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1 ANALYSIS OF ALGORITHM 1

Before analysing the FPL algorithm described above, we first introduce some notation and definitions. We define the loss of
a cycle c at time t as ℓt(st(a), at(a)). For any cycle c with start state s, let Lc denote the total cumulative loss that we would
have received if we followed the cycle c from the start to the end of the interaction. We use L̃c to denote the total perturbed
cumulative loss received by cycle c. Let the cycle with lowest total cumulative loss be c∗. Also, let the cycle with lowest
perturbed cumulative loss be c̃∗. We use L̃c

t to denote the total perturbed cumulative loss incurred by cycle c after t steps.
We use c̃∗t to denote the cycle with lowest perturbed cumulative loss after t steps. Let Ct be the cycle chosen by the FPL
algorithm at step t and lt be it’s reward. Let the expected number of switches made by the algorithm during the interaction
be Ns.

The analysis is similar in spirit to Section 2 of Kalai and Vempala [2005]. We first state the following lemma that bounds the
probability of switching the cycle at any step.

Lemma 1.1. Pr[Ct+1 ̸= c | Ct = c] ≤ (|S|+ 1) · λ · ℓt(st(c), at(c)) for all cycles c and times t ≤ T .

Proof of Theorem 4.2. We first bound the total loss incurred by the FPL algorithm. Let the expected number of switches
made by the algorithm during the interaction be Ns. If the algorithm doesn’t switch cycles after time step t, then L̃Ct

t must

be equal to L̃
c̃∗t
t . Thus, the loss incurred at time step t by Ct is at most

(
L̃
c̃∗t
t − L̃

c̃∗t−1

t−1

)
. In the steps in which the algorithm

switches cycles, the maximum loss incurred is 1. Thus, we have that

E[total loss of FPL] ≤ L̃c̃∗1 +

T∑
i=2

(
L̃
c̃∗t
t − L̃

c̃∗t−1

t−1

)
+Ns

≤ L̃c̃∗T +Ns

= L̃c̃∗ +Ns (1)

We now bound Ns. From linearity of expectation, we have that

Ns =

T−1∑
t=1

Pr[Ct+1 ̸= Ct].
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From Lemma 1.1, we have Pr[Ct+1 ̸= Ct] is at most (|S|+ 1) · λ · E[lt]. This gives us the following bound for Ns.

Ns =

T−1∑
t=1

Pr[Ct + 1 ̸= Ct]

≤
T−1∑
t=1

(|S|+ 1) · λ · E[lt]

≤ (|S|+ 1) · λ ·
T−1∑
t=1

E[lt]

≤ (|S|+ 1) · λ · E[total loss of FPL]

Combining this with (1) gives us the following.

E[total loss of FPL] ≤ L̃c̃∗ + (|S|+ 1) · λ · E[total loss of FPL] (2)

Let p(c) denote the perturbed loss added to cycle c. Since the cycle with lowest perturbed cumulative loss at the end of the
interaction is c̃∗, we have

L̃c̃∗ ≤ Lc∗ + p(c̃∗).

Also,

E[p(c̃∗)] ≤
|S|∑
i=1

E
[
max
(s,a)

ϵi(s, a)

]
+ E

[
max
(s′,k)

δ(s′, k)

]
≤ |S| · (1 + log |S||A|)

λ
+

1 + log |S|2

λ
.

The above inequality comes from the fact that the expectation of the max of k independant exponential random variables
with parameter λ is atmost 1+log k

λ . Plugging this inequality into (2) gives us

E[cost of FPL] ≤ L∗ + |S| · (1 + log |S||A|)
λ

+
1 + log |S|2

λ
+ (|S|+ 1) · λ · E[cost of FPL]. (3)

Since the maximum cost is T , we have

Regret ≤ |S| (1 + log |S||A|)
λ

+
1 + log |S|2

λ
+ (|S|+ 1)λT.

