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Abstract

Learning and understanding heterogeneous pat-
terns in complex spatio-temporal data is an impor-
tant and challenging task across domains in science
and engineering. In this work, we develop a model
for learning heterogeneous and dynamic patterns
of velocity field data, motivated by applications
in the transportation domain. We draw from basic
nonparametric Bayesian modeling elements such
as the infinite hidden Markov model and Gaussian
process and focus on making the learning of such
a stochastic model scalable for voluminous and
streaming data. This is achieved by employing se-
quential MAP estimates from the infinite HMM
model, an efficient sequential sparse GP posterior
computation, and refinement of the estimates using
the Viterbi algorithm, which is shown to work ef-
fectively on a careful simulation study. We demon-
strate the efficacy of our techniques to the NGSIM
dataset of complex multi-vehicle interactions.

1 INTRODUCTION

A common challenge arising in modern applications is the
presence of a large amount of data available via spatio-
temporal dynamics generated in a highly heterogeneous and
potentially fast-paced environment, yet there is a need to
extract meaningful and interpretable patterns out of such
complexities in a computationally efficient way. While there
are numerous examples in a variety of domains, e.g., Sarkar
et al. [2019], Nelson and Widrow [2022], Angell and Shel-
don [2018], McDowell et al. [2017], Rubenstein and Hobson
[2004], Hooten and Johnson [2017] to name a few, what
motivates our present work is the analysis of traffic flow
patterns out of high-volume and streaming measurements
of vehicles passing through a busy thoroughfare.
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A visitor to a large city may be initially shocked upon ob-
serving a bewildering range of individual driving behaviors
and of cars moving in varying speeds and directions, compet-
ing and challenging for an open lane at any given moment.
Underneath this seemingly intractable complexity, one may
eventually find the calming ebbs and flows of movements
regulated by traffic control and the rhythm of the day. Such
patterns of traffic flows can be represented by a vector field
indexed on a two-dimensional plane.

Define a vector field (interchangeably velocity field ) as a
function f : X → R2, such that f(x) records the velocity
vector for a car in location x ∈ X . Unless there is an un-
usual disruption, one expects that the velocity vector varies
smoothly, both in direction and magnitude, through the spa-
tial domain. Thus, we adopt the viewpoint that a smooth
vector field is a useful mathematical device to describe the
current state of traffic flow at any given moment. Gaussian
process (GP) Rasmussen and Williams [2006] is a useful
tool for modeling such vector fields, and has been utilized in
recent work in motion modeling [Barão and Marques, 2017,
Klinger et al., 2016, Ellis et al., 2009] or traffic data anal-
ysis [Guo et al., 2019, Chen et al., 2016]. However, these
works do not explicitly capture the temporal dynamics, even
though the daily time or season may be important factors
for a driver to consider for safe and efficient driving. This
calls for stochastic modeling tools to explicitly represent
the temporal nature of spatial traffic patterns. Moreover,
such a model must be learned from potentially high-volume,
heterogeneous, and streaming data.

We focus on NGSIM traffic data at Lankershim
Boulevard (LB), Los Angeles for our application
(http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm).
Figure 1 illustrates the notion of velocity fields in this
context — in particular Fig. 1(C) captures a left turn from
LB to University Hollywood Dr. The data comprises 1.5
million observations spread over 30 minutes. Understanding
the traffic patterns is essential in many applications,
including urban planning, construction, and real-time
traffic regulation. This requires interpretable methods to
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Figure 1: Notion of velocity fields: (A) Image of Lankershim Boulevard, the region under study; (B) Representation of a
subset of this region under local coordinate system; (C) A particular velocity field (traffic pattern); (D) Real observations at
a specific time point, believed to arise from the velocity field in (C) (Arrow lengths not comparable across images).

meaningfully extract information on driving behavior.
However, the sheer size of the data makes many existing
model-based interpretable inference methods inapplicable.

Contributions We aim to achieve fast and accurate infer-
ence underlying a stochastic model for smooth vector field
patterns arising in a heterogeneous and dynamic environ-
ment. Our contributions are two-fold. First, we propose a
Bayesian nonparametric model, which at the high level can
be cast as an infinite hidden Markov model (iHMM) on a
state space of multi-dimensional vector fields described by
smooth Gaussian processes. Second, we develop a novel
algorithm for scalable Bayesian inference on the proposed
model. The model and algorithm are demonstrated via ex-
tensive simulations and application to the NGSIM data.

