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Abstract

Off-policy learning is a key to extend reinforce-
ment learning as it allows to learn a target policy
from a different behavior policy that generates the
data. However, it is well known as “the deadly triad”
when combined with bootstrapping and function
approximation. Retrace is an efficient and conver-
gent off-policy algorithm with tabular value func-
tions which employs truncated importance sam-
pling ratios. Unfortunately, Retrace is known to be
unstable with linear function approximation. In this
paper, we propose modified Retrace to correct the
off-policy return, derive a new off-policy temporal
difference learning algorithm (TD-MRetrace) with
linear function approximation, and obtain a con-
vergence guarantee under standard assumptions.
Experimental results on counterexamples and con-
trol tasks validate the effectiveness of the proposed
algorithm compared with traditional algorithms.

1 IMPORTANCE OF THE POSITIVE
DEFINITE MATRIX

Positive definite matrix plays an important role in conver-
gence analysis of reinforcement learning algorithms with
linear function approximation. The convergence of TD(0) is
established by Sutton [1988], where the key is the positive
definite matrix Aon based on the invariance of the on-policy
state distribution. Off-policy learning seeks to learn a tar-
get policy while exploring actions according to a behavior
policy to avoid getting stuck in local optima. However, due
to the inconsistency between the behavior policy µ and the
target policy π, off-policy learning may be instable when
combined with function approximation and bootstrapping,
known as “the deadly triad” [Sutton and Barto, 2018]. The
fundamental reason is that the positive definiteness of the
matrix Aoff is not guaranteed [Sutton et al., 2016].

Baird et al. [1995] proposed residual algorithms by minimiz-
ing mean squared Bellman errors to solve the residual fixed
point in closed-form. The key matrix is positive definite,
thus ensuring the stability of the algorithms. However, resid-
ual methods require double sampling in non-deterministic
environments to remove dependencies between successor
states. More importantly, the residual fixed point is in most
cases worse than the TD fixed point [Scherrer, 2010, Yang
et al., 2021].

Stable algorithms to solve the TD fixed point mainly in-
clude two approaches [Chen and Yu, 2016, Chen et al.,
2023]. Gradient based methods guarantee the positive def-
initeness of the correlation matrix by constructing differ-
ent objective functions. Sutton et al. [2008] proposed the
first convergent off-policy temporal difference learning al-
gorithm, gradient TD (GTD), which minimizes the norm
of the expected TD update (NEU) 1 and involves a posi-

tive definite matrix AGTD =

( √
ηI Aoff

−A>off 0

)
, where I is

the identity matrix and η is the stepsize ratio of the aux-
iliary parameter to the learning parameter. Subsequently,
Sutton et al. [2009] proposed GTD2 algorithm with pos-

itive definite matrix AGTD2 =

(√
ηC Aoff

−A>off 0

)
and TD

with gradient correction (TDC) algorithm with positive defi-
nite matrix ATDC = A>offC

−1Aoff, both of which minimize
the mean square projected Bellman error (MSPBE), where
C = E[φφ>] and φ is feature of a state or state-action pair.
Hackman [2012] proposed Hybrid TD (HTD) algorithm
with a positive definite matrix AHTD = A>offA

−1
on Aoff, which

replaces C−1 in ATDC as A−1on to accelerate the learning rate.
Liu et al. [2015, 2016, 2018] proposed accelerated GTD-MP
and GTD2-MP algorithm via rewriting the objective func-
tions, NEU and MSPBE, in the form of a convex-concave
saddle-point formulation. Zhang et al. [2021] proposed Diff-
GQ1 algorithm w.r.t saddle-point formulation of GTD2
and Diff-GQ2 algorithm w.r.t two-stage gradient evalua-

1The NEU objective first appeared in [Yao and Liu, 2008] and
was defined by Sutton et al. [2009].
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Table 1: Comparisons of learning algorithms with linear function approximation.

Name definition update rules positive definite

TD ∆θt = αtδ
µ(θt)φt yes

Off-policy TD ρt = π(at|st)
µ(at|st) ∆θt = αtρtδ

µ(θt)φt no

Retrace ct = min
(

1, π(at|st)µ(at|st)

)
∆θt = αtctδ

π(θt)φt no

MRetrace xt = mina

{
µ(a|st)
π(a|st)

}
∆θt = αtρt

(
rt+1 + (xt+1γEπ[φt+1]− φt)>θt

)
φt yes

TD-MRetrace ∆ωt = αt
[
δµ(ωt) + γθt

>(Eπ[φt+1]− φt+1)
]
φt yes

tion, both of which minimize MSPBE in the average-reward
setting. Second-order information is used as a precondition
[Yao and Liu, 2008] to accelerate TD learning, e.g., Quasi
Newton TD Givchi and Palhang [2015] and accelerated TD
[Pan et al., 2017]. The main disadvantage of gradient based
methods is slow convergence due to one more parameter to
be updated [Hallak and Mannor, 2017].