Setting λ = log |S||A|√
T

gives us a bound of O
(
|S|
√
T log |S||A|

)
on the regret and expected number of switches. We can

also derive first order bounds. From (3), we have

E[total loss of FPL] ≤ L∗ + |S| · (1 + log |S||A|)
λ

+
1 + log |S|2

λ
+ (|S|+ 1) · λ · E[cost of FPL]

≤ L∗ + 4|S| · log |S||A|
λ

+ 2|S| · λ · E[total loss of FPL].

On rearranging, we get

E[total loss of FPL] ≤ L∗

1− 2λ|S|
+ 4|S| · log |S||A|

λ(1− 2λ|S|)

≤ L∗(1 + (2λ|S|+ (2λ|S|)2 + . . .) + 4|S| log |S||A|
λ

(1 + 2λ|S|+ (2λ|S|)2 + . . .)

≤ L∗(1 + 4λ|S|) + 8|S| log |S||A|
λ

.

The last two inequalities work when 2λ|S| ≤ 1
2 . Thus,

E[total loss of FPL]− L∗ ≤ 4λ|S|(L∗) + 8|S| log |S||A|
λ

.



Set λ = min
(√

log |S||A|
L∗ , 1

4|S|

)
. This forces 2λ|S| to be less than 1

2 and thus the previous inequalities are still valid. On

substituting the value of λ, we get that

Regret ≤ O
(
|S|
√
L∗ · log |S||A|

)
when L∗ ≥ 16|S|2 log |S||A|. Since the expected number of switches is at most 2λ|S| · E[total loss of FPL], this is also
bounded by O

(
|S|
√
L∗ · log |S||A|

)
.

Proof of Lemma 1.1. Let c be a cycle in the set C(s,k). Let lt be shorthand for ℓt(st(c), at(c))the loss incurred by cycle c at
step t. If Ct+1 is not in C(s,k), then the algorithm must have switched. Thus, we get the following equation.

Pr[Ct+1 ̸= c | Ct = c] = Pr[Ct+1 /∈ C(s,k) | Ct = c] + Pr[Ct+1 ̸= c and Ct+1 ∈ C(s,k) | Ct = c] (4)

We now bound both the terms in the right hand side of (4) separately.

First, we study at the first term. We will upper bound this term by proving an appropriate lower bound on the probability of
choosing Ct+1 from C(s,k). Since Ct = c, we know that L̃c

t−1 ≤ L̃c′

t−1 for all c′ ̸= c. For all c′ /∈ C(s,k), the perturbation
δ(s, k) will play a role in the comparison of the perturbed cumulative losses. For c′ ∈ C(s,k), δ(s, k) appears on both sides
of the comparison and thus gets cancelled out. Thus, we have δ(s, k) ≥ w, where w depends only on the perturbations and
losses received by c and the cycles not in C(s,k). Now, if δ(s, k) was larger than w+ lt, then the perturbed cumulative loss of
c will be less than that of cycles not in C(s,k) even after receiving the losses of step t. In this case, Ct+1 will also be chosen
from C(s,k). This gives us the require probability lower bound.

Pr[Ct+1 ∈ C(s,k) | Ct = c] ≥ Pr[δ(s, k) ≥ w + lt | δ(s, k) ≥ w]

≥ e−λ·lt

≥ 1− λ · lt

Thus, Pr[Ct+1 /∈ C(s,k) | Ct = c] is at most λ · lt.

We now bound the second term. For any two cycles c′ ̸= c′′ in C(s,k), there exists an index i ≤ k such that the ith edges of
c′ and c′′ are different and all the smaller indexed edges of the two cycles are the same. We denote this index by d(c′, c′′).
Define d(c′, c′′) to be zero when c′ is from C(s,k) and c′′ = c′ or c′′ is not from C(s,k). Now, if Ct+1 is in C(s,k) and not
equal to c, then d(Ct+1, c) is a number between one and k. Thus, we get the following equation.