More specifically, a discrete-time hidden Markov chain that
operates on the state space of the latent velocity fields is
constructed to capture the temporal dynamics of spatial pat-
terns. This modeling brings forward a novel aspect to the
application perspective, which is potentially useful in im-
proving autonomous vehicles based on interpretable learned
patterns. Moreover, to account for the highly heterogeneous
environment, we allow the number of hidden states to be
unbounded. This is achieved by drawing from the powerful
nonparametric Bayesian techniques of iHMM and hierarchi-
cal Dirichlet processes (HDP) [Beal et al., 2002, Teh et al.,
2006]. On the algorithmic front, our contribution includes
deriving sequential MAP estimates from the infinite HMM
model and efficient sequential GP posterior computation
techniques. The two novel steps of the proposed method
consist of (1) forward pass step - sequentially updating the
state labels by MAP estimates based on the sequential pos-
terior of the model and (2) refinement step - to remove
redundant clusters found by the greedy forward pass. Simul-
taneous observations at a large number of spatial locations
in the dataset suggest the involvement of large covariance
for GP computations, inverting which is computationally

prohibitive and overcome by a Sparse GP approximation
technique with fixed knots to replace numerical optimiza-
tion with closed-form updates. These innovations allow us
to analyze over 50,000 total observations in under 2 minutes.

Related work Prior works that combine both Dirichlet
Process and GP modeling elements to extract an unknown
number of traffic patterns include [Guo et al., 2019, Joseph
et al., 2011, Chen et al., 2016], but these models do not
consider the temporal nature of the data and are not scal-
able for large datasets. On the other hand, [Jung and Park,
2020] consider HMM dynamics with GP emission at scale,
but as we show in Section 5, may drastically end up un-
derestimating the number of underlying clusters thereby
(over)generalizing patterns too much; some other similar
works ([Henter et al., 2012, Nakamura et al., 2017, Nagano
et al., 2018] which combine HMM and GP elements also
suffer from the heavy computational burden. While some
of the aforementioned works employ Bayesian inference
techniques via MCMC [Gelfand and Smith, 1990, Fox et al.,
2009], which may lead to the computational inefficiency for
large datasets, a number of them including [Jung and Park,
2020] use stochastic variational inference (VI)( [Blei et al.,
2003, Foti et al., 2015], [Jordan et al., 1999, Blei and Jordan,
2006, Hoffman et al., 2013, Mandt et al., 2017]) techniques
which may favor simpler models unable to capture the un-
derlying heterogeneity in the data.

The remainder of the paper is as follows. Section 2 briefly
describes the modeling elements employed in this work.
Section 3 formalizes the data representation and describes
our model. Section 4 describes our proposed algorithm. An
extensive simulation study is given in Section 5, followed by
experimental results on the NGSIM traffic data in Section 6.

Notations The set {1, . . . , n} is denoted by [n]. For a func-
tion φ : X → R for X ⊂ RD and X = (x1, . . . , xn) ⊂ X ,
let φ(X) denote the column vector (φ(x1), . . . , φ(xn))>.
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For a function K : X × X → R and given X1,X2 ⊂
X , where Xi = (xi,1, . . . , xi,ni), we use K(X1,X2)
to denote the n1 × n2 matrix, whose (i, j)th element is
K(x1,i, x2,j). If X1 = X2, we write it simply as K(X1).

2 BACKGROUND

We discuss the key modeling elements that we use in this
work. Further details are provided in Appendix A.

Gaussian Process (GP): A stochastic process {f(x) :
f(x) ∈ R, x ∈ X} is called a GP [Rasmussen and
Williams, 2006] with mean function m(·) and covariance
kernel K(∗, ∗) if for any finite X := {x1, . . . , xk} ⊂ X ,

f(X) ∼ Nk(m(X),K(X)). (1)

This is denoted as f ∼ GP(m,K). It is common practice to
assume m = 0. In our work, the index space is the spatial
region. To incorporate measurement error, it is common
practice to model the observations as corrupted by white
noise in which case the (n i.i.d.) observations yi correspond-
ing to spatial region xi are modeled as yi = f(xi)+ε, where
ε ∼ N (0, σ2), with f ∼ GP(m,Kθ) (where θ includes all
the kernel parameters); then the posterior distribution of f
can be expressed in terms of its finite-dimensional distribu-
tions. For X∗ = {x∗i }i∈[n∗], we have

f(X∗)|X,y ∼ N (µ∗,Σ∗) ,where

µ∗ = µ+Kθ(X
∗,X)A∗θ(y − µ) (2)

Σ∗ = K(X∗)−Kθ(X
∗,X)A∗θKθ(X,X∗) (3)

A∗θ =
[
Kθ(X) + σ2I

]−1
. (4)

Note that computation ofA∗θ requires the inversion of a n×n
matrix. The parameters (θ, σ2) can be estimated by maxi-
mizing the marginal likelihood, which is also challenging
for large n.