The other approach, importance sampling (IS) ratios, correct
the returns via reweighting the state distribution between
on-policy and off-policy updates. It was first proposed by
Precup et al. [2001] where the positive definite matrix is Aon.
Sutton et al. [2016] proposed emphatic TD (ETD) algorithm
with followon trace to correct from beginning of the excur-
sion based on IS ratios, where positive definite matrix is
AETD = Φ>Df (I−γPπ)Φ, Df is a diagonal matrix with di-
agonal element approximated to f = (I−γPπ)−1dµ. Hallak
et al. [2016] introduced an additional parameter into ETD to
tradeoff bias for variance reduction. Zhang et al. [2020] pro-
posed convergent off-policy actor-critic algorithm in which
the followon trace’s variance is reduced by emphasis approx-
imation. Zhang and Whiteson [2022] proposed truncated
emphatic TD (TETD), where the positive definite matrix
is ATETD = Φ>Dfk(I− γPπ)Φ, fk is a truncated followon
trace of length k. The main disadvantage of ETD and TETD
is that the followon trace may be of very high variance.

Munos et al. [2016] proposed Retrace algorithm with a
safe and efficient IS ratios truncated at 1, which guaran-
tees convergence with a contraction mapping in the case
of look-up table. However, based on an action-value exten-
sion to Baird’s counterexample, Retrace was pointed out
that it is not guaranteed to be stable when combined with
function approximation [Touati et al., 2018]. Then, a conver-
gent gradient-based Retrace (GRetrace) was proposed based
on a quadratic convex-concave saddle-point formulation,
which minimizes MSPBE [Touati et al., 2018]. However,
this returns to the disadvantage of slow convergence of the
gradient TD learning families.

Our contributions: In this paper, we explore modified Re-
trace to correct the off-policy return, and derive a new
off-policy temporal difference learning algorithm (TD-
MRetrace). Its key matrix is positive definite, thus ensuring
the learning stability.

The rest of this paper is organized as follows. First, related
notations and background are introduced. Second, we revisit
the fundamental reason why Retrace with linear function ap-
proximation is not stable, propose Modified Retrace (MRe-
trace) to correct off-policy update, and derive an off-policy
learning algorithm, TD-MRetrace (see Table 1). After that,
we show a convergence guarantee for TD-MRetrace algo-
rithm under standard conditions in the off-policy setting.
Finally, we experimentally verify the proposed algorithm
on both prediction tasks and control tasks.

2 NOTATION AND BACKGROUND

Reinforcement learning agent interacts with its environment
which we modeled as a discounted Markov Decision Pro-
cess 〈S,A,R, T, γ〉, where S is a finite state space, |S| = n,
A is an action space, T : S × A × S → [0, 1] is a transi-
tion function, R : S × A × S → R is a reward function,
γ ∈ [0, 1) is a discount factor. Policy π : S × A → [0, 1]
offers the probability π(a|s) to choose action a in state s.
State value function for policy π, denoted V π : S → R,
represents the expected sum of discounted rewards in the
MDP under policy π: V π(s) = Eπ [

∑∞
t=0 γ

trt|s0 = s].
Action value function Qπ : S × A → R is defined
as Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt|s0 = s, a0 = a]. V π is the
fixed point of the Bellman operator over the value function
T πV = r + γPπV , where r is the expected immediate
reward and Pπ denotes the n× n matrix of transition proba-
bilities

[Pπ]ij=̇
∑
a∈A

π(a|i)T (i, a, j). (1)

Assume the state distribution dπ under policy π is steady
and exists. Then one special property is the invariance of
distribution dπ ,

dπ = P>π dπ. (2)

When the state space is too large to preserve V π(s), a linear
function approximation is used to generalize between dif-
ferent states V π(s) ≈ Vθ(s) = θ>φ(s) =

∑m
i=1 θiφi(s),

where θ is the weight vector, φ(s) is the feature vector
of state s, and the feature size is far less than the state
space m � n. The action value function is generalized
as Q(s, a) ≈ Qθ(s, a) = θ>φ(s, a), where φ(s, a) is the
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feature vector of the state-action pair. Notably, equation
Vθ = T πVθ no longer holds because the number of param-
eters is far less than the number of equations. A common
and efficient solution is the TD fixed point Vθ = ΠT πVθ
with projection Π = Φ(Φ>DπΦ)−1Φ>Dπ, where Φ is the
n × m matrix with the φ(s) as its rows, Dπ is the n × n
diagonal matrix with dπ on its diagonal. It can be learned
by the on-policy TD(0) algorithm:

