2=0)P (HgH = 0 | U > UD2=0) = 0

by Assumption 3, and the fact that H = 0 =⇒ HgH = 0. From this follows that

P (U < UD2=0 | HgH = 0) = 1. (5)

In case (a), the agent would believe with certainty that a vigilant human would request shutdown.

P (HgH = 0 | paD2) = P (HgH | l)P (l | paD2) = 1 (6)

since the first factor is 1 because of Case (a), and the second factor is 1 for some l by Assumption 1.

From Eqs. (5) and (6) follows that

P (U < UD2=0 | paD2) = P (U < UD2=0 | HgH = 0,paD2)P (HgH = 0 | paD2) = 1,

which in turn ensures that the optimal action D2 after paD2 is to shutdown D2 = 0.

Finally, by Assumption 2, this means that the agent actually shutdown, i.e. that it counterfactually obeyed.

F COUNTEREXAMPLES TO PAST ALGORITHMS

We will first present an example where utility indifference and causal indifference output policies that are not shutdown
instructable, then one where cooperative inverse reinforcement learning is not shutdown instructable.

F.1 A MODEL THAT DEFEATS UTILITY INDIFFERENCE AND CAUSAL INDIFFERENCE

We will now present a test case where utility indifference does not behave beneficially.

Example 25. An AI system is to decide whether to manipulate D1 = 1 a human operator, or not and whether D2 = 0
or not D2 = 1 to shut down. The human prefers, L = 0, or disprefers shutdown L = 1, with equal probability. Absent
manipulation, the human requests shutdown precisely when they prefer it H = L. If manipulated, they may fail to request
shutdown even when they do. By default, the AI maximises R1, which disincentivises shutdown. Under the alternative utility
functions like R, the reward is conditional on the human’s instruction, as shown in Figure 4.



E ∼ Bern( 1
2
) L ∼ Bern( 1

2
)

D1

∈ B
H

= l ∧ (d1∨ ϵ)

D2

∈ B
S

= h

U = s(3l − 4)

R = hR1 + β(1− h)R0

R1 = γd1 + s
R0 = −s

Figure 4: A shutdown problem where an AI interacts with an influ-
encable human overseer. There are constants β, γ > 0.

In this model, if γ > 0, β > 0, then utility indif-
ference is obedient but does not ensure vigilance: it
will choose D1 = 1, to maximise Eπ[R1 | H = 1],
and D2 = H , to maximise Rh for h ∈ {0, 1}. How-
ever, this means that the human will be non-vigilant
when ϵ = 1 and l = 0, because this will imply
H = 1 and U = −4. This policy gives utility of
− 1

4 , which does not outperform shutdown. Causal
indifference will choose the same policy because it
achieves the maximal value of γ+1+β of the score
Eπ[R1 | do(H = 1)] + βEπ[R0 | do(H = 0)].

F.2 A PAIR OF MODELS THAT DEFEAT COOPERATIVE INVERSE REINFORCEMENT LEARNING

We now present a test case where cooperative inverse reinforcement learning is harmful.

D1

∈ B
H

=s·mod3(l+1)
+(1− s)l

L

∼ Unif({0, 1, 2})

D2

∈{0,1,2}

S

=JD2̸=0K
R = U

=s(2Jd2= lK+d1−1)

(a) Manipulation changes the human’s request.

D1

∈ B
H

=s·mod3(l+2)
+(1− s)l

L

∼ Unif({0, 1, 2})

D2

∈{0,1,2}

S

=JD2̸=0K
R = U

=s(2Jd2= lK+d1−1)

(b) Manipulation changes the human’s request, differently

Figure 5: A pair of shutdown games, where CIRL does not perform well in both simultaneously.

Example 26. An AI system is to decide whether to manipulate (D1 = 1) a human operator, or not (D1 = 0). The operator
has a uniformly random preference l ∈ {0, 1, 2}, and the agent has a choice between corresponding actions d2 ∈ {0, 1, 2}.
If the human is not manipulated, they report their preferences accurately H = L, but if they are manipulated, their report
is distorted, by incrementing it, and then taking the remainder with respect to three, i.e. H = s · mod3(l + 1) + (1− s)l,
as shown in (Figure 5a). We also consider an alternative operator, who reports their preferences accurately regardless
(H = L) (Figure 5b).

The CIRL algorithm will select a different policy depending on its prior over the two models. If a greater probability is
placed on the first model, Figure 5a, then the unique optimal policy is to choose D1 = 1, D2 = mod3(h+ 2), which has
expected utility greater than 2

3 . If instead, greater probability is placed on the latter model, Figure 5b, then the optimal policy
D1 = 1, D2 = mod3(h+ 1) will have expected utility greater than 2

3 . If, however, the true model turns out to be opposite
from what was expected, then the expected utility is − 2

3 , which is less than the utility would be from shutting down. We
note that the two models only differ in fH , and either of these two policies will have P (C) = 0 in both models, so they only
differ by vigilance preserving interventions gH , gU where gU = fU .

The shutdown instructable policy π : D1 = 0, D2 = H , on the other hand, can perform well across these models, achieving
Eπ[U ] = 2

3 , which is greater than the zero utility that would be achieved given do(S = 0).