Sparse Gaussian Process (SGP): This is a variational
approximation to GP, which can overcome the computa-
tional bottleneck of traditional GP [Titsias, 2009, Hens-
man et al., 2013]. The idea is quite simple: consider a
set of spatial points Z (of size m), to be referred to as
knots or inducing points and a variational distribution of
f(Z) ∼ φ(fZ) ≡ N(µm,Σm) , using which we can get
an approximation for the true posterior. The objective is to
maximize the evidence lower bound by optimizing over the
inducing points Z, the variational parameters µm,Σm, and
other parameters (like those of kernel or likelihood). Given
these parameters, the posterior of f over X∗ is given by

f(X∗)|X,y ∼ N (µ∗,Σ∗) ,where

µ∗ = K(X∗,Z)K(Z)−1µm (5)

Σ∗ = K(X∗)−K(X∗,Z)K(Z)−1K(Z,X∗)

+K(X∗,Z)K(Z)−1ΣmK(Z)−1K(Z,X∗). (6)

Given the inducing points Z and the kernel, the variational
lower bound for the marginal likelihood can be optimized
to obtain analytical solutions for the variational parameters
µm,Σm:

µm =
1

σ2
K(Z)ÃK(Z,X)y (7)

Σm = K(Z)ÃK(Z), where (8)

Ã =

(
K(Z) +

1

σ2
K(Z,X)K(X,Z)

)−1
. (9)

Note that for SGP, we need to invert matrices of size m×
m, which is much faster when m << n. Typically, batch
gradient-based methods can be employed to optimize all the
parameters together, which include kernel parameters, σ2,
Z, µm,Σm.

Infinite Hidden Markov Model (iHMM): The infinite
HMM model of [Beal et al., 2001] is a Bayesian nonpara-
metric model which allows a countably infinite number of
components. It was subsequently shown to be an instance
of the Hierarchical Dirichlet process HMM model of [Teh
et al., 2006]. iHMM uses a local allocator (which can select
one of the already explored states using the current state
and the transition count matrix Nt) and a global allocator
(which can select one of the observed states or a new unseen
state) at each time point t to decide the state at the next
time point st+1. The oracle variable ot (binary-valued) is
the indicator of whether the global allocator was used at
time t and Mt is the count vector capturing the number of
times till time t that a particular state was visited using the
global allocator. The global allocator requires st and Mt.
Note that the assignment of state at every time depends on
the current oracle variable and the chosen allocator. A new
state can be reached only using the global allocator.

We briefly describe the infinite HMM prior structure. Given
parameters (α, β, γ), to draw a sample of a sequence of
states {st} from this prior, we start by setting s1 = 1. Ini-
tialize the oracle variable o1 = 1. Given {s1:t} and {o1:t},
let Kt be the number of distinct elements in {s1:t} and Nt
and Mt denote the transition count matrix (i.e. (Nt)i,j =∑
r∈[t−1] 1(sr = i, sr+1 = j)) and the oracle count vec-

tor (i.e. (Mt)i =
∑
r∈[t] 1(sr = i, or = 1)) respectively.

Given st = i, st+1 and ot+1 are generated as follows. For
convenience, we use the short hands Ni· =

∑
j Nij for Nt
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Figure 2: Example of data generated from our model with T = 6 time points and K = 4 true latent functions (shown by
colors). (top) true vector fields at each time and (bottom) noisy observations at corresponding times over different locations.

(similarly M·), dropping subscript t.

p

(
st+1=j
ot+1=0

∣∣∣∣ st=i,Nt,Mt

)
=

{
α+Nii

Ni·+α+β
j = i

Nij

Ni·+α+β
j 6= i; j ≤ Kt

(10)

p

(
st+1=j
ot+1=1

∣∣∣∣ st=i,Nt,Mt

)
=

{
β

Ni·+α+β
Mj

M·+γ
j ≤ Kt

β
Ni·+α+β

γ
M·+γ

j = Kt + 1.