θt+1=̇θt + αt
(
rt+1 + γθ>t φt+1 − θ>t φt

)
φt

=θt + αt
(
rt+1φt − φt(φt − γφt+1)>θt

)
,

(3)

where αt > 0 is a step-size parameter, and we have used
the shorthand φt=̇φ(st). The convergence analysis of algo-
rithms with linear function approximation is mainly based
on the ODE (Ordinary Differential Equations) approach
[Borkar and Meyn, 2000], where the key relies on the ma-
trix A being positive definite, i.e. ∀x 6= 0, x>Ax > 0. Let
Aon denote the key matrix of the expected update (3):

Aon = lim
t→∞

Eπ
[
φt(φt − γφt+1)>

]
= Φ>Dπ(I− γPπ)Φ.

(4)

With property (2), Aon is proved to be positive definite, thus
the convergence of the on-policy TD algorithm is established
[Sutton, 1988].

In this paper, we are concerned with off-policy learning,
where the target policy π is different from the behavior pol-
icy µ that generates experiences 〈st, at, rt+1, st+1, at+1〉.
There are two ways to implement the off-policy learning.
One is to use the experiences of the behavior policy and
simply multiplies the whole on-policy TD update (3) by the
importance sampling ratio ρt = π(at|st)

µ(at|st) , e.g., off-policy
TD:

θt+1=̇θt + ρtαt(rt+1 + γθ>t φt+1 − θ>t φt)φt
=θt + αt

(
ρtrt+1φt − ρtφt(φt − γφt+1)>θt

)
.

(5)

Its key matrix is:

Aoff = lim
t→∞

Eµ
[
ρtφt(φt − γφt+1)>

]
= lim
t→∞

Eµ
[
π(a|s)
µ(a|s)φt(φt − γφt+1)>

]
= lim
t→∞

Eπ
[
φt(φt − γφt+1)>

]
= Φ>Dµ(I− γPπ)Φ,

(6)

The other is to directly use the target policy:

θt+1=̇θt + αt(rt+1 + γθ>t Eπ[φt+1]− θ>t φt)φt
=θt + αt

(
rt+1φt − φt(φt − γEπ[φt+1])>θt

)
.

(7)

The key matrix of these two off-policy learning algorithms
share the same form Aoff = Φ>Dµ(I− γPπ)Φ.

2.1 2-STATE COUNTEREXAMPLE

The θ → 2θ problem has only two states [Tsitsiklis
and Van Roy, 1997, Sutton et al., 2016]. From each
state, there are two actions, left and right, which take
the agent to the left or right state. All rewards are zeros.

𝜃 2𝜃

The features Φ = (1, 2)>

are assigned to the left and
the right state. The behav-
ior policy takes the equal
probability to left or right
in both states, i.e., Pµ =[

0.5 0.5
0.5 0.5

]
. The target policy only selects action right in

both states, i.e., Pπ =

[
0 1
0 1

]
. The state distribution of

the behavior policy is dµ = (0.5, 0.5)>. The discount factor
is γ = 0.9.

For the counterexample, the key matrix of the off-policy
TD is Aoff = Φ>Dµ(I − γPπ)Φ = −0.2. This means that
off-policy TD is not stable.

2.2 INSTABILITY OF RETRACE

Retrace algorithm belongs to the second implementation of
off-policy learning. It employs a truncated IS ratios ct =
min(1, ρt) and guarantees convergence with a look-up value
function [Munos et al., 2016]. We revisit Retrace(0) with
linear function approximation by Touati et al. [2018], where
the truncated IS ratios are multiplied to the whole TD error:

θt+1=̇θt + ctαt
(
rt+1 + γθ>t Eπ[φt+1]− θ>t φt

)
φt

=θt + αt
(
ctrt+1φt − ctφt(φt − γEπ[φt+1])>θt

)
,

(8)

where Eπ[φt+1] =
∑
a π(a|st+1)φ(st+1). The key matrix

of the expected Retrace’s update (8) is:

A Retrace(0) = lim
t→∞

Eµ
[
ctφt(φt − γEπ[φt+1])>

]
= Φ>DµDc(I− γPπ)Φ,

(9)

where Dc is the n×n diagonal matrix with dc on its diagonal,
each component of dc is

dc(s) =
∑
a

min(µ(a|s), π(a|s)). (10)

In the counterexample, according to (10), dc = (0.5, 0.5)>.
Then, the key matrix of Retrace(0) algorithm for this ex-
ample is: ARetrace(0) = Φ>DµDc(I− γPπ)Φ = −0.1. Thus,
Retrace(0) with linear function approximation is not stable.

