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Abstract

“Benign overfitting”, where classifiers memorize
noisy training data yet still achieve a good gener-
alization performance, has drawn great attention
in the machine learning community. To explain
this surprising phenomenon, a series of works
have provided theoretical justification for over-
parameterized linear regression, classification, and
kernel methods. However, it is not clear if benign
overfitting can occur in the presence of adversarial
examples, i.e., examples with tiny and intentional
perturbations to fool the classifiers. In this paper,
we show that benign overfitting indeed occurs in
adversarial training, a principled approach to de-
fend against adversarial examples, on subGaussian
mixture data. In detail, we prove the risk bounds
of the adversarially trained linear classifier on the
mixture of sub-Gaussian data under `p adversar-
ial perturbations. Our result suggests that under
moderate perturbations, adversarially trained linear
classifiers can achieve the near-optimal standard
and adversarial risks, despite overfitting the noisy
training data. Numerical experiments validate our
theoretical findings.

1 INTRODUCTION

Modern machine learning methods such as deep learn-
ing have made many breakthroughs in a variety of appli-
cation domains, including image classification [He et al.,
2016a, Krizhevsky et al., 2012], speech recognition [Hin-
ton et al., 2012] and etc. These models are typically over-
parameterized: the number of model parameters far exceeds
the size of the training samples. One mystery is that, these
over-parameterized models can memorize noisy training
data and yet still achieve quite good generalization perfor-
mances on the test data [Zhang et al., 2017]. Many efforts

have been made to explain this striking phenomenon, which
against what the classical notion of overfitting might sug-
gest. A line of research works [Soudry et al., 2018, Ji and
Telgarsky, 2019b, Nacson et al., 2019, Gunasekar et al.,
2018b,a] shows that there exists the so-called implicit bias
[Neyshabur, 2017]: the training algorithms tend to converge
to certain kinds of solutions even with no explicit regular-
ization. Specifically, Soudry et al. [2018], Ji and Telgarsky
[2019b], Nacson et al. [2019] demonstrate that gradient
descent trained linear classifiers on logistic or exponential
loss with no regularization asymptotically converge to the
maximum L2 margin classifier. Recent works [Bartlett et al.,
2020, Chatterji and Long, 2020, Cao et al., 2021, Wang and
Thrampoulidis, 2021, Tsigler and Bartlett, 2020] further
shows that over-parameterized and implicitly regularized
interpolators can indeed achieve small test error, and for-
mulate this phenomenon as “benign overfitting”. More con-
cretely, suppose the classification model f is parameterized
by θ ∈ Θ and the loss is denoted as `(·). The population
risk is define as

P(x,y)∼D[fθ(x) 6= y],

where data pair (x, y) is generated from certain data gen-
eration model. Chatterji and Long [2020] shows that with
sufficient over-parameterization, gradient descent trained
maximum L2 margin classifier can achieve nearly optimal
population risk on noisy data for data generated from a sub-
Gaussian mixture model. This suggests that the overfitting
can be “benign” in the over-parameterized setting.

Besides these studies on the benign overfitting phenomenon,
another well-known feature of modern machine learning
methods is that they are vulnerable to adversarial exam-
ples. Recent studies [Szegedy et al., 2013, Goodfellow et al.,
2015] show that modern machine learning systems are brit-
tle: slight input perturbation that is imperceptible to human
eyes could mislead a well-trained classifier into wrong clas-
sification result. These malicious inputs are also known as
the adversarial examples [Szegedy et al., 2013, Goodfellow
et al., 2015]. Adversarial examples raise severe trustworthy
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issues and security concerns on the current machine learning
systems especially in security-critical applications. Various
methods [Kurakin et al., 2016, Madry et al., 2018, Zhang
et al., 2019, Wang et al., 2019, 2020] have been proposed
to defend against the threats posed by adversarial exam-
ples. One of the notable approaches is adversarial training
[Madry et al., 2018]. Specifically, adversarial training solves
the following min-max optimization problem,

min
θ∈Θ

1

n

n∑
i=1

max
x′i∈B

p
ε (xi)

`(fθ(x′i), yi),

where {(xi, yi)}ni=1 is the training set and Bpε (xi) = {x :
‖x − xi‖p ≤ ε} denotes the ε-ball around xi in `p norm
(p ≥ 1). Many empirical or theoretical studies have been
conducted trying to analyze or further improve adversarial
training robustness [Zhang et al., 2019, Wang et al., 2020,
Carmon et al., 2019, Wang et al., 2019, Raghunathan et al.,
2020]. A recent work [Sanyal et al., 2021] also pointed out
that normally trained interpolators with the presence of label
noise are unlikely to be adversarially robust, while adver-
sarially robust classifiers cannot overfit noisy labels under
certain conditions. Rice et al. [2020] showed that overfit-
ting can hurt robust generalization in adversarial training on
several real-world datasets. Dong et al. [2021] pointed out
that robust overfitting in adversarial training is caused by
memorizing one-hot labels, which can be relieved by proper
regularization. However, there still lacks theoretical under-
standing why and when benign overfitting can or cannot
occur for adversarial training.

In this paper, we show that benign overfitting can indeed
occur in adversarial training under certain data distributions,
which largely advances our understanding towards overfit-
ting in adversarial training. We summarize our contributions
of this paper in the following

• We show that the benign overfitting phenomenon can
occur in adversarially robust linear classifiers with suf-
ficient over-parameterization for data generated from a
Gaussian mixture model. Specifically, under moderate `p
norm perturbations, adversarially trained linear classifiers
can achieve the near-optimal standard and adversarial
risks, in spite of overfitting the noisy training data.

• When the perturbation strength ε is set to be 0, our ad-
versarial risk bound reduces to the standard one. The
resulting standard risk bound extends Chatterji and Long
[2020]’s risk bound to further characterize the behavior
of the linear classifier trained by t-step gradient descent.

• We show that depending on the value of p (perturbation
norm), the adversarial risk bound can be different. The
higher value of p (typically for p ≥ 2 case) actually
leads to a larger gap between the adversarial risk and the
standard risk with the same ε.

Complementary to our theory, we also conduct numerical

experiments to show that if certain data distribution assump-
tion is violated, overfitting can become harmful.

Notation. we use lower case letters to denote scalars
and lower case bold face letters to denote vectors. For
a vector x ∈ Rd, we denote its `p norm (p ≥ 1) of

x by ‖x‖p =
(∑d

i=1 |xi|p
)1/p

, the `∞ norm of x by
‖x‖∞ = maxdi=1 |xi|. We denote x◦p as the element-wise
p-power of x. The notation (x, y) ∼ D denotes that the
data pair (x, y) is generated from a distribution D. For
p ≥ 1, we denote Bpr (x) as the `p norm ball of radius r cen-
tered at x. Given two sequences {an} and {bn}, we write
an = O(bn) if there exists a constant 0 < C < +∞ such
that an ≤ C bn. We denote an = Ω(bn) if bn = O(an). We
denote an = Θ(bn) if an = O(bn) and an = Ω(bn).

2 RELATED WORK

There exists a large body of works on adversarial training,
implicit bias and benign overfitting. In this section, we re-
view the most relevant works to ours.

Adversarial Training. Adversarial training [Madry et al.,
2018] and its variants [Zhang et al., 2019, Wang et al., 2019,
2020] are currently the most effective type of approaches to
empirically defend against adversarial examples [Szegedy
et al., 2013, Goodfellow et al., 2015]. Many attempts have
been made to understand its empirical success. Charles et al.
[2019], Li et al. [2020] showed that the adversarially trained
linear classifier directionally converges to the maximum
margin classifier. Gao et al. [2019], Zhang et al. [2020b]
showed that adversarial training with neural networks can
achieve low robust training loss. Yet these conclusions can-
not explain the test (population) performances. Another line
of research focuses on the generalization performance of
adversarial training and the number of training samples.
Schmidt et al. [2018] showed that adversarial models re-
quire more data than standard models to achieve certain test
accuracy. Chen et al. [2020] showed that more data may
actually increase the gap between the generalization error
of adversarially-trained models and standard models. Yin
et al. [2019], Cullina et al. [2018] studied the adversarial
Rademacher complexity and VC-dimensions. Some other
works focus on the trade-off between robustness and natural
accuracy [Zhang et al., 2019, Tsipras et al., 2019, Wu et al.,
2020, Raghunathan et al., 2020, Yang et al., 2020, Dobriban
et al., 2020, Javanmard and Soltanolkotabi, 2020], adversar-
ial model complexity lower bound [Allen-Zhu and Li, 2020],
as well as the provable robustness upper bound [Fawzi et al.,
2018, Zhang et al., 2020a]. Liu et al. [2021] studied the
impact of hard training instances on adversarially trained
model’s overfitting behavior.

Recently, some works also focus on studying the learning
of robust halfspaces and linear models. Montasser et al.
[2020] studied the conditions on the adversarial perturbation

314



sets under which halfspaces are robustly learnable in the
presence of random label noise. Diakonikolas et al. [2020]
studied the computational complexity of adversarially robust
halfspaces under `p norm perturbations. Zou et al. [2021a]
showed that adversarially trained halfspaces are provably
robust with low robust classification error in the presence
of noise. Dan et al. [2020] proposed an adversarial signal to
noise ratio and studied the excess risk lower/upper bounds
for learning Gaussian mixture models. Taheri et al. [2020],
Javanmard and Soltanolkotabi [2020] studied adversarial
learning of linear models on Gaussian mixture data, where
the data dimension and the number of training data points
have a fixed ratio.

Implicit Bias. Several recent works studied the implicit
bias of various training algorithms in over-parameterized
models. Soudry et al. [2018] studied the implicit bias of
gradient descent trained on linearly separable data while
Ji and Telgarsky [2019b] studied non-separable cases. Gu-
nasekar et al. [2018a] studied the implicit bias of various
optimization methods in linear regression and classification
problems. Ji and Telgarsky [2019a] studied the implicit bias
for deep linear networks and Arora et al. [2019], Gunasekar
et al. [2018b] studied the implicit bias for matrix factoriza-
tion. Lyu and Li [2020] studied implicit regularization of
homogeneous neural networks with exponential loss and
logistic loss.

Benign Overfitting and Double Descent. A series of recent
works have studied the “benign overfitting” phenomenon
Bartlett et al. [2020] that when training over-parameterized
models, classifiers can still achieve good population risk
even when overfitting the noisy training data. Bartlett et al.
[2020], Tsigler and Bartlett [2020] studied the risk bounds
for over-parameterized linear (ridge) regression and showed
that under certain settings, the interpolating linear model
with minimum parameter norm can have asymptotically op-
timal risk. Belkin et al. [2018, 2019a,b], Hastie et al. [2019],
Wu and Xu [2020] quantified the dependency curve between
the population risk and the degree of over-parameterization
and showed that the curve has a double-descent shape.
Chatterji and Long [2020] studied the risk bounds in over-
parameterized linear logistic regression with label flipping
noises. Cao et al. [2021] further tighten the risk bound in
Chatterji and Long [2020] in low SNR settings. Zou et al.
[2021b] studied benign overfitting of stochastic gradient
descent for linear regression. Shamir [2022] studied be-
nign overfitting for linear predictors using a generic data
model. Recently, Frei et al. [2022], Cao et al. [2022] studied
the benign overfitting in two-layer fully-connected neural
networks or CNNs. Chatterji and Long [2022] showed a neg-
ative result for basis pursuit and compared it with ordinary
least squares. Wald et al. [2022] showed some negative re-
sults and suggests that the phenomenon of benign overfitting
might not favorably extend to settings in which robustness
or fairness are desirable.

3 PROBLEM SETTING AND
PRELIMINARIES

In order to properly characterize the benign overfitting phe-
nomenon in adversarial training, we also define the popula-
tion adversarial risk, which is the counterpart for population
risk in the standard training scenario:

P(x,y)∼D
[
∃x′ ∈ Bpε (x) s.t., fθ(x′) 6= y

]
.

The adversarial risk measures the misclassification rate of
the target classifier under the presence of `p-norm adversar-
ial perturbations. It is easy to observe that the adversarial
risk is always larger than the standard risk as it requires the
classifier to correctly classify the data examples within the
entire local `p norm ball.

We consider a sub-Gaussian mixture data generation model
in our work. Specifically, the clean data (x̃, ỹ) ∼ D̃ is
generated such that, for each data point (x̃, ỹ) ∈ Rd ×
{±1}, we have ỹ ∼ Unif({±1}) and x̃ = ỹµ + ξ where
ξ ∈ Rd and ξ1, ξ2, . . . , ξd are i.i.d. zero-mean sub-Gaussian
variables with sub-Gaussian norm at most 1. The actual
data examples are sampled from a noisy distribution D
which is close to the clean distribution D̃. Specifically, D
can be any distribution over Rd × {±1} who has the same
marginal distribution on Rd and the total variation distance
dTV(D, D̃) ≤ η where η denotes the noise level.

Note that our data generation model is standard for study-
ing the population risk of over-parameterized linear clas-
sification. In fact, it is exactly the same as the one stud-
ied in Chatterji and Long [2020]. In this model, following
standard coupling lemma [Lindvall, 2002], there always
exists a joint distribution on original data and noisy data
((x̃, ỹ), (x, y)) such that the marginal distribution for (x̃, ỹ)
is D̃, the marginal distribution for (x, y) isD, P[x = x̃] = 1
and P[y 6= ỹ] ≤ η.

In this paper, we study the problem of robust binary classi-
fication with training data {(xi, yi)}ni=1 drawn i.i.d. from
the distribution D. Let’s denote the “clean” sample index
as C := {k : yk = ỹk} and the “noisy” sample index as
N := {k : yk 6= ỹk}. We consider the adversarially trained
linear classifier under exponential loss. In such cases, the
adversarial loss can be explicitly written as

L(θ) =

n∑
i=1

max
x′i∈B

p
ε (xi)

exp(−yiθ>x′i). (1)

In gradient descent adversarial training algorithm, the ad-
versarial loss L(θ) is minimized by first solving the inner
maximization problem in (1) with respect to the current
model parameter θt−1 and then update the model parameter
θt by performing gradient descent to minimize the adver-
sarial loss in each iteration. We summarized the training
procedure for gradient descent adversarial training1 in Algo-

1Note that in practice people often initialize θ0 by a small ran-
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Algorithm 1 Gradient Descent Adversarial Training

1: input: Training data {xi, yi}ni=1, number of training
iterations T , maximum perturbation strength ε, training
step sizes αt;

2: initialize model parameter θ0 = 0
3: for t = 1, . . . , T do
4: for each {xi, yi} do
5: x′i = argmaxx′i∈B

p
ε (xi)

exp(−yiθ>t−1x′i)
6: end for
7: θt = θt−1 − αt · ∇θL(θt−1)
8: end for

rithm 1. Note that in the linear classifier setting, the inner
maximization problem in (1) has the following property

argmax
x′i∈B

p
ε (xi)

exp(−yiθ>x′i) = argmax
ui∈Bpε (0)

exp(−yiθ>(xi + ui))

= argmin
‖ui‖p≤ε

yiθ
>ui. (2)

By Hölders’ inequality, it is easy to observe that the opti-
mal adversarial loss and the corresponding gradient can be
written as

L(θ) =

n∑
i=1

exp(−yiθ>xi + ε‖θ‖q),

∇θL(θ)

= −
n∑
i=1

(yixi − ε · ∂‖θ‖q) exp(−yiθ>xi + ε‖θ‖q),

where 1/p + 1/q = 1. Also note that in the over-
parameterized settings, the training examples drawn from
our data generation model are linearly separable with high
probability (See Lemma 12 in Section 5). Linearly separable
property ensures that the training samples have a positive
margin (with high probability). Following Li et al. [2020],
we also define the standard and adversarial margin as

γ̄ := max
‖θ‖q=1

min
i∈[n]

yiθ
>xi,

γ := max
‖θ‖2=1

min
i∈[n]

min
x′i∈B

p
ε (xi)

yiθ
>x′i, (3)

which are useful in our later analysis. We also define the
unique linear classifier θ that achieves adversarial margin γ
defined above as w.

4 MAIN RESULTS

In this section, we study both the behavior of the population
risk and the population adversarial risk for adversarially
trained linear classifiers.

dom vector (e.g., Xavier initialization [Glorot and Bengio, 2010]),
while we follow Li et al. [2020] and set θ0 = 0 for the ease of
theoretical analysis.

Assumption 1. The adversarial perturbation radius ε is
upper bounded by a constant R and is smaller than the `p
data margin γ̄, i.e., ε ≤ min{R, γ̄}.

The goal of adversarial training is to obtain high-accuracy
classifiers that are also robust to small input perturbations
which can be ignored by human beings (e.g., small `∞-norm
perturbations that are invisible to human eyes). Therefore,
Assumption 1 is reasonable by constraining the maximum
allowable perturbation magnitude.

Assumption 2. The noise ξ in the data generation model
satisfies that E[‖ξ‖22] ≥ κd for some constant κ.

Assumption 2 is a common condition that has also been
considered in Chatterji and Long [2020]. It ensures that the
summation of the variances of the data input increases in
the order of Θ(d). Clearly, this assumption covers the most
common setting where the entries of ξ are i.i.d. and have a
variance larger than or equal to κ.

Assumption 3. The gradient descent starts at 0, and the
step sizes are set as α0 = 1/(Gdn), αt = α ≤ 1/(GdnM)

for M = max{[2d + ε(q − 1)d
3q−2
2q−2 /γ] exp(−γ2/(Gd) +

ε/G), 1} and a constant G.

Assumption 3 summarizes our assumptions about the gradi-
ent descent algorithm on the adversarial loss. The learning
rate conditions here are to ensure the convergence of adver-
sarial training, and is inspired by Li et al. [2020].

We first present our theorem for standard risk of adversarial
training method (Algorithm 1).

Theorem 4 (Standard Risk of Adversarial Training). For
any p ∈ [1,+∞), suppose that Assumptions 1, 2 and 3
hold with κ ∈ (0, 1] and large enough constants R and
G. Moreover, for any δ ∈ (0, 1), suppose the number of
training samples n ≥ C log(1/δ), the dimension d ≥
C · max{n‖µ‖22, n2 log(n/δ)}, the noise level η < 1/C,
and ‖µ‖22 ≥ C max{log(n/δ), ε‖µ‖q} for a large enough
constant C. Then with probability at least 1− δ, adversari-
ally trained linear classifier fθt for sufficiently large t under
`p-norm ε-perturbation satisfies the following standard risk

P(x,y)∼D[fθt(x) 6= y]

≤ η + exp

(
− C ′

((‖µ‖22 − 4ε‖µ‖q
)

(C ′′ + ε)
√
d

− C ′′′‖µ‖2 log n

log t

)2
)
,

whereC ′, C ′′, C ′′′ > 0 are absolute constants, 1/p+1/q =
1.

Remark 5. Theorem 4 presents the standard risk of ad-
versarial training under `p norm perturbations. Note that
adversarially trained linear classifier enjoys a bounded
population risk which decreases as the number of training
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iterations t increases. Specifically, when t→∞, we have

lim
t→∞

P(x,y)∼D[fθt(x) 6= y]

≤ η + exp

(
− C ′

((‖µ‖22 − 4ε‖µ‖q
)

(C ′′ + ε)
√
d

)2
)
. (4)

Remark 6. For (4), consider the case when the sample
size n is fixed but dimension d and ‖µ‖2 are growing, we
discuss the conditions to reach minimum standard risk of
noise level η. Note that when 1 ≤ p ≤ 2 we have q ≥ 2
and ‖µ‖q ≤ ‖µ‖2. In this case, if ‖µ‖2 = Ω(d1/4), the
standard risk will come close to the noise level η when d is
sufficiently large. When p > 2 and therefore q < 2, we have
‖µ‖q ≤ d1/q−1/2‖µ‖2. In this case, if ‖µ‖2 = Ω(d1/4)
and ε = O(‖µ‖2/d1/q−1/2), the standard risk will come
close to the noise level η with sufficiently large d. Note that
our theorem condition also requires that ‖µ‖2 = O(

√
d).

Therefore, in order to reach the standard risk of η, we need
‖µ‖2 = Θ(dr) for some r ∈ (1/4, 1/2].

Remark 7. Choosing ε = 0 will reduce to the standard
training case. Specifically, if we set ε = 0 in (4), it reduces
to the same conclusion as Theorem 3.1 in Chatterji and
Long [2020]. However, our result is more general, as it
covers the setting of adversarial training and gives risk
bounds for the linear model obtained with a finite number
of gradient descent iterations.

Theorem 8 (Adversarial Risk of Adversarial Training). For
any δ ∈ (0, 1), under the same conditions as in Theorem 4,
with probability at least 1 − δ, the adversarially trained
linear classifier fθt for sufficiently large t under `p-norm
ε-perturbation satisfies the following adversarial risk if 1 ≤
p ≤ 2

P(x,y)∼D
[
∃x′ ∈ Bpε (x) s.t., fθ(x

′
) 6= y

]
≤ η + exp

(
− C′

((‖µ‖22 − 4ε‖µ‖q
)

(C′′ + ε)
√
d

−
C′′′‖µ‖2 logn

log t
− ε
)2
)
,

and if p > 2,

P(x,y)∼D
[
∃x′ ∈ Bpε (x) s.t., fθ(x

′
) 6= y

]
≤ η + exp

(
− C′

((‖µ‖22 − 4ε‖µ‖q
)

(C′′ + ε)
√
d

−
C′′′‖µ‖2 logn

log t
− εd

1
q
− 1

2

)2
)
,

whereC ′, C ′′, C ′′′ > 0 are absolute constants, 1/p+1/q =
1.

Remark 9. Theorem 8 shows the adversarial risk of ad-
versarial training under `p norm perturbations. The major
difference from the standard risk (Theorem 4) lies in the
additional ε or εd1/q−1/2 term in the exponential function.
This aligns with the common sense that adversarial risk
should always be larger than the standard risk. This also
suggests that for larger p-norm (p > 2) perturbation, the
same magnitude of perturbation would lead to a larger gap
between the adversarial risk and the standard risk. In terms
of the perturbation strength, we can also observe that with

a larger ε, adversarially trained classifiers obtain worse
adversarial risk. This has been verified by many empirical
observations of adversarial training [Madry et al., 2018,
Zhang et al., 2019].

Remark 10. Note that when t→∞, if 1 ≤ p ≤ 2, we have
the following adversarial risk bound:

lim
t→∞

P(x,y)∼D
[
∃x′ ∈ Bpε (x), fθ(x′) 6= y

]
≤ η + exp

(
− C ′

((‖µ‖22 − 4ε‖µ‖q
)

(C ′′ + ε)
√
d

− ε
)2
)
,

and if p > 2, we have

lim
t→∞

P(x,y)∼D
[
∃x′ ∈ Bpε (x), fθ(x′) 6= y

]
≤ η + exp

(
− C ′

((‖µ‖22 − 4ε‖µ‖q
)

(C ′′ + ε)
√
d

− εd
1
q−

1
2

)2
)
.

Similar to the standard risk case (Remark 6), when 1 ≤
p ≤ 2, if ‖µ‖2 = Θ(dr) for some r ∈ (1/4, 1/2], the
adversarial risk will also come close to the noise level η
with sufficiently large d. When p > 2, if we have ‖µ‖2 =
Θ(dr) for some r ∈ (1/4, 1/2] and ε = O(‖µ‖2/d1/q), the
adversarial risk will be close to η with sufficiently large d.
Note that compared to the standard risk, this requirement
on ε is slightly stronger.

Remark 11. Note that our results in Theorem 8 imply that
overfitting in adversarial training can be benign for certain
distributions (e.g., subGaussian mixture data). This is later
empirically verified in the experiments for both linear and
neural network models.

5 PROOF OUTLINE OF THE MAIN
RESULTS

In this section, we present the proof of our main theorems,
which consists of three main steps.

Statistical properties of the training data points. We first
list some basic properties of the training data points based
on our data model defined in Section 3.

Lemma 12 (Lemma 4.7 in Chatterji and Long [2020]). Let
zk = ykxk. There exist absolute constants R, κ and G and
C, such that if the assumptions in Theorem 4 hold, then with
probability at least 1− δ,

d

c0
≤ ‖zk‖22 ≤ c0d for all k ∈ [n], (5)

|z>i zj | ≤ c0
(
‖µ‖22 +

√
d log(n/δ)

)
for all i 6= j, (6)

|µ>zk − ‖µ‖22| ≤ ‖µ‖22/2 for all k ∈ C, (7)

|µ>zk − (−‖µ‖22)| ≤ ‖µ‖22/2 for all k ∈ N , (8)

the number of noisy samples |N | ≤ (η + c1)n, and all
training samples are linearly separable, where c0 > 1 is an
absolute constant.
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Lemma 12 directly follows Lemma 4.7 in Chatterji and
Long [2020]. It provides direct high probability bounds for
‖zk‖2 and µ>zk and also suggests that zk vectors are nearly
pairwise orthogonal in over-parameterized settings. It also
guarantees that training examples are linearly separable with
high probability.

Landscape properties of the training objective function.
Given the properties of the training data points, we proceed
to establish the landscape properties of the objective func-
tion L(θ1). The following lemma bound the loss for the
adversarially trained classifier in step 1.

Lemma 13. [Theorem 3.4 in Li et al. [2020]] Under the
same conditions as in Theorem 4, with probability at least
1− δ, we have L(θ1) ≤ 2n, and

L(θt+1) ≤ L(θt), (9)

1− θ>t w

‖θt‖2
≤ c3 log n

log t
(10)

for all t > 0, where c3 is an absolute constant.

By Lemma 13, one can easily observe that the adversarial
training loss is bounded by 2n along the entire training
trajectory. Lemma 13 also suggests that when t→∞, the
adversarially trained classifier θt will converge in direction
to the max adversarial margin classifier w defined in (3).

Length and direction of the adversarial training iter-
ates θt. We also establish the properties of the adversarial
training iterates θt. We have the following lemmas.

Lemma 14. Under the same conditions as in Theorem 4,
for all adversarial training iteration t > 0, with prob-
ability at least 1 − δ, we have ‖θt+1‖2 ≤ (

√
c0 +

ε)
√
d
∑t
m=0 αmL(θm), where c0 is the absolute constant

in Lemma 12.

Lemma 14 upper bound the L2 norm of adversarially trained
classifier θt by the summation of training losses along the
training trajectory.

Lemma 15. Let zk = ykxk, under the same conditions as in
Theorem 4, for all adversarial training iteration t ≥ 0, with
probability as least 1−δ, we have maxnk=1 exp(−θ>t zk) ≤
c3 minnk=1 exp(−θ>t zk), where c3 > 0 is an absolute con-
stant.

Lemma 15 provides us a way to control the loss the
noisy examples during the training procedure. Note
that if maxnk=1 exp(−θ>t zk) ≤ c3 minnk=1 exp(−θ>t zk),
we also have maxnk=1 exp(−θ>t zk + ε‖θt‖q) ≤
c3 minnk=1 exp(−θ>t zk + ε‖θt‖q). Therefore, the worst ex-
ample training loss can be bounded via the best example
training loss and further be bounded by the average training
loss L(θt). In this way, we can guarantee that those noisy

examples will not have major influence on model training
even in later training stages.

By Lemmas 12-15, we establish the following key lemma
for our main theorems.

Lemma 16. Under the same condition as in Theorem 4,
with probability at least 1 − δ, the adversarially trained
linear model parameter θt satisfies

µ>θt
‖θt‖2

≥
(
‖µ‖22

4
− ε‖µ‖q

)
1

(
√
c0 + ε)

√
d
− c3‖µ‖2 log n

log t
.

where c0 is the absolute constant in Lemma 12.

Lemma 16 provides the lower bound for the inner product
of µ and the direction of θt. This lemma extends Lemma
4.4 in Li et al. [2020] by considering the training iteration t
rather than just the converged classifier w, and also extends
to the adversarial training setting. Notice that this lower
bound actually gets larger with the increase of iteration t.

Finalizing the proof. We now present the proof for Theo-
rems 4 and 8.

Proof of Theorem 4. First, following standard coupling
lemma [Lindvall, 2002], there always exists a joint distribu-
tion on original data and noisy data ((x̃, ỹ), (x, y)) such that
the marginal distribution for (x̃, ỹ) is D̃, the marginal dis-
tribution for (x, y) is D, P[x = x̃] = 1 and P[y 6= ỹ] ≤ η.
Notice that the standard population risk can be written as

P(x,y)∼D[fθt(x) 6= y] = P(x,y)∼D[y · θ>t x < 0]

≤ η + P(x,y)∼D[y · θ>t x < 0, y = ỹ]

= η + P(x,y)∼D[ỹ · θ>t x < 0],
(11)

where the inequality holds since P[y 6= ỹ] ≤ η. Since ỹ is
the clean label for x, ỹx follows the same distribution as
ξ+µ and E[ỹ · θ̂>x] = θ̂>µ. Therefore, (11) can be further
written as

P(x,y)∼D[fθt(x) 6= y]

≤ η + P(x,y)∼D
[
ỹ · θ>t x− E[ỹ · θ>t x] < −θ>t µ

]
= η + P(x,y)∼D

[
θ>t
(
ỹx− E[ỹx]

)
< −θ>t µ

]
≤ η + exp

(
− c (θ>t µ)2

‖θt‖22

)
, (12)

where the last inequality holds by applying a Hoeffding-type
concentration inequality (Theorem ??) with t = (θ>t µ)2.
This bound in (12) enables the application of Lemma 16
which characterizes how the direction of θt aligns with µ
during training. By direct calculation, we have

P(x,y)∼D[fθt(x) 6= y]

≤ η + exp

(
− c
((‖µ‖22

4 − ε‖µ‖q
)

(
√
c0 + ε)

√
d
− c3‖µ‖2 log n

log t

)2
)
.
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This concludes the proof.

Proof of Theorem 8. Similar to the proof of Theorem 4, we
start with a calculating an upper bound of the population
risk based on the formulation of the label noise. By the
definition of the adversarial risk, we have

P(x,y)∼D
[
∃x′ ∈ Bpε (x) s.t., fθt(x

′) 6= y
]

= P(x,y)∼D[∃x′ ∈ Bpε (x) s.t., y · θ>t x′ < 0]

≤ η + P(x,y)∼D[∃x′ ∈ Bpε (x) s.t., y · θ>t x′ < 0, y = ỹ]

= η + P(x,y)∼D

[
min

u∈Bpε (0)
ỹ · θ>t (x + u) < 0

]
= η + P(x,y)∼D

[
ỹ · θ>t x− ε‖θt‖q < 0

]
, (13)

where the inequality holds in the same way as in (11). Since
ỹ is the clean label for x, ỹx follows the same distribution
as ξ + µ and E[ỹ · θ>t x] = θ>t µ. Therefore, (13) can be
further written as

P(x,y)∼D
[
∃x′ ∈ Bpε (x) s.t., fθt(x

′) 6= y
]

≤ η + P(x,y)∼D
[
ỹ · θ>t x− E[ỹ · θ>t x] < −θ>t µ + ε‖θt‖q

]
= η + P(x,y)∼D

[
θ>t
(
ỹx− E[ỹx]

)
< −θ>t µ + ε‖θt‖q

]
≤ η + exp

(
− c (θ>t µ− ε‖θt‖q)2

‖θt‖22

)
, (14)

where the second inequality holds by applying the
Hoeffding-type concentration inequality (Theorem ??) with
t = (θ>t µ−ε‖θt‖q)2. Based on (14) and Lemma 16, we can
further give the bounds of the adversarial risk. We consider
the two settings 1 ≤ p ≤ 2 and 2 < p <∞ separately.

When 1 ≤ p ≤ 2, we have q ≥ 2 and ‖θ‖q ≤ ‖θ‖2. In this
case, by Lemma 16 we obtain

P(x,y)∼D[fθt(x) 6= y]

≤ η + exp

(
− c
(( ‖µ‖22

4
− ε‖µ‖q

)
(
√
c0 + ε)

√
d
− c3‖µ‖2 logn

log t
− ε
)2
)
.

When p > 2 and therefore q < 2, we have ‖µ‖q ≤
d1/q−1/2‖µ‖2. In this case, by Lemma 16 we obtain

P(x,y)∼D[fθt (x) 6= y]

≤ η + exp

(
− c
(( ‖µ‖22

4 − ε‖µ‖q
)

(
√
c0 + ε)

√
d
−
c3‖µ‖2 logn

log t
− εd

1
q
− 1

2

)2
)
.

This concludes the proof.

6 EXPERIMENTS

In this section, we experimentally study the behavior of
adversarially trained classifiers in the over-parameterized
regime on both synthetic and real data.

6.1 SYNTHETIC DATA EXPERIMENTS

We generate 50 training samples and 2000 test samples and
set the label noise ratio η = 0.1 for all experiments. Each
clean sample (x̃, ỹ) is drawn from a Gaussian mixture model
such that ỹ ∼ Unif({±1}) and x̃ = ỹµ + ξ where ξ ∈ Rd
and ξ1, ξ2, . . . , ξd are i.i.d. standard Gaussian variables and
µ simply shares the same direction as an all-one vector
but has various different magnitudes. This aligns with our
model assumptions in Section 3. For the adversarial training
algorithm, we directly follows Algorithm 1 except using a
more practical Xavier normal initialization [Glorot and Ben-
gio, 2010], i.e., sampling θ0 i.i.d. from from N (0, 1/

√
d).

We set the learning rate αt = 0.001 and the total number
of iterations T = 1000 for all experiments. All results are
obtained by averaging over 10 independent runs (both data
sampling and training).

In the first set of experiments, we verify our main con-
clusions in this paper that benign overfitting can occur in
adversarial training. Figure 1 illustrates the risk and ad-
versarial risk of adversarially trained linear classifiers ver-
sus the dimension d under different scalings of µ for both
`2-norm and `∞-norm perturbations. We can observe that
when ‖µ‖2 = d0.2, the (adversarial) risk starts to increase
as the dimension d increases after an initial dive for both
`2-norm and `∞-norm perturbations. While for cases where
‖µ‖2 = d0.3 and ‖µ‖2 = d0.4, we can observe that the
(adversarial) risk decreases steadily to the optimal risk η
as the dimension d increases. This result backup our the-
ory in Section 4 that the optimal risk is achievable when
‖µ‖2 = Θ(dr) and r ∈ (1/4, 1/2]. Note that the training
error reaches 0 for all settings in Figure 1.

In Figure 2, we present the adversarial risk2 of adversarially
trained linear classifiers versus the training iterations t with
different ε but fixed dimension d and ‖µ‖2 for both `2-norm
and `∞-norm perturbations. We can also observe that in
general, a larger ε will lead to the worse adversarial risk of
the adversarially trained classifier. This also backs up our
theory in Theorem 8.

As our ultimate goal is to study the benign overfitting phe-
nomenon in real-world adversarial training settings, we also
conducted experiments on 2-layer neural networks with
ReLU activation functions. In fact, the performances on the
2-layer ReLU network suggest very similar trends as the
linear model. Due to the space limit, we display these results
in the supplemental materials.

6.2 REAL-WORLD DATA VERIFICATION

Rice et al. [2020] showed that overfitting in adversarial
training can lead to worse empirical robustness on empirical

2Here we omit the plot for standard risk as the curves are
essentially overlapping to each other.
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Figure 1: Risk and adversarial risk of adversarially trained linear classifiers versus the dimension d under different scalings
of µ. (a)(b) show the results for `2 perturbation with ε = 0.1 and (c)(d) show the results for `∞ perturbation with ε = 0.01.
The training error reaches 0 for all experiments.
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Figure 2: Adversarial risk of adversarially trained linear
classifiers versus the training iterations t for different ε with
d = 200 and ‖µ‖2 = d0.3. The training error reaches 0 for
all experiments.
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(a) 2-class GMM filtered data
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(c) 10-class GMM filtered data
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Figure 3: The learning curves for adversarial training
[Madry et al., 2018] on CIFAR-10 data using GMM fil-
tered data and the original data (a)(b) show the results for
2-class classification (airplane vs automobile) and (c)(d)
show the results for 10-class classification.

image distributions such as CIFAR-10 [Krizhevsky et al.,
2009] data. We want to ensure that our result is not contra-
dict with their results since they are testing on empirical

image distributions while our analysis is based on subGaus-
sian mixture data, which CIFAR-10 data does not satisfy.

We conduct experiments to show that even for CIFAR-10
data, overfitting effect can be much less severe (or even
benign) on robust classifiers, when we first filtered the input
data by a Gaussian mixture model (GMM). Specifically, we
craft a new dataset by fitting the original CIFAR-10 data
via a Gaussian Mixture model. The new dataset will only
keep the data points which have high probabilities to follow
the Gaussian mixture distribution. We conduct two sets of
adversarial training experiments using ResNet-18 model
[He et al., 2016b]: one picking only 2 classes (airplane vs
automobile) from CIFAR-10 and the other picking all 10
classes in CIFAR-10. The results are given in Figure 3.

From Figure 3, we can observe that for models trained on
GMM filtered data, the overfitting issue is much less se-
vere compared to the model trained on the original data.
Specifically, for 2-class experiments, the overfitting is essen-
tially benign for GMM filtered data. This partially backup
our theoretical results of benign overfitting for adversarial
classifiers trained on subGaussian mixture data, and when
such data distribution assumption is violated, overfitting can
become harmful. Furthermore, while Rice et al. [2020] only
presents the negative result on empirical data distributions,
we actually present a positive result that benign overfitting
can occur in adversarial training for certain data distribu-
tions. We believe that subGaussian mixtures would not be
the only distribution that could lead to benign overfitting
in robust classifiers, yet our study certainly advances the
understanding toward overfitting in adversarial settings.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we show that the benign overfitting phe-
nomenon can also occur in adversarial training. Specifi-
cally, we derive the risk bounds of the adversarially trained
linear classifiers and show that under moderate `p-norm
perturbations, they can achieve the near-optimal standard
and adversarial risks, despite overfitting the noisy training
data. The numerical experimental results also validate our

320



theoretical findings. Our current analysis is limited to linear
classifiers, while in practice, adversarial training is com-
monly used with neural networks. We believe our work is
the first step towards analyzing benign overfitting in adver-
sarially trained neural networks. Yet extending our current
analysis to adversarially trained neural networks is highly
non-trivial and we leave it as a future work.
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generalization requires more data. Advances in Neural
Information Processing Systems, 2018.

322



Ohad Shamir. The implicit bias of benign overfitting. arXiv
preprint arXiv:2201.11489, 2022.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya
Gunasekar, and Nathan Srebro. The implicit bias of gra-
dient descent on separable data. The Journal of Machine
Learning Research, 19(1):2822–2878, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Hossein Taheri, Ramtin Pedarsani, and Christos Thram-
poulidis. Asymptotic behavior of adversarial training in
binary classification. arXiv preprint arXiv:2010.13275,
2020.

Alexander Tsigler and Peter L Bartlett. Benign overfitting in
ridge regression. arXiv preprint arXiv:2009.14286, 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. In International Confer-
ence on Learning Representations, 2019.

Yoav Wald, Gal Yona, Uri Shalit, and Yair Carmon. Malign
overfitting: Interpolation can provably preclude invari-
ance. arXiv preprint arXiv:2211.15724, 2022.

Ke Wang and Christos Thrampoulidis. Benign overfitting
in binary classification of gaussian mixtures. In ICASSP
2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4030–
4034. IEEE, 2021.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen
Zhou, and Quanquan Gu. On the convergence and robust-
ness of adversarial training. In ICML, pages 6586–6595,
2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In Interna-
tional Conference on Learning Representations, 2020.

Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quan-
quan Gu. Do wider neural networks really help adversar-
ial robustness? arXiv preprint arXiv:2010.01279, 2020.

Denny Wu and Ji Xu. On the optimal weighted `2 regular-
ization in overparameterized linear regression. Advances
in Neural Information Processing Systems, 33, 2020.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang,
Russ R Salakhutdinov, and Kamalika Chaudhuri. A closer
look at accuracy vs. robustness. Advances in Neural In-
formation Processing Systems, 33, 2020.

Dong Yin, Ramchandran Kannan, and Peter Bartlett.
Rademacher complexity for adversarially robust general-
ization. In International Conference on Machine Learn-
ing, pages 7085–7094. PMLR, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. In International Con-
ference on Learning Representations, 2017.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing,
Laurent El Ghaoui, and Michael Jordan. Theoretically
principled trade-off between robustness and accuracy. In
ICML, pages 7472–7482, 2019.

Xiao Zhang, Jinghui Chen, Quanquan Gu, and David Evans.
Understanding the intrinsic robustness of image distribu-
tions using conditional generative models. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 3883–3893. PMLR, 2020a.

Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao
Song, and Sanjeev Arora. Over-parameterized adversar-
ial training: An analysis overcoming the curse of dimen-
sionality. Advances in Neural Information Processing
Systems, 2020b.

Difan Zou, Spencer Frei, and Quanquan Gu. Provable ro-
bustness of adversarial training for learning halfspaces
with noise. International Conference on Machine Learn-
ing, 2021a.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan
Gu, and Sham Kakade. Benign overfitting of constant-
stepsize sgd for linear regression. In Conference on Learn-
ing Theory, pages 4633–4635. PMLR, 2021b.

323


	Introduction
	Related Work
	Problem Setting and Preliminaries
	Main Results
	Proof Outline of the Main Results
	Experiments
	Synthetic Data Experiments
	Real-World Data Verification

	Conclusions and Future Work