(11)

Under this mechanism, starting at the current state st = i,
the system can jump to one of the previously explored states
[Kt], either directly (with ot+1 = 0) or through the oracle
(with ot+1 = 1) or might explore a new state Kt + 1, for
which it must go through the oracle. See Figure 1 in Ap-
pendix A for an illustration. We write st ∼ iHMM(α, β, γ),
to indicate the infinite HMM as the prior on {st}.

3 THE MODEL

We assume there are (an unknown number) K∗ underlying
functions f1, . . . , fK∗ : X → RP , each function mod-
eling a velocity field. The temporal dynamics of the sys-
tem are controlled through an HMM, in particular, assume
{st}t∈[T ] follows Markov dynamics with transition matrix
ΠK∗×K∗ = (πij)i,j , i.e. p(st = j|st−1 = i) = πij . Given
the state st of the Markov chain at time t, the system follows
the velocity field fst and hence, the observations at time t
are given by

yt,j = fst(xt,j) + εt,j , j ∈ [nt], t ∈ [T ] (12)

where εt,j
iid∼ NP (0,Σ) is the noise and {xt,j}j∈[nt] is the

set of fixed spatial locations where observations are avail-
able. We take Σ = diag(σ2

1 , . . . , σ
2
P ) as a diagonal matrix.

When P = 1, we place an infinite HMM prior on the state

sequence {st} and independent mixture of Gaussian pro-
cess priors on the (infinite) sequence f1, f2, . . . of functions
fk ∼ GP(0,Kθk) (with respective kernel parameters θk).
Guided by our requirement to extract sufficiently smooth
functions, we choose the popular Radial Basis Function
(RBF) kernel Kθ(x, x

′) = σ2
0 exp

{
−‖x− x′‖2 /2`20

}
where θ = (σ2

0 , `0) embodies the kernel parameters. For
P > 1, we place independent such Gaussian process priors
across different output dimensions. For computational ef-
ficiency, we approximate the Gaussian Process prior with
Sparse Gaussian Process. The complete model, referred to
as iHMM-GP, is thus given as follows.

{st} ∼ iHMM(α, β, γ) (13)
fk ∼ ⊗PSGP(0,Kθk), ind. k ≥ 1

(Y t)j |Xt, st ∼ Nnt

(
(fst)j(Xt), σ

2
j I
)
, ind. j ∈ [P ]

where the second line indicates that each fk consists of P
functions (one for each output dimension), each drawn inde-
pendently from a Sparse Gaussian process and the last line
indicates that the jth dimension of the observations is mod-
eled as Gaussian, independently across these dimensions,
based on the current state. We treat (α, β, γ) as hyperpa-
rameters of the model and estimate {σ2

j }j∈[P ] and {θk}
from the data. Figure 2 shows a simulated example from our
model. We mention the following remarks.

Remark: (i) The model assumes that Σ represents the un-
derlying error in measurement and therefore it is reasonable
to assume the noise level Σ to be spatio-temporally invari-
ant. (ii) The model is flexible to allow observed positions to
vary across time points. This in turn also enables efficient
prediction at unobserved locations present in test data. This
is a key aspect of the model that helps capture population
driving behavior.
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4 INFERENCE

Our method of inference comprises of two steps, the first
of which is a novel two-pass algorithm over the data. The
two steps after initialization can be summarized as (1) per-
forming a forward pass by updating the parameters using
sequential greedy MAP estimation, followed by a refine-
ment step, which uses the Viterbi algorithm to reassign
states with the goal of removing redundant clusters; and (2)
iterating between updating the latent states given the current
components, using Viterbi, and updating the posteriors of
the estimated components, given the current states. The out-
line of the algorithm is given in Algorithm 1. For notational
simplicity, we write the steps for P = 1 and take nt = n
for all t.

Algorithm 1 Proposed algorithm for iHMM-GP model
Input: Data D1:T = {(Xt,Y t)}Tt=1.
Require Tuning parameters Z,m0, (α, β, γ), n0, Lmax.

Initialization:
Get Σ̂ and {θ̃t} and p(Y t|Xt) ∀t ∈ [T ] (see Section 4.1)

Step 1 Using forward pass and refinement

1. Create blocks: Bj = {Dt : (j−1)m0+1 ≤ t < m0j}
2. ∀ j, fit forward pass (see Section 4.2) on Bj

3. ∀ j, use refinement step (Section 4.3)

4. Combine the results for different j (see last paragraph
of 4.3) to obtain K and s1:T

Step 2 Iterate Lmax times or till convergence:

• Update s1:T given the clusters, using Viterbi

• Update the SGPs for each cluster, given s1:T
Output: s1:T .