3 TD-MRETRACE ALGORITHM

In this section we propose a mechanism to correct off-policy
update and derive new algorithms.
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3.1 MODIFIED RETRACE

Importance sampling ratios, ρt = π(at|st)
µ(at|st) , represent the

“off-policyness” of the current state and action between the
target policy and the behavior policy. The farther the target
policy deviates, the more unstable the learning algorithm
will be. In this sense, the maximum of the “off-policyness”,
maxa ρt = maxa{π(at|st)µ(at|st)}, is the key to the instability of
off-policy learning algorithms.

In order to reduce the impact of the deviation of the target
policy, we introduce modified retrace (MRetrace) that takes
the reciprocal of the above maximum degree as follows:

x(st)=̇
1

maxa ρt
= min

a

{ 1

ρt

}
= min

a

{µ(a|st)
π(a|st)

}
. (11)

Obviously, x(st) ≤ 12, and x(st) = 1 only when ∀a,
π(a|st) = µ(a|st).

3.1.1 MRetrace learning for prediction

We use the first way to learn state values for prediction. The
resulting temporal difference learning algorithm, which we
call MRetrace learning, is

θt+1=̇θt + αtρt
(
rt+1 + xtγθ

>
t φt+1 − θ>t φt

)
φt

=θt + αt
(
ρtrt+1φt − ρtφt(φt − xtγφt+1)>θt

)
=θt + αt

(
bt − Atθt

)
,

(12)

where xt is in short of x(st), bt = ρtrt+1φt, At =

ρtφt (φt − xtγφt+1)
>. Then,

b = lim
t→∞

Eµ[bt] = lim
t→∞

Eµ [ρtrt+1φt] = Φ>Dµrπ,

(13)

where rπ is expected reward vector under policy π with
each component rπ(s) =

∑
a

∑
s′ π(a|s)R(s, a, s′). The

key matrix of MRetrace is

A = lim
t→∞

Eµ [At] = lim
t→∞

Eµ
[
ρtφt(φt − xtγφt+1)>

]
= lim
t→∞

Eµ
[
π(a|s)
µ(a|s)φt(φt − xtγφt+1)>

]
= lim
t→∞

Eπ
[
φt(φt − xtγφt+1)>

]
= Φ>Dµ(I− γDxPπ)Φ,

(14)

where Dx is the n× n diagonal matrix with dx on its diago-
nal, each component of dx is dx(s) = minb

{
µ(b|s)
π(b|s)

}
.

2Note that
∑
a µ(a|st) = 1,

∑
a π(a|st) = 1.

3.1.2 MRetrace learning for control

We use the second way to learn action values for control.
The update rule is as follows:

θt+1 = θt + αtρt(rt+1 + xt+1γθ
>
t Eπ[φt+1]− θ>t φt)φt

= θt + αtρt(rt+1φt − φt(φt − xt+1γEπ[φt+1])>θt)

= θt + αt(bt − Atθt),
(15)

where bt = ρtrt+1φt, and At = ρtφt(φt −
xt+1γEπ[φt+1])>. Then,

b = lim
t→∞

Eµ[bt] = lim
t→∞

Eµ[ρtrt+1φt] = Φ>Dµrπ. (16)

The key matrix is

A = lim
t→∞

Eµ[At] = lim
t→∞

Eµ[ρtφt(φt − xt+1γEπ[φt+1])>]

= Φ>Dµ(I− γDxPπ)Φ.

(17)

It is worth noting that if we remove the important sampling
ratios ρt from (15), the key matrix A remains the same
since the terms, rt+1, φt and Eπ[φt+1] in the state action
values are independent of ρt. But we still keep ρt for reasons
explained below. When the successor state is composed of
afterstate and dynamics, e.g., Tetris game, one usually learn
the afterstate values. The distribution of these afterstates is
generated by the behavior policy. Therefore, ρt is needed to
correct the target returns.

From (13), (14), (16) and (17), we can see that the expecta-
tion of updates for MRetrace learning algorithms share the
same form. The only difference is that the feature matrix is
defined on state for prediction and on state-action pair for
control.

For the 2-state counterexample, dx = (0.5, 0.5)>, the value
of the new key matrix is as follows:

A = Φ>Dµ(I− γDxPπ)Φ = 1.15. (18)

This shows that our algorithm is convergent on this coun-
terexample. The specific theoretical proof and experimental
verification are left to following sections.

3.2 ABOUT THE SOLVED TD FIXED POINT

MRetrace enhances stability by reducing the impact of off-
policy. It is important to show what solution it seeks.

When the parameter vector θ in (12) is no longer updated, it
means that the MRetrace algorithm converges. In this case,
b − Aθ = 0. That is θ = A−1b if A is reversible. It is the
solution to the following expectation equation:

Eµ
[
ρ(r + xγθ>Eπ[φ′]− θ>φ)φ

]
= 0. (19)
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Lemma 3.1. The TD fixed point (19) follows from Vθ =
ΠT πx Vθ, where the modified Bellman operator T πx is defined
as

T πx V =̇r + γDxPπV. (20)

Proof.