Pr[Ct+1 ̸= c and Ct+1 ∈ C(s,k) | Ct = c] =

k∑
i=1

Pr[d(c, Ct+1) = i | Ct = c] (5)

We now bound Pr[d(c, Ct+1) = i | Ct = c] for any i between 1 and k. Let (si, ai) be the ith edge of c. We prove a
lower bound on the probability of choosing Ct+1 such that d(c, Ct+1) is not equal to i. Again, since Ct = c, we know that
L̃c
t−1 ≤ L̃c′

t−1 for all c′ ̸= c. Consider cycles c′ that don’t contain the edge (si, ai) in the ith position. The perturbation
ϵi(si, ai) will play a role in the comparison of perturbed losses of all such c′ with c. Thus, we have ϵi(si, ai) ≥ w, where w
depends only on the perturbations and losses received by c and cycles c′ that don’t have the (si, ai) edge in the ith position.
If ϵi(si, ai) was greater than w+ lt, then the perturbed cumulative loss of c will still be less than that of all cycles c′ without
the (si, ai) edge. In this case, Ct+1 will be chosen such that it also has the (si, ai) edge. This implies that d(c, Ct+1) ̸= i.
Thus, we get the following probability lower bound.

Pr[d(c, Ct+1) ̸= i | Ct = c] ≥ Pr[ϵi(si, ai) ≥ w + lt | ϵi(si, ai) ≥ w]

≥ e−λ·lt

≥ 1− λ · lt

Thus, for all i between 1 and k, Pr[d(c, Ct + 1) = i | Ct = c] is at most λ · lt. This proves that the term in (5) is at most
kλ · lt. Since k is at most |S|, the second term in the right hand side of (4) is bounded by |S| · λ · lt.



2 REGRET LOWER BOUND

Proof of Theorem 4.5. Let M be an MDP with states labelled s0, s2, . . . , s|S|−1. Any action a takes state si to si+1(modulo
|S|). In other words, the states are arranged in a cycle and every action takes any state to its next state in the cycle. This is
the required M .

Consider the problem of prediction with expert advice with n experts. We know that for any algorithm A, there is a sequence
of losses such that the regret of A is Ω(

√
T log n) over T steps (see ?). In our case, every policy spends exactly T

|S| steps in
each state. Thus, the interaction with M over T steps can be interpreted as a problem of prediction with expert advice at
every state where each interaction lasts only T

|S| steps. We have the following decomposition of the regret.

R(A) =

|S|−1∑
i=0

T
|S|−1∑
k=0

ℓk|S|+i

(
si, ak|S|

)
− ℓk|S|+i (si, π

∗(si)) (6)

In the above equation, at is the action taken by A at step t. The best stationary deterministic policy in hindsight is π∗.

From the regret lower bound for the experts problem, we know that there exists a sequence of losses such that for each i, the
inner sum of (6) is atleast Ω

(√
T
|S| log |A|

)
. By combining these loss sequences, we get a sequence of losses such that

R(A) ≥
|S|−1∑
i=0

Ω

(√
T

|S|
log |A|

)
≥ Ω

(√
|S|T log |A|

)
.

This completes the proof.

3 COMMUNICATING MDPS

3.1 EXISTENCE OF HIGH PROBABILITY CRITICAL LENGTH PATH

We now state an intermediate lemma that will be used to prove Theorem 5.2.