4.1 INITIALIZATION

We first fit GP to (Xt,Y t) separately for each t ∈ [T ]. We
extract the following information from these fitted models:
(1) the noise variance σ̂2

t for each t, (2) the estimated op-
timal kernel parameters θ̃t for each t and (3) the marginal
log-likelihoods p(Y t|Xt, θ̃t) for these T models. From (1)
we compute the overall estimated noise variance σ̂2 as the
empirical mean of {σ̂2

t }. We fix and use this σ̂2 throughout.
The following steps after initialization are performed on the
meta-model comprised of the output of initial GP estimates.

4.2 FORWARD PASS

The idea of the forward pass is to traverse the data from
t = 1 to t = T , sequentially making a greedy decision,
based on the estimated variables so far, whether to add the

current Dt to an existing cluster or create a new one, i.e.,
choose ŝt+1, ôt+1 as

arg max p(st+1, ot+1|s1:t = ŝ1:t, o1:t = ô1:t,D1:(t+1)).

At time t+ 1, based on the current estimates till time point
t, we use the iHMM prior and the GP models to make this
decision. By Bayes theorem,

p(st+1, ot+1|s1:t, o1:t,D1:(t+1))

∝ p(st+1, ot+1|s1:t, o1:t)p(Dt+1|s1:(t+1),D1:t) (14)

where the first term on the right is given by the iHMM prior
structure, given in Equation (10) and (11). Note that the
Nt,Mt used in (10) and (11) only depends on s1:t and o1:t.

For the second term, denote D(k)
1:t = {Dr : r ≤ t, sr = k}

and similarly for other quantities and let Kt be the number
of clusters found using data D1:t.; then, for k ≤ Kt (one of
the existing clusters)

p(Dt+1|st+1 = k, s1:t,D1:t) =

∫
p(Dt+1|f)Q(f |D(k)

1:t , θk)

= N (Y t+1|µ(k)
t ,Σ

(k)
t + σ2I)

(15)

where Q is the law of the GP. Here µ(k)
t and Σ

(k)
t can be

obtained using Equations (2) and (3), by replacing X∗ with
Xt+1, X with X

(k)
1:t and y with Y

(k)
1:t . For k = Kt + 1

(new cluster), there is no previous time point data to update
the posterior and hence we have

p(Dt+1 |st+1 = k, s1:t,D1:t) =

∫
p(Dt+1|f)Q(f |θk)

= N (Y t+1|0,Kθk(Xt+1) + σ2I) (16)

which is the marginal likelihood computed during initializa-
tion. In this case, we use θk = θ̃t+1. Using the above, we
sequentially estimate the state and oracle variables, starting
with ŝ1 = 1, ô1 = 1. Note that computation of this second
term is costly as it requires the inversion of a large matrix.
In particular, consider Equation (15), whose computation in-
volves inverting a matrix of size ñ(k)t × ñ

(k)
t , which requires

O((ñ
(k)
t )3) computations. Here ñ(k)t =

∑
r≤t:st=k nt. This

keeps growing for each t and requires Kt (also growing
relative to t) such computations. Therefore, we use sparse
Gaussian process with a fixed set of inducing points Z of
size m . nt to speed up the process (see Appendix B for
details). This reduces the computational complexity of the
key matrix inversion step to O(m3) instead, thus reducing
the overall computational complexity of the algorithm.

4.3 REFINEMENT STEP

After finishing the forward pass, we have estimates of s1:T ,
based on which we have KT components, each with an SGP.
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We propose a refinement step with the goal of identifying
and removing redundant clusters, if any.

For cluster k and K current clusters, to decide if it is re-
dundant given the others, we temporarily remove it, this
gives new N (−k),M (−k). Let τk = {t ∈ [T ] : st = k}
and τ−k = [T ] \ τk. We propose to use Viterbi to reassign
{st}t∈τk given {st}t∈τ−k

, treating it as a HMM with K
states (K − 1 remaining ones and one extra new state). The
transition probabilities are constructed using iHMM with
N (−k) and M (−k) and the emission probabilities are based
on Equation 15 for remaining states and marginal likelihood
for the new state. If the number of times a new cluster is
required exceeds a threshold n0, we retain it; otherwise, we
dissolve this and reassign {st}t∈τk to the other K − 1 clus-
ters using Viterbi. This tuning parameter n0 incorporates
prior knowledge about the sizes of the clusters and works
as a truncation mechanism to reduce the number of clusters
and allows the user to ignore smaller clusters (by increasing
the value of n0). In the absence of prior knowledge, we
set it at 0. This implies that for a cluster (from the forward
pass) even if there is a single time point that requires a new
cluster after removing it (during the refinement step), we
choose to retain it as a separate cluster. In practice, it may be
tuned using out-of-sample log-likelihood of the fitted model
by starting from a smaller value followed by a gradual in-
crement based on the log-likelihood score. This parameter
has a similar role as minPts parameter in DBSCAN cluster-
ing [Ester et al., 1996]. We go through the clusters in their
increasing size.