0 = Eµ
[
ρ(r + xγθ>Eπ[φ′]− θ>φ)φ

]
=
∑
s

dsEπ[(r + xγVθ(s
′)− Vθ(s))φ(s)]

= Φ>Dµ(T πx Vθ − Vθ).

(21)

We have

Φ>DµT πx Vθ = Φ>DµVθ
= Φ>DµΦθ.

(22)

Then, θ = (Φ>DµΦ)−1Φ>DµT πx Vθ. That is Vθ = Φθ =
Φ(Φ>DµΦ)−1Φ>DµT πx Vθ = ΠT πx Vθ.

According to Scherrer [2010], (19) is TD fixed point due
to the projection direction (DµΦ) in the projection operator
Π. Note that it is neither the TD fixed point of the behavior
policy, nor the exact TD fixed point of the target policy in
MDP 〈S,A,R, T, γ〉.
Define a discount variable γµ,π on state s as γµ,π(s) =
γx(s). Then, the modified Bellman operator T πx in MDP
〈S,A,R, T, γ〉 equals to the Bellman operator T π in MDP
〈S,A,R, T, γµ,π〉.
Thus, MRetrace (12) solves the TD fixed point of the target
policy in MDP 〈S,A,R, T, γµ,π〉.

3.3 TD-MRETRACE ALGORITHM

Remember that our objective is to solve the TD fixed point
of the target policy in MDP 〈S,A,R, T, γ〉.
Consider another weight vector ω, the off-policy TD error
δπ(ωt) can be decomposed as follows:

δπ(ωt) = rt+1 + γω>t Eπ[φt+1]− ω>t φt
= rt+1 + γω>t (Eπ[φt+1]− φt+1 + φt+1)− ω>t φt
= rt+1 + γω>t (φt+1 − φt) + γω>t (Eπ[φt+1]− φt+1)

= δµ(ωt) + δoff(ωt),

(23)

where the on-policy TD error δµ(ωt)=̇rt+1 + γω>t (φt+1 −
φt), the off-policy correction δoff(ωt)=̇γω

>
t (Eπ[φt+1] −

φt+1).

It is a hybrid approach that combines the on-policy update
and the off-policy update together [Hackman, 2012]. When
our target and behavior policy are the same, Eπ[φt+1] −
φt+1 = 0, the update becomes the expected Sarsa update.

Therefore, the instability is due to the off-policy correction
δoff(ωt).

Let the off-policy correction be approximated as δoff(ωt) ≈
δoff(θt) based on the proposed MRetrace. Then, the off-
policy TD error can be approximated as follows:

δπ(ωt) = δµ(ωt) + δoff(ωt)

≈ δµ(ωt) + δoff(θt)

= rt+1 + γω>t (φt+1 − φt) + γθ>t (Eπ[φt+1]− φt+1)

(24)

The resultant algorithm, which we call TD-MRetrace, is

ωt+1 =ωt + αtδ
µ(ωt)φt + αtδ

off(θt)φt

=ωt + αt
[
rt+1 + γω>t (φt+1 − φt)

]
φt

+ αtγθt
>(Eπ[φt+1]− φt+1)φt.

(25)

where θt is generated by (12). Note that the update to ωt is
the sum of two terms, and that the first term is exactly the
same as the on-policy update. The second term has nothing
to do with ω and can be regarded as a correction of the
reward in the off-policy case. Once θ converges, ω will
converges such as on-policy TD learning.

4 CONVERGENCE

The purpose of this section is to establish that the TD-
MRetrace algorithm converges with probability one under
standard assumptions when {φt, rt,Eπ[φt+1]} is obtained
by the off-policy subsampling process [Sutton et al., 2008].

Let s be a state randomly drawn from dµ, and let s′ be a
state obtained by following π for one time step in the MDP
from s. Let the behavior policy µ select all actions of the
target policy π with positive probability in every state, and
the target policy is deterministic. Further, let r(s, s′) be the
reward incurred.

Assumption 4.1. The Markov chain (st) is aperiodic and
irreducible, so that limt→∞ P(st = s′|s0 = s) = dµ(s′)
exists and is unique.

This assumption implies that the state distribution vector dµ
of the behavior policy µ is the fixed point of

dµ = P>µ dµ, (26)

where element of matrix Pµ is as follows:

[Pµ]ss′ =
∑

µ(a|s)T (s, a, s′). (27)

Assumption 4.2. {φt, rt,Eπ[φt+1]} is such that
Eµ[||φt||2|st1 ], Eµ[r2t |st1 ], Eπ[||φt+1||2|st1 ] are uni-
formly bounded.
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Assumption 4.3. The feature matrix Φ is column full rank.