Lemma 3.1. For any start state s and target s′ ̸= s, we have ℓs,s′ ≤ 2D and a policy π such that

Pr[T (s′ | M,π, s) = ℓs,s′ ] ≥
1

4D

Proof. From the definition of diameter, we are guaranteed a policy πs,s′ such that

E [T (s′ | M,π, s)] ≤ D

From Markov’s inequality, we have

Pr [T (s′ | M,π, s) ≤ 2D] ≥ 1

2

Since there are only 2D discrete values less than 2D, there exists ℓs,s′ ≤ 2D such that

Pr[T (s′ | M,π, s) = ℓs,s′ ] ≥
1

2
· 1

2D
=

1

4D

We can now prove Theorem 5.2

Proof of Theorem 5.2. From Lemma 3.1, we ℓs′ ≤ 4D for each s′ such that there is a policy πs∗,s′ that hits the state s′

in time ℓ′s with probability at-least 1
4D . We take ℓ∗ = maxs′ ̸=s∗ ℓs′ . For target state s′, the policy πs′ loops at state s∗ for

(ℓ∗ − ℓs′) time steps and then starts following policy πs,s′ . Clearly, this policy hits state s′ at time ℓ∗ with probability at
least 1

4D



3.2 CORRECTNESS OF SWITCH_POLICY ROUTINE

We now prove Lemma 5.3

Proof of Lemma 5.3. We want to compute Pr[St = s | Tswitch = t].

Pr[St = s | Tswitch = t] =
Pr[St = s, Tswitch = t]

Pr[Tswitch = t]

=
Pr[St = Tt = s, Tswitch = t]

Pr[Tswitch = t]

=
Pr[Tt = s, St = s, Tswitch = t]

Pr[Tswitch = t]

We now compute the denominator Pr[Tswitch = t] as follows.

Pr[Tswitch = t] =
∑
s∈S

Pr[St = Tt = s, St−ℓ∗ = s∗] · Pr[Tswitch = t | St = Tt = s, St−ℓ∗ = s∗]

=
∑
s∈S

Pr[St = s | Tt = s, St−ℓ∗ = s∗] · Pr[Tt = s, St−ℓ∗ = s∗]Pr[Tswitch = t|St = Tt = s, St−ℓ∗ = s∗]

=
∑
s∈S

ps · Pr[Tt = s, St−ℓ∗ = s∗] · p
∗

ps

= p∗
∑
s∈S

Pr[Tt = s, St−ℓ∗ = s∗]

= p∗ · Pr[St−ℓ∗ = s∗]

Now we calculate the numerator.

Pr[Tt = s, St = s, Tswitch = t] = Pr[Tt = s, St = s, St−ℓ∗ = s, Tswitch = t]

= Pr[St = s, Tswitch = t | St−ℓ∗ = s∗, Tt = s] · Pr[St−ℓ∗ = s∗, Tt = s]

= p∗ · Pr[St−ℓ∗ = s∗] · Pr[Tt = s | St−ℓ∗ = s∗]

= p∗ · Pr[St−ℓ∗ = s∗] · dtπ(s)

Thus, we have
Pr[St = s | Tswitch = t] = dtπ(s)

3.3 BOUNDING THE COST OF EACH SWITCH

We now prove Lemma 5.4.

Proof of Lemma 5.4. We bound the expectation using law of total expectations and conditioning on Tswitch.

E

[
t2∑

t=t1

ℓt(st, at)

]
= E

[
E

[
t2∑

t=t1

ℓt(st, at) | Tswitch

]]
We bound the conditional expectation.

E

[
t2∑

t=t1

ℓt(st, at) | Tswitch = t∗

]
≤ t∗ + E

[
t2∑

t=t∗

ℓt(st, at) | Tswitch = t∗

]

From Lemma 5.3, the second term is equal to
∑t2

t=t∗ ℓ̂t(π) Thus,

E

[
t2∑

t=t1

ℓt(st, at)

]
≤ E[Tswitch] +

t2∑
t=t1

ℓ̂t(π)



Everytime we try to catch the policy from state s∗, we succeed with probability p∗ ≥ 1
4D . Thus, the expected number of

times we try is 16 ·D and each attempt takes ℓ∗ ≤ 2D steps. Between each of these attempts, we move at most D steps in
expectation to reach s∗ again. Thus, in total, we have

E[Tswitch] ≤ 16D2 + 32D2 = 48D2

This completes the proof.