Use of Blocks: Following the forward pass and refine-
ment steps we note that (1) the parameter estimates may
depend on the particular order of the training data, and (2)
the computational burden is high when T is high since the
forward pass cannot be enabled in parallel loops. To mitigate
this, we propose to partition the data into distinct blocks,
Bj = {Dt : (j−1)m0+1 ≤ t < m0j}, of sizem0 and per-
form forward pass and refinement on each of these blocks
independently in parallel. We combine the results from dif-
ferent blocks based on K-Means and Silhoutte coefficient.
See Appendix C for additional details.

The tuning parameters include the set of inducing points
Z, the block size m0, the iHMM parameters (α, β, γ), the
threshold parameter n0 in the refinement step, and Lmax,
the maximum number of iterations in Step 2.

5 SIMULATION STUDY

Next, we present simulation studies to explicate the perfor-
mance of our model and proposed algorithm. Mean of re-
sults for each experiment (over 30 replications) is reported.

5.1 SIMULATION SETTINGS

Each of the experiments is controlled by T (total number of
time points), n (the average number of observations per time
point), and σ2 (the noise level). Given K∗ true functions
f∗k : RD → RP and a transition matrix Π∗, we generate
data from an HMM model with observations arising as in
Equation (12). A particular instance of the training data for
D = P = 2 is demonstrated in the bottom row of Figure 2.
We refer to the proposed method in this work as iHMM-GP.

For evaluating performance, we consider the prediction of
labels, for which we compare the estimated labels on train-
ing data with the true labels based on (a) RAND index, (b)
Adjusted Mutual Information (AMI), and (c) V Score. The
Rand Index [Hubert and Arabie, 1985] has a value between
0 and 1, with 0 indicating that the two data clusterings do
not agree on any pair of points and 1 indicating they are
the same. Mutual information of a clustering indicates the
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Figure 5: Label estimation performance in Experiment 1.
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Figure 6: Label estimation performance in Experiment 2.

reduction in the entropy of class labels if the cluster labels
are known. Adjusted mutual information [Vinh and Epps,
2010] accounts for chance - it is a value between 0 and 1,
taking 1 when clusterings are identical and 0 when the mu-
tual information between them is equal to the value expected
due to chance alone. V Score [Rosenberg and Hirschberg,
2007] is also a similarity index, taking values between 0
(dissimilar) and 1 (identical clusters), and can be seen as
the average of two other scores - (a) completeness and (b)
homogeneity. To evaluate the estimation of the number of
components, we use d(K,K∗) as the mean of absolute devi-
ations |K−K∗|, across multiple repetitions for each setting.
Additional details about all experiments along with a few
others are provided in Appendix D.

5.2 EFFECT OF TUNING PARAMETERS

In this section, we study the effects of different tuning pa-
rameters and steps on the algorithm — under D = P = 2
with K∗ = 9 setting. For tuning parameters, we set the
defaults as n0 = 3, (α, β, γ) = (3, 3, 3) and m0 = 200
(when T > 200) and no blocking for smaller T . We chose a
10× 10 uniform grid as the inducing points for the SGP.

• Effect of Refinement Step: We study how the refine-
ment step improves the performance after the forward
pass, under the setting T = 100, n = 50, σ2 = 1. Fig-
ure 3a demonstrates that the refinement step addresses
the overestimation of the number of components, while
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Figure 7: Label estimation forD = P = 2 case, for n = 30.

also improving training accuracy drastically.

• Effect of block size m0: Under T = 600, n =
50, σ2 = 2 setting, we investigated the effect of block
size m0 on the performance of the algorithm, com-
paring between m0 = 50, 100, 300 and no blocking.
Figure 3b suggests that higher m0 provides better per-
formance at the cost of time. While no blocking has the
best training accuracy, it takes a significantly longer
time to fit the model.