Assumption 4.4. Step-size sequence αt satisfies αt ∈ (0, 1],∑∞
t=0 αt =∞, and

∑∞
t=0 α

2
t <∞.

Theorem 4.5. (Convergence of MRetrace with an off-policy
sub-sampled process). Assume Assumption 4.1, 4.2, 4.3,
and 4.4. Let the parameter θt be updated by iteration (12).
Let A = Eµ

[
ρtφt(φt − xtγEπ[φt+1])>

]
, b = Eµ[ρtrtφt].

Then the parameter vector θt converges with probability one
to the TD fixed-point θ∗ = A−1b (19).

Proof. The proof follows from the procedures of Sutton
et al. [2008, 2009] for GTD and GTD2, which are based on
the ordinary-differential-equation (ODE) approach [Borkar
and Meyn, 2000]. First, A and b are well-defined according
to Assumption 4.1 and 4.2.

Now we apply Theorem 2.2 of Borkar and Meyn [2000].
We write θt+1 = θt + αt(−Aθt + b + (A − At+1)θt +
(bt+1 − b)) = θt + αt(h(θt) + Mt+1), where h(θ) =
b − Aθ and Mt+1 = (A − At+1)θt + bt+1 − b. Let
Ft = σ(θ1,M1, . . . , θt−1,Mt). Theorem 2.2 requires the
verification of the following conditions: (i) The function
h is Lipschitz and h∞(θ) = limr→∞ h(rθ)/r is well-
defined for every θ ∈ Rm; (ii-a) The sequence (Mt,Ft)
is a martingale difference sequence, and (ii-b) for some
C0 > 0, E[||Mt+1||2|Ft] ≤ C0(1 + ||θt||2) holds for any
initial parameter vector θ1; (iii) The sequence αt satisfies
0 < αt ≤ 1,

∑∞
t=0 αt = ∞, and

∑∞
t=0 α

2
t < ∞; (iv) The

ODE θ̇ = h∞(θ) has the origin as a globally asymptotically
stable equilibrium; and (v) The ODE θ̇ = h(θ) has a unique
globally asymptotically stable equilibrium.

Clearly, h(θ) is Lipschitz with coefficient ||A|| and
h∞(θ) = −Aθ. By construction, (Mt,Ft) satisfies
E[Mt+1|Ft] = 0 and Mt ∈ Ft, i.e., it is a martingale
difference sequence. Condition (ii-b) can be shown to hold
by a simple application of the triangle inequality and the
boundedness of the second moments of {φt, rt, φ′t}t. Con-
dition (iii) is satisfied by our conditions on the step-size
sequences αt.

For the last two conditions, we begin by showing that the
matrix A = Eµ[φt(φt − xtγEπ[φt+1])>] = Φ>Dµ(I −
γDxPπ)Φ is positive definite.

Note that A consists of Φ> and Φ wrapped around an n×n
matrix Dµ(I− γDxPπ). According to Assumption 4.3 that
the feature matrix Φ is column full rank, then, A is positive
definite whenever the key matrix Dµ(I−γDxPπ) is positive
definite.

Based on two theorems showed by Sutton [1988], Sutton
et al. [2016], positive definiteness of the key matrix is as-
sured if all of its columns and rows sum to positive numbers.
One theorem is that any matrix M is positive definite if
and only if the symmetric matrix S = M + M> is positive
definite. Another theorem is that any symmetric real matrix

S is positive definite if the absolute values of its diagonal
entries are greater than the sum of the absolute values of
the corresponding off-diagonal entries. For the key matrix,
M = Dµ(I− γDxPπ), the diagonal entries are positive and
the off-diagonal entries are negative, so all we have to show
is that all components of both (M1) and (1>M) are positive,
where 1 is the column vector with all components equal to
1. They can be verified as follows:

M1 = Dµ(I− γDxPπ)1 = Dµ(1− γDxPπ1)

= Dµ(1− γDx1)

= Dµ(1− γdx)

(28)

Each component of M1 is [Dµ(1− γdx)](s) = dµ(s)(1−
γminb

{µ(b|s)
π(b|s)

}
) ≥ dµ(s)(1− γ) > 0.

[DxPπ]ij = min
b

{µ(b|i)
π(b|i)

}∑
a

π(a|i)T (i, a, j)

=
∑
a

π(a|i) min
b

{µ(b|i)
π(b|i)

}
T (i, a, j)

≤
∑
a

π(a|i)µ(a|i)
π(a|i)T (i, a, j)

=
∑
a

µ(a|i)T (i, a, j)

= [Pµ]ij .