3.4 ANALYSIS OF FPL ALGORITHM FOR COMMUNICATING MDPS WITH UNIFORM START
DISTRIBUTION

We now prove Theorem 5.8

Proof of Theorem 5.8. Let Lπ denote the total cumulative loss if we followed policy π from the start of the interaction. We
use L̃π to the denote the total perturbed cumulative loss if we followed policy π from the start. Let π∗ be the policy with the
lowest total cumulative loss. Similarly, let π̃∗ be the policy with the lowest perturbed cumulative loss. Let L̃π

t be the total
perturbed cumulative loss till time t. Let πt be the policy chosen by the FPL algorithm at step t.

Let Ns be the number of times the oracle switches the best policy. As before, we treat each policy as an expert and consider
the online learning problem where expert π gets loss ℓ̂t(π) = E [ℓt(st, at)] where s1 ∼ d1 and at = π(st).

Using the arguments from the proof of Theorem 4.3, we get

E [total loss of FPL] ≤ L̃π̃∗
+Ns.

Also, we have L̃π = Lπ + 1
S

∑s
i=1 ϵ (s, π(s)). This comes from the fact that d1 is the uniform distribution over states.

We know that Ns =
∑T−1

t=1 Pr[πt+1 ̸= πt]. We now bound Pr[πt+1 ̸= πt]. Let πt = π. The algorithm chooses π′ ̸= π as
πt+1 if and only if L̃π

t ≥ L̃π′
. We now argue that the probability of this happening is low if πt = π. Since π′ ̸= π, we have

π′(s) ̸= π(s) for some s. Let the smallest state in which π and π′ differ be called d(π, π′). Thus,

Pr[πt+1 ̸= π | πt = π] =
∑
s∈S

Pr[d(πt+1, π) = s | πt = π].

We bound Pr[d(π, πt+1) = s | πt = π] for any state s. Consider any policy π′ that differs from π in state s. The perturbation
ϵ(s, π(s)) will play a role in the comparison of perturbed losses of all such π′ with π. Since πt = π, we have ϵ(s,π(s))

|S| ≥ w

for some w that depends only on the perturbations and losses received by π and policies π′ that differ from π in state s. If
ϵ(s,π(s))

|S| ≥ w + ℓ̂t(π), then we would not switch to a policy π′ with π(s) ̸= π′(s). Thus,

Pr[d(π, πt+1 ̸= s | πt = π] ≥ Pr[ϵ(s, π(s)) ≥ w|S|+ ℓ̂t(π)|S| | ϵ(s, π(s)) ≥ w|S|]

≥ 1− λℓ̂t(π)|S|

Thus, Pr[πt+1 ̸= π | πt = π] is at-most |S|2 · λℓ̂t(π). From this, we get Ns ≤ |S|2 · λ · E[total loss of FPL]

Using arguments similar to Section 4.2.2, we get

E[total loss of FPL] ≤ Lπ∗
+

(1 + log |S||A|)
λ

+ |S|2 · λ · E[total loss of FPL] (7)

Let L∗ = Lπ∗
.

On rearranging and simplifying Equation 7 similar to the proof of Theorem 4.2, we have

E[total loss of FPL] ≤ L∗(1 + 2λ|S|2) + 4
log |S||A|

λ

The above inequality works when |S|2λ ≤ 1
2 , Thus, we have

E[Total loss of FPL]− L∗ ≤ 2λ|S|2(L∗) + 4
log |S||A|

λ
.



Set λ = min

(
1
|S|

√
log |S||A|

L∗ , 1
2|S|2

)
. On substituting λ into the above equation, we get that

Regret ≤ O(|S|
√
L∗ log |S||A|).

Since the expected number of switches is at-most |S|2 · λ · E[total loss of FPL], this is also bounded by
O
(
|S|
√

L∗ log |S||A|
)
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