• Effect of iHMM parameters: Here we study the ef-
fect of the iHMM hyperparameters on the performance
of the algorithm under T = 100, n = 50, σ2 = 2 set-
ting. We compare the following 3 settings for (α, β, γ):
(a) (10, 1, 1), (b) (1, 10, 1) and (c) (1, 1, 10). Figure 4
(left) shows that performances for the 3 settings are
similar; however, higher γ or β (which promote cre-
ating more clusters) have slightly better performance.
For the number of clusters, we found that the results
after the refinement step are comparable.

• Effect of n0: We study the effect of the parame-
ter n0, used in the refinement step. Under T =
150, n = 50, σ2 = 2, we compare between the choices
n0 = 0, 5, 10. Figure 4 (right) demonstrates that per-
formances for the first two are similar but worsen in
the last case, thus indicating that, while performance
is similar for smaller values (with values closer to 0
allowing small clusters to be retained), performance
will deteriorate significantly if n0 is chosen too large.

5.3 COMPARISONS FOR D = P = 1

We use K∗ = 4 true components, which are functions
on (0, 1). We compared our results with HMM with Gaus-
sian emission (G-HMM) and HMM-GPSM [Jung and Park,
2020] (both setting K ≤ 8). While exact-fitted setting for
these baselines provided similar results, we present the over-
fitted case which is the typical case in practice. For our
method, we use m0 = 100, n0 = 3, the iHMM parameters
were set to (3, 2, 1) and Z as 60 equi-spaced points.

For Experiment 1, we take T = 400, n = 60, σ2 = 4
without any kind of spatial censoring. The results are given
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Table 1: Performance comparison for simulations in terms
of time, number of components, and average log-likelihood.

Model time(s) d(K,K*) log lik

Exp 1 iHMM-GP 15.185 0.1333 -127.61
HMM-GPSM 403 1.00 -130.73
G-HMM(8) 5.93 4.00 -129.68

Exp 2 iHMM-GP 13.853 1.13 -84.47
HMM-GPSM 375 3.00 -87.08
G-HMM(8) 5.76 4.00 -86.54

Exp 3 iHMM-GP 53.90 0.9 -84.46
DP-GP 600.97 3.00 -95.77

G-HMM(15) 6.32 6.00 -87.64

in Figure 5. For Experiment 2, we keep the same T, σ2 but
censor observations in one-third spatial region to reduce n to
40. The results are given in Figure 6. Results in Table 1 show
that iHMM-GP is able to provide a scalable and efficient
estimate of the number of components in comparison to the
other methods, thereby lending credibility to it as a scalable
and interpretable algorithm. HMM-GPSM identifies a much
lower number of clusters than the truth. Additionally, the
likelihood values of the optimal estimator for HMM-GPSM
are also lower than that of iHMM-GP. This indicates that the
output of HMM-GPSM is unable to capture the generating
distribution effectively, thereby compromising the statistical
interpretation of the generating mechanism.

5.4 COMPARISONS FOR D = P = 2

In Experiment 3 we compare our method with DP-GP [Guo
et al., 2019] and G-HMM (K ≤ 15). We take K∗ = 9
true vector fields on X = (−1, 1)2 and we use spatially
censored data for training. For our proposed iHMM-GP, we
used m0 = 200, n0 = 3, Z as a uniformly spaced grid
on X of size 100 and (3, 2, 1) as the iHMM parameters. In
this case, we do not use a fixed number of observations at
every time, the n in the settings below indicates the mean
number of observations per time. For DP-GP, the current
implementation cannot accommodate more than 30 obser-
vations per time frame, hence we use the setting (EXP 3)
T = 600, n = 30, σ2 = 1, for which we compare the
three methods. The results are shown in Fig 7. DP-GP was
allowed to run for 3 Gibbs iterations and suffers from scala-
bility and interpretability, see Table 1.

Results from using iHMM-GP with varying n and σ2 are
in Table 2. We see that prediction quality worsens for n =
50 as the noise level increases from σ2 = 1 to σ2 = 3.
However, if we increase n to 120, then even at this noise
level, the prediction quality is good again.

Table 2: Label prediction accuracy on test data for different
settings for D = P = 2 simulations for iHMM-GP.