(29)

1>M = 1>Dµ(I− γDxPπ)

= d>µ (I− γDxPπ)

= d>µ − γd>µDxPπ
≥ d>µ − γd>µ Pµ
= d>µ − γd>µ
= (1− γ)d>µ

(30)

Each component of the vector 1>M is [(1 − γ)dµ](s) =
(1− γ)dµ(s) > 0. The row sums and the column sums are
all positive. Thus, (iv) is satisfied.

Finally, for the ODE θ̇ = h(θ), note that θ∗ = A−1b is
the unique asymptotically stable equilibrium with V (θ) =
1
2 || − Aθ + b||2 as its associated strict Liapunov function.
The claim now follows.

Theorem 4.6. (Convergence of TD-MRetrace with an off-
policy sub-sampled process). Assume Assumption 4.1, 4.2,
4.3, and 4.4. Let the parameter ωt be updated by iteration
(25) and θt be updated by iteration (12). Then the parameter
vector ωt converges with probability one.

Proof. A sketch proof is given as follows. Based on The-
orem 4.5, θ converges. Then, δoff(θt) is stable. Let a new
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(a) Stochastic updates in 2-state.
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(b) Deterministic updates in 2-state.
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(c) Stochastic updates in Baird’s.
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(d) Deterministic updates in Baird’s.
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(e) Sensitive test in 2-state
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(f) Sensitive test Baird’s

Figure 1: Comparisons of various temporal difference updates in counterexamples.

reward rnew
t+1=̇δoff(θt)+rt+1, this reward can be regarded as

a correction to reward function in the off-policy case. There-
fore, TD-MRetrace is actually an on-policy TD learning
algorithm. It is guaranteed to converge, just like TD.

5 EXPERIMENTAL STUDIES

In experiments, we care about two points about the proposed
TD-MRetrace algorithm: (1) Whether it converges exper-
imentally, although it does converge in theory? (2) What
is the quality of the TD fixed point it solves? We adopted
two sets of experiments, i.e., counterexamples to test the
stability and control tasks to test the utility.

5.1 ABOUT STABILITY IN COUNTEREXAMPLES

In the 2-states counterexample and Baird’s counterexample,
we implemented two update styles including stochastic up-
dates and deterministic updates, and finished parameter sen-
sitivity test for converged algorithms. Compared algorithms
include Retrace, ETD, GTD, GTD2, TDC, and GRetrace.
Each algorithm was run 100 times independently.

Algorithms’ learning curves including mean in line and
standard deviation in shaded regions and sensitive testing are
shown in Figure 1, where the theta value is equal to the root
of mean squared value error (RMSVE) since there is only
one scalar parameter in the 2-state counterexample and the
true value is zero. We can see that (i) Retrace diverges in all

cases. (ii) Deterministic ETD converges to zero the fastest.
On the other hand, ETD converges with a high variance at
the beginning in the 2-state counterexample, and diverges
in Baird’s counterexample which is consistent with results
of computational experiments about ETD [see Sutton and
Barto, 2018, Page 282]. (iii) MRetrace converges to zero
relatively fast in all cases. (iv) MRetrace performs best in
parameter sensitivity tests.

5.2 LEARNING TO CONTROL

We divided into two groups of experiments to test the solu-
tion quality. In the first set of experiments, we removed func-
tion approximation from “the deadly triad”, and used tabular
value functions instead. Under these settings, algorithms
should converge. What we care about is that whether the
proposed algorithm can obtain the optimal solution. There-
fore, we adopted the classic maze task. In the second set of
experiments, we directly address “the deadly triad”: linear
function approximation, bootstrapping, and off-policy learn-
ing. Therefore, we adopted the classic Tetris task, which
was used as a benchmark challenge for various optimization
techniques including reinforcement learning.

5.2.1 25×25 Maze

We use a 25×25 version of Maze, as shown in the figure
on the right at the beginning of this section. Reward for
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Figure 2: Comparisons of learning algorithms in Maze.

each step is set to -1, except for the end state which is 0.
The action value for each state action pair is initialized to 0.

ping, and off-policy learning. Therefore, we adopted the
classic Tetris task, which was used as a benchmark chal-
lenge for various optimization techniques including rein-
forcement learning.

(a) Maze map

(b) Learning curves

Figure 3: Comparisons of learning algorithms in Maze.

5.2.1 25×25 Maze

We use a 25×25 version of Maze, see Figure 3(a). Reward
for each step is set to -1, except for the end state which is 0.
The action value for each state action pair is initialized to
0. The behavior policy is an ϵ-greedy policy. ϵ is initialized
to 0.1, and decreases to 0 along with episodes. Compared
algorithms include Q-learning, Sarsa, Retrace and Double
Q-learning. Each algorithm was run 1000 times indepen-
dently.

