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Abstract

Learning is crucial for automated negotiation, and
recent years have witnessed a remarkable achieve-
ment in application of reinforcement learning (RL)
for various negotiation tasks. Conventional RL
methods focus generally on learning from active
interactions with opposing negotiators. However,
collecting online data is expensive in many realis-
tic negotiation scenarios. While previous studies
partially mitigate this problem through the use of
opponent simulators (i.e., agents following known
strategies), in reality it is usually hard to fully cap-
ture an opponent’s negotiation strategy. Moreover,
a further challenge lies in an agent’s capability of
adapting to dynamic variations of an opponent’s
preferences or strategies, which may happen from
time to time for different reasons in subsequent ne-
gotiations. In response to these challenges, this ar-
ticle proposes a novel Deep Offline Reinforcement
learning Negotiating Agent framework that allows
to learn an effective strategy using previously col-
lected negotiation datasets without requiring inter-
action with an opponent. This is in contrast to exist-
ing RL-based negotiation approaches that all rely
on active interaction with opponents. Furthermore,
the strategy fine-tuning mechanism is included to
adjust the learned strategy in response to the pref-
erences or strategy changes of the opponent. The
performance of the proposed framework is evalu-
ated based on a diverse set of state-of-the-art base-
lines under different settings. Experimental results
show that the framework allows to learn effective
strategies exclusively with offline datasets, and is
also capable of effectively adapting to changes of
an opponent’s preferences or strategy.

*Corresponding author, Kaiyou Lei <kylei2022@163.com>

1 INTRODUCTION

Negotiation is a process where parties of different inter-
ests exchange offers to mutually explore the likelihoods of
achieving mutual benefit, resolving conflicts or finding mu-
tually acceptable solutions. With that, negotiation can serve
as a fundamental and powerful mechanism for managing
conflicts [Jennings et al., 2001]. This mechanism, however,
can be time-consuming and costly for humans [Fatima et al.,
2004]. Automated negotiation [Chen and Weiss, 2015, Chen
and Su, 2022] has therefore become a subject of central
interest in multi-agent systems over the past decade due to
its advantages over non-computerized negotiation, such as
alleviating the efforts of human negotiators, reaching better
outcomes by compensating limitations of human computa-
tional and reasoning abilities, and so on.

Reinforcement learning (RL) is a powerful learning
paradigm for control tasks. Specifically, RL can be utilized
to automatically acquire near-optimal behavioral skills (rep-
resented by policies) for given tasks. The successful applica-
tion of RL algorithms in diverse fields (e.g., natural language
processing, computer vision and complex games [Silver
et al., 2017, Devlin et al., 2019]) has also led to the explo-
ration of RL in automated negotiation [Bakker et al., 2019,
Bagga et al., 2020, Chang, 2021, Sengupta et al., 2021,
Wu et al., 2021, Yang et al., 2021, Higa et al., 2023, Chen
et al., 2023a]. Despite the remarkable progress that has been
achieved so far, conventional RL methods for negotiation
typically focus on online learning from active interactions
with the environment (i.e., everything in the negotiation sce-
nario including the opponent and the domain) to iteratively
collect data to be used for policy improvement. However,
this kind of online learning is of limited value and often
impractical for negotiation, mainly because data collection
based on online interactions is very expensive. For example,
training a RL agent from scratch in an e-commence sce-
nario against a negotiation partner is likely to lead to a large
number of unacceptable results and low-quality customer
experience. While previous approaches partially mitigate
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this problem by using opponent simulators (i.e., agents ap-
plying known strategies) for training, in realistic settings,
it is usually hard to fully capture an opponent’s negotia-
tion strategy due to uncertain user states and actions, noisy
environments, and the fact that negotiators aim at hiding
information related to their strategies in order to hamper
exploitation through their opponents.

Due to the limited value of online RL for automated ne-
gotiation, a key question is whether data collected during
previous negotiation sessions can be effectively utilized by
an agent to learn its negotiation skills. In particular, can
an agent do so, and moreover adapt its negotiation strategy
when there are changes in opponent preference or strategy
due to various reasons (e.g., different social motives of users,
market demand). Therefore, a novel Deep Offline Reinforce-
ment learning Negotiating Agent (DOREA) framework is
proposed, which can learn an effective strategy from offline
datasets of previously collected negotiation experiences. The
DOREA framework does also enable an agent to fine-tune a
learned strategy and to adapt it to changes of the opponent
preferences or strategy.

The remainder of this paper is structured as follows. Sec-
tion 2 overviews important related work. Section 3 provides
the reader with background knowledge that is relevant for
the remaining sections. The technicalities of the DOREA
framework are presented in Section 4. An in-depth analy-
sis is given in Section 5. Lastly, Section 6 concludes and
identifies interesting future research directions.

2 RELATED WORK

Recently, RL-based negotiating agents have attracted con-
siderable research attention[Gao et al., 2021, Sun and Chen,
2022]. For example, Bakker et al. [2019] propose a RL
framework (RLBOA) built on the BOA architecture for au-
tomated negotiation. The Tabular Q-learning algorithm is
used to train the bidding strategy. To have a compact state
representation, RLBOA maps the offers to the utility space
and discretizes the utility space into a number of equal bins.
A problem with such discretization is that it can lead to loss
of information conveyed in the offers, e.g., the state/action
domain structure. Moreover, the Q-learning approach suf-
fers from large state space and over-estimation of Q value
problem. Bagga et al. [2020] pre-train a negotiation strat-
egy through supervised learning (SL) with synthetic data
in order to accelerate the learning process. Initialized by
the learned SL strategy, the negotiation agent evolved using
a model-free Deep RL method called Deep Deterministic
Policy Gradient (DDPG) [Lillicrap et al., 2016] with addi-
tional negotiation experience. A limitation of this approach
is that it only addresses negotiations of a single issue. Wu
et al. [2021] considered the negotiation scenarios where the
opponent may change its strategy at times. They proposed
a negotiating agent based on Bayesian policy reuse to de-

tect an opponent strategy and respond with the best learned
RL policy from existing policies. Higa et al. [2023] pro-
posed a reward-based negotiating agent strategy through a
multi-issue policy network. The policy network was trained
to predict the optimal policy in policy-based RL without
incorporating utility functions.

Although the existing work has advanced the field of auto-
mated negotiation, it still suffers from one common limita-
tion, that is, the requirement for a large number of online
interactions with the environment in order to train the pol-
icy. The work most closely related to ours is Sengupta et al.
[2022]. There a negotiation framework is proposed that
trains a base model with negotiation history for its bidding
strategy. A binary classifier enables the detection of changes
in utility functions, and then the adapted model is provided
to automatically adapt to such changes by using parame-
ter sharing based transfer learning technique with newly
collected datasets during negotiation. A drawback of this
framework is that the opponent must keep its strategy fixed
all the time, otherwise both the classifier and adapted model
will be ineffective (as they are trained by the negotiation
traces produced by the opponent strategy). In contrast, our
approach is considerably broader in its applicable range of
negotiation tasks because it is not restricted to any oppo-
nent strategy, utility function or the quality of previously
collected datasets (as we will show later in Section 5.2, a
dataset collected by even a simple strategy can produce
a negotiating agent based on DOREA framework whose
performance is still acceptable.).

Offline RL is a new RL paradigm concerned with learning
exclusively from datasets of previously-collected experi-
ences [Levine et al., 2020]. This learning pattern is very
valuable in environments where online interaction is imprac-
tical or expensive, and has achieved remarkable successes
in robotics [Chen et al., 2022b, Yu et al., 2021], autonomous
driving [Tennenholtz and Mannor, 2022], healthcare [Fatemi
et al., 2021], and other fields [Prudencio et al., 2022, Chen
et al., 2022a, Su et al., 2022]. Although recently much re-
search effort has been devoted to learning useful negotiation
strategies with RL, to the best of our knowledge, our work is
the first attempt to use (1) offline RL for learning an effective
negotiation strategy and (2) offline-to-online techniques for
fine-tuning the learned strategy and adapting it to changes
of opponent preferences or strategies.

3 PRELIMINARIES

3.1 NEGOTIATION SETTINGS

This work adopts a bilateral multi-issue negotiation envi-
ronment widely used in the automated negotiation field
(e.g., [Chen et al., 2013, Chen and Weiss, 2014, Chen et al.,
2015, Sengupta et al., 2021, Wu et al., 2021]). A negotiation
scenario consists of a domain description and preference
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profiles of both parties. The preference profiles of a domain
determine the utility functions (as shown below). Let I be
the set of negotiation agents, with i representing a specific
agent (i ∈ {o, s} where s refers to the agent and o to its op-
ponent). J is the set of issues under negotiation, with j being
a particular issue (j ∈ {1, ..., n} where n is the number of
issues). The utility function of agent i maps any negotiation
outcome ω from outcome space Ω to a real-valued number
in the range of [0, 1], and is defined as:

Ui(ω) =

n∑
j=1

(wij · V ij (vjk)) (1)

where ω is an outcome represented as a vector of values,
with one value for each issue; vjk is the k-th possible choice
of issue j; and V ij is the evaluation function of agent i for
issue j that maps a choice of issue j (e.g., vjk) to a real
number in the interval of [0, 1]; and wij (j ∈ {1, . . . , n})
the weighting preference which agent i ascribes to issue j.

During negotiation, both parties exchange offers in each
round to express their demands, relying on the stacked alter-
nating offers protocol [Aydoğan et al., 2017].

3.2 REINFORCEMENT LEARNING

We follow the standard protocol that formulates a RL en-
vironment as a Markov decision process (MDP), that is,
M = (S,A,P, r, γ), where S is the state-space, A is the
action space, P : S × A → S ′ is the transition function,
r(s, a) is the reward function, and γ ∈ [0, 1) is the discount
factor. A policy is a distribution π(a|s), which denotes the
probability of taking action at conditioned on the current
state st. The objective of the RL agent is to find a policy
that maximizes the expected return Eπ[

∑∞
t=0γ

trt]. Every-
thing in the negotiation scenario including the opponent is
considered as the environment.

States. As negotiation domains varies significantly due to
different structure (e.g., the issue number, the issue types,
size of outcome space), states are necessarily described in
a domain-independent way. Following the ideas presented
in Wu et al. [2021], Chen et al. [2023b], this work employs
a similar approach by representing an outcome ω as Us(ω)
(Us is the utility function of the negotiating agent). Specifi-
cally, two factors are taken into account. First, the timeline,
which is relevant because negotiation fails if no agreement
can be achieved before the deadline (Tmax). Second, the offer
trajectory, which is crucial because it has an strong impact
on the agent’s decision-making. Therefore, the state s at
time t is defined as follows:

st =

(
t

Tmax
, us(ω

t−3
o ), us(ω

t−3
s ),

us(ω
t−2
o ), us(ω

t−2
s ), us(ω

t−1
o ), us(ω

t−1
s )

) (2)

where Tmax denotes the maximum number of rounds of a
negotiation session, ωt−no denotes the offer received from
the opponent at step t− n, ωt−ns denotes the offer proposed
by the DOREA agent, and us denotes the self utility func-
tion. Note that although more pairs of (ωt−ns , ωt−no ) (i.e.,
n > 3) could improve effectiveness of the agent at the cost
of much more computational resources and time, the current
choice already guarantees that the algorithm runs smoothly
in practice and makes no significant differences compared
to the case when n = 5 or 7 is adopted.

Actions. The set of actions at a given state consist of all
possible target utility values in the range [ur, 1]. So, the
action at time t is defined as at = uts (where uts denotes the
utility of the next offer). To generate the offer corresponding
to the utility value uts, we define an inverse utility function
F−1 that maps a real-valued number u to an outcome ω
and selects the best possible outcome that maximizes the
estimated opponent utility at the given utility. Formally, the
inverse utility function is defined as

F−1
(
uts
)

= arg max
ω

U
′

o (ω) (3)

where U
′

o denotes the opponent’s utility function estimated
on the basis of issue frequency of the opponent’s historical
offers, following the approach of van Galen Last [2012].

Rewards. The agent is given a positive reward when an
agreement is reached, and a punishment of -1 when no
agreement can be settled before the deadline. The RL agent’s
acceptance strategy is simple, that is, if the opponent’s offer
is better than the intended next own offer, the agent then
accepts it, otherwise rejects. Formally, the reward function
is defined as follows:

rt+1 (st, at) =


Us(ω), if there is an agreement ω
−1, if no agreement reached by deadline
0. otherwise

(4)

Actor-critic approaches can provide an effective way to
optimize the RL objective. In the conventional actor-critic
formalism [Barto et al., 1983, Sutton and Barto, 2018], an
approximated Q-function Qθ is learnt by minimizing the
squared Bellman error (refereed to as policy evaluation),
and optimizes the policy πφ by maximizing the Q-function
(referred as policy improvement). The Q-function Qθ(s, a)
is an estimation of how good is it to take action a at the state
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s. The above objectives are as follows:

Q(θ) = argmin
Q

E(
s,a,s′

)
∼D

[(
Q(s,a)

−
(
r(s,a) + γEa′∼πφ(a′|s′)

[
Qθ(s

′,a′)
]))2] (5)

πφ = arg max
π

Es∼D
[
Ea∼πφ(a|s) [Qθ(s,a)]

]
(6)

where D can either be the replay buffer B generated by
previous policy πφ through online environment interactions,
or a fixed dataset D = {(sit, ait, sit+1, r

i
t)}ni=1 as common in

offline RL setting.

4 DOREA FRAMEWORK
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Figure 1: Overview of the proposed Deep Offline Reinforce-
ment learning Negotiating Agent (DOREA) framework.

The DOREA framework consists of two key components:
an offline learning based strategy module and an strategy
fine-tuning mechanism. Figure 1 provides an overview of
the framework.

4.1 OFFLINE LEARNING BASED STRATEGY
MODULE

The offline learning based strategy module comprises of
two steps. First, a negotiation history denoted byH is col-
lected. This history consists of previous negotiation traces
between two parties, including the negotiation scenario, the
exchanged offers between them, time stamp of each offer,
both sides’ preferences (utility functions), and the nego-
tiation results (e.g., agreement/failure). A party follows a

negotiation strategy, yet H can be obtained by a mixture
of multiple strategies. These data h (h ∈ H) are converted
into transitions of RL (i.e., h = (s, a, r, s′)) through a pre-
processing procedure (e.g., mapping all offers to utility val-
ues r, generating corresponding action a and state s), and
then saved as offline data Doff .

Second, the module aims to learn an effective negotiation
strategy from historical datasets Doff via offline RL. How-
ever, the negotiation datasets collected may be suboptimal
(e.g., absent data or data having non-expert quality), the state
and action space coverage is limited, and this may result in
a distribution shift, that is, the offline RL-agent encounters
online data Don that have different state-action distribution
from the offline dataDoff ) — causing overestimation of the
Q-value of out of distribution (OOD) action using classic
off-policy RL algorithms. Consequently, the learned negotia-
tion strategy might choose potentially inappropriate actions.
Therefore, this framework employs Conservative Q-learning
(CQL) [Kumar et al., 2020], which can reduce the harmful
effect of a distribution shift by explicitly penalizing the Q-
value of actions not available in offline dataset Doff . CQL
pessimistically evaluates the current policy and obtains the
lower-bound of the real Q-function. It aims to training the Q-
function by using the sum of standard temporal-difference
(TD) error and the regularizer (see Eq. 9). This is achieved
through minimizing the expectation of Q-value of action
with overestimation on the sampling distribution, and max-
imizing the expectation of Q-value on the offline dataset.
CQL can be instantiated as an actor-critic algorithm like
SAC [Haarnoja et al., 2018]. SAC is an off-policy algorithm
designed to optimize a stochastic policy, which objective is
to both maximize the expected return and the entropy of the
policy:

πφ = argmax
π

T∑
t=0

Es,a∼πγtrt(s, a) + αH(π(.|s)) (7)

where H is the entropy and α > 0 is the temperature pa-
rameter, γ is discount factor, and rt is reward function at
time-stamp t. The corresponding Q-function Qπ(s, a) can
be expressed as:

Qθ(s, a)= E
s,a∼π

[ ∞∑
t=0

γtr(s, a)+α

∞∑
t=1

γtH(π (· | s)) |s, a

]
(8)

Here, a variant of CQL – CQL(H) is chosen because it
generally outperforms other variants [Kumar et al., 2020]. In
order to more effectively mitigate the impact of distribution
shift, multiple (N) pessimistic Q-functions are employed.
Each policy evaluation step Q(θi) (i ∈ I and θi means the
parameters for i− th Q-function) minimizes the following
problem:
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Q(θi)=min
Q
αEs∼Doff

[
log
∑
a

expQ(s,a)−Ea∼π̂β(a|s)[Q(s,a)]

]
︸ ︷︷ ︸

CQL regularizer

+
1

2
Es,a,s′∼Doff

[(
Qθi−B

πφiQθ̄i
)2]︸ ︷︷ ︸

standard TD error
(9)

where π̂β(a|s) :=

∑
s,a∈Doff

1 [s=s0,a=a0]∑
s∈Doff

1 [s=s0] is the empirical

behavior strategy, α is the trade-off factor, θ̄i is the de-
layed parameter, and Bπφi is the Bellman operator, which
constitute the Bellman error with the third part of Eq. (9).
Policy improvement step π(φi) is the same as SAC defined
in Eq. (7). And the learned strategy is represented by an
ensemble of the N CQL based Q-functions and policies
that trained via update rules Eq. (7),(9) and expressed as
{Qθi , πφi}Ni=1, where θi and φi represent the parameters of
the i − th Q-function and policy, respectively. The corre-
sponding Q-function and policy is described as follows:

Qθ :=
1

N

N∑
i=1

Qθi ,

πφ(· |s)=N
(
1

N

N∑
i=1

µφi(s),
1

N

N∑
i=1

(
σ2
φi(s)+µ

2
φi(s)

)
−µ2

φ(s)

)
(10)

where θ := {θi}Ni=1 and φ := {φi}Ni=1.

4.2 STRATEGY FINE-TUNING MECHANISM

Having obtained a strategy via the offline learning based
strategy module, the DOREA framework employs strategy
fine-tuning to adjust its strategy when there is a change in
the opponent’s preferences or strategy in subsequent online
negotiation. To effectively adapt to changes in the opponent,
inspired by the work of Lee et al. [2022], the strategy fine-
tuning mechanism aims at safely utilizing online samples
and mitigating the distribution shift more effectively.

Suffering from the distribution shift problem, a good initial
offline strategy may be destroyed quickly using these online
data directly with off-policy RL algorithms. It is thus neces-
sary to utilize offline and online data effectively to fine-tune
strategy. As such, a prioritized sampling scheme component
called balanced experience reply is used. This component
utilizes online data by sampling offline data related to the
current policy. In this way, DOREA agent can implicitly
recognize the change of an opponent’s strategy or utility
function without explicitly modelling the opponent.

The online negotiation data history is denoted as Hnew
and save them hnew (hnew ∈ Hnew) in Don through the

same pre-processing as in Section 4.1. The DOREA frame-
work creates a prioritized buffer, which stores both the
offline negotiation data Doff and the online data Don re-
spectively during fine-tuning. Then, the prioritized buffer
sorts all available samples according to their online-ness.
To measure online-ness of samples, we use density ratio
ω(s, a) := don(s, a)/doff (s, a), a probability proportional
to the density ratio between online samples and offline sam-
ples, where don(s, a) and doff (s, a) denotes the distribu-
tion of state-action pairs in the online and offline buffer,
respectively. DOREA estimates the density ratio by train-
ing a neural network ωψ(s, a) called density ratio estima-
tor. The training procedure for the density ratio estimator
ωψ(s, a) follows the approach of Sinha et al. [2022] and uses
the variational representation of f-divergences ([Nguyen
et al., 2007]). Let f(y) := y log 2y

y+1 + log 2
y+1 , and the

Jensen-Shannon (JS) divergence is defined asDJS(P‖Q) =∫
X f(dP (x)/dQ(x))dQ(x) . Model ωψ is updated by max-

imizing the lower bound of the JS divergence:

LDR(ψ) = Ex∼P [f ′ (wψ(x))]− Ex∼Q [f∗ (f ′ (wψ(x)))]
(11)

where f∗ is the convex conjugate of f . For the first term
in Eq. (11), the expectation is estimated by sampling from
Don, and the second is sampled from Doff .

Additionally, we employ an ensemble agent whose parame-
ters are initialized by {Qθi , πφi}Ni=1 obtained in the offline
learning module. θ and φ are updated via SAC update rules
Eq. (5),(7), respectively, during strategy fine-tuning.

5 EXPERIMENTS

Three experiments are conducted in order to demonstrate
the effectiveness of the DOREA framework. The first ex-
periment explores the following three performance aspects:
effectiveness of the negotiating agent strategy learned on
the basis of previously collected offline data; impact of data
collected by more advanced strategies on the performance of
the DOREA agent; and performance of the learned strategy
in comparison to the strategies used to collect the data. The
second (third) experiment investigates whether the DOREA
agent learned from offline datasets can also adapt to changes
of its opponent’s preferences (strategy) in subsequent online
negotiations.

5.1 EXPERIMENTAL SETUP

In our experimental settings, each agent plays against an
opponent in every domain for a number of repetitions. More-
over, in each repetition a pair of agents conduct negotiation
twice where they exchange the order who starts with bid-
ding. The experiments consider the whole set of domains
created for ANAC 2013. As shown in Table 1, these domains
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Table 1: Statistics of all 18 domains in the experiments.
The domains are classified into three groups according to
outcome space (i.e., small, medium and large domains).

Domain Outcome Space Opposition Number of Issues
NiceOrDie 3 0.840 1
Ultimatum 9 0.545 2
FiftyFifty2013 11 0.707 1
Laptop 27 0.160 3
Planes 27 0.164 3
DefensiveCharms 36 0.322 3
Coffee 112 0.447 3
Outfit 128 0.198 4
DogChoosing 270 0.051 5
Acquisition 384 0.117 5
HouseKeeping 384 0.272 5
Icecream 720 0.148 4
Animal 1152 0.110 5
Camera 3600 0.212 6
Lunch 3840 0.399 6
SmartPhone 12000 0.224 6
Kitchen 15625 0.057 6
Wholesaler 56700 0.308 7

differ in their size of outcome space (i.e., the set of possible
outcomes), ranging from 3 to 56700, in the opposition (i.e.,
the minimal Euclidean distance to the optimal outcome for
both sides), ranging from 0.051 to 0.84, and in the num-
ber of negotiated issues, ranging from 1 to 7. Note that the
choice of the ANAC 2013 domains is taken because 1) these
domains cover a wide range of domain characteristics, 2)
designers of all agents know these domains well and so none
of these agents has a disadvantage, and 3) these domains are
also adopted in other recent work [Sengupta