Setting Test accuracy time
n σ2 Rand NMI V d(K,K∗) (sec)
50 1 0.962 0.924 0.927 1.28 65.09
50 3 0.872 0.586 0.611 2.08 83.73
120 3 0.944 0.899 0.903 1.26 105.4

6 APPLICATION TO NGSIM DATASET

We chose a real-world traffic dataset collected as part of
Federal Highway Administration’s (FWHA) Next Gener-
ation SIMulation (NGSIM) project. The dataset contains
detailed multi-vehicle trajectories at multiple intersections
and freeways. The selected subset of the data was collected
at Lankershim Boulevard in the Universal City neighbor-
hood of Los Angeles, CA. Figure 1 (A) and (B) shows the
spatial region under study. Each time frame is 0.1 seconds in
duration and contains the locations x and velocities y of all
vehicles in the spatial region under consideration at that time.
We consider 8 minutes worth of data, with T = 4800 frames,
each with a varying number of observations nt (318,751 to-
tal observations). We applied our algorithm to extract the
latent traffic patterns. For space constraints, we use the fol-
lowing acronyms: NB/SB/EB/WB (North/South/East/West
bound), LB (Lankershim Blvd), UHD (Universal Holly-
wood Dr), CCW (Campo Cahuenga Wy).

We fixed m0 = 1200 and (α, β, γ) = (3, 3, 3). The esti-
mated noise variance was σ̂2

1 ≈ 0.07, σ̂2
2 ≈ 36.26. Since

the LB is laid along the y−axis, most of the variation comes
from that component. To select the inducing points, we
collected all {Xt}t∈T and performed a Kmeans++ to col-
lect 400 centers. They were well spread out over the road
sections. The algorithm took around 150 minutes. A total
of K = 44 traffic patterns were estimated. From the esti-
mated state labels, we computed the estimated transition
matrix. Figure 8 (right) in Appendix E shows that it is sparse
and carries high values along the diagonal, which suggests
a high amount of self-transitions (indeed, each frame is 0.1
seconds and a pattern typically lasts longer).

Figure 8 shows 6 prominent velocity fields, each pattern
is represented by the posterior mean of the SGP related to
that field, on the inducing points. On closer inspection, one
can see the traffic patterns captured by our model — it is
important to note, in a completely unsupervised fashion,
without any other spatial or temporal information. As an
example, pattern 2 involves SB vehicles on the LB, going
either straight through that intersection or taking a left turn
towards UHD. The figure also shows the 100-step estimated
transition probabilities, restricted to these states (100 steps
correspond to 10 seconds). The single-step transition and
1200-step transition matrix restricted to these 6 states are
shown in the heatmaps in Figure 9, the latter shows the
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Figure 8: Prominent motion patterns and their associated
100-step (10 sec) transition probabilities.

approximate stationary behavior of the chain at these states.

To demonstrate the usefulness of such a model, we present
a simple outlier detection scheme, explained in detail in Ap-
pendix E. Two examples are shown in Figure 10. Each plot
is a specific time frame, the blue arrows show the estimated
velocity field at that time and the red arrow is the particular
vehicle in that time frame, whose velocity has a high devia-
tion from the predicted field value at that location. Consider
Eg 1 (at t = 427), the red vehicle is seen to be at a position
where it should not be - it could be a vehicle taking a left
turn toward the residential area (Valley Heart Dr), which
is outside the spatial region shown. As another example,
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steps transition, equivalent to 2 minutes
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Figure 10: Examples of outlier detection.

looking at Eg 2, the red arrow is very strange since it is a
part of the road where traffic flows in the other direction.
Upon inspection, we found that there is a bus terminal and
metro station in the region to the left of that red arrow, and
possibly, this vehicle was actually inside that region.

7 CONCLUSION

Motivated by learning and understanding heterogeneous
patterns in spatio-temporal dynamic data, we introduced a
stochastic model for velocity fields, drawing from Bayesian
nonparametric modeling elements. We developed a fast
inference method for this model involving a sequential
greedy estimation step combined with novel refinement
post-processing, and an application of sparse Gaussian pro-
cess techniques. Through an extensive simulation study, we
demonstrated the effectiveness of the proposed methodol-
ogy, which outperforms existing baseline methods in both
accuracy and speed. We successfully applied our method to
the NGSIM dataset to efficiently extract interpretable traffic
patterns from the large volume of data. We demonstrated
how the results can be used for outlier detection, in the
context of abnormal vehicle behavior.

There are several venues that we aim to explore as part of
future work. First, it would be interesting to include other
covariate information, available in the dataset, like lane ID,
vehicle ID, or intersection ID for each vehicle at each time.
In our study, such information has been ignored. Second,
the GP-induced spatial dependence result in abnormal flow
patterns in certain regions at specific times — this could be
addressed by considering each lane (or consecutive lanes
with traffic moving in one direction) and using a mixture
of GP to capture the patterns separately for each such zone.
Lastly, due to the intricacies associated with traffic motion,
the choice of the kernel could be studied in more detail.
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