Algorithms’ learning curves including mean in line and
standard deviation in shaded regions are shown in Figure
4. We can see that (i) As expected, each algorithm con-
verges and converges to the optimal policy since there are
no “deadly triad”. (ii) Double-Q learning converges the
slowest because it has twice as many learning parameters.
(iii) Sarsa learning converges slower than Q-learning be-
cause Sarsa is not an off-policy learning. Its convergence
to the optimal policy is due to the decrease of ϵ in the be-
havior policy. (iv) Q-learning, Retrace, MRetrace and TD-
MRetrace perform well with no significant differences.

Figure 4: Comparisons of learning algorithms in Maze.
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Figure 5: Comparisons of learning curves in the 10 × 10
tetris tasks.

5.2.2 10×10 Tetris

Tetris game is used as a challenge for various optimiza-
tion techniques [Thiery and Scherrer, 2009], where value
function based reinforcement learning algorithms have per-
formed extremely poor, i.e., removing only about 50 lines
on average in the 20×10 version of Tetris game where the
reward is set to one point for each removed line [Gabillon
et al., 2013]. It is much harder to learn in the 10×10 ver-
sion of Tetris. We learn the afterstate values via linear sum-
mation with weighted DT9 features [Scherrer et al., 2015],
which are normalized in [0,1].

For the hyperparameter settings, the learning rate α is fixed
at 0.001 with no decay. The initial ϵ is set to 0.01 and de-
cays to 0.0001 with a decay rate of 0.9992. Compared algo-
rithms include Q-learning, Retrace and Double Q-learning.
Each algorithm was run 10 times independently.

Algorithms’ learning curves including mean in line and
standard deviation in shaded regions are shown in Fig-
ure 5, where the averaged removed lines represent the ex-

The behavior policy is an ε-
greedy policy. ε is initialized to
0.1, and decreases to 0 along
with episodes. Compared algo-
rithms include Q-learning, Sarsa,
Retrace and Double Q-learning.
Each algorithm was run 1000
times independently.

Algorithms’ learning curves including mean in line and stan-
dard deviation in shaded regions are shown in Figure 2. We
can see that (i) As expected, each algorithm converges and
converges to the optimal policy since there are no “deadly
triad”. (ii) Double-Q learning converges the slowest because
it has twice as many learning parameters. (iii) Sarsa learn-
ing converges slower than Q-learning because Sarsa is not
an off-policy learning. Its convergence to the optimal pol-
icy is due to the decrease of ε in the behavior policy. (iv)
Q-learning, Retrace, MRetrace and TD-MRetrace perform
well with no significant differences.

5.2.2 10×10 Tetris

Tetris game is used as a challenge for various optimiza-
tion techniques [Thiery and Scherrer, 2009], where value
function based reinforcement learning algorithms have per-
formed extremely poor, i.e., removing only about 50 lines
on average in the 20×10 version of Tetris game where the
reward is set to one point for each removed line [Gabillon
et al., 2013]. It is much harder to learn in the 10×10 version
of Tetris. We learn the afterstate values via linear summation
with weighted DT9 features [Scherrer et al., 2015], which
are normalized in [0,1].
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Figure 3: Comparisons of learning curves in the 10 × 10
tetris tasks.

For the hyperparameter settings, the learning rate α is fixed
at 0.001 with no decay. The initial ε is set to 0.01 and decays
to 0.0001 with a decay rate of 0.9992. Compared algorithms
include Q-learning, Retrace and Double Q-learning. Each
algorithm was run 10 times independently.

Algorithms’ learning curves including mean in line and
standard deviation in shaded regions are shown in Figure
3, where the averaged removed lines represent the expected
return per episode. We can see that (i) On the 10×10 version
of Tetris, Q-learning and Double Q-learning perform poorly
but that is consistent with the literature. (ii) Although not
reaching the state of the art, MRetrace and TD-MRetrace
perform much better than the other three algorithms. To
the best of our knowledge, MRetrace and TD-MRetrace are
the first two discounted value function based reinforcement
learning algorithms that perform well on Tetris.

In summary, the experiments verified the convergence of
the TD-MRetrace algorithm. Moreover, in terms of quality
testing, it finds a relatively good policy, although it solves
an approximation of the target policy.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a simple but efficient method
by introducing modified retrace to correct the return of the
target policy, and guarantee the convergence of the proposed
TD-MRetrace algorithm. The effectiveness of TD-MRetrace
with linear value functions are validated in both evaluation
tasks and control tasks.

Future works include: (i) extensions of TD-MRetrace(0)
with the one-step update to TD-MRetrace(λ) with multi-
step updates. (ii) extensions of the proposed TD-MRetrace
algorithm with nonlinear value functions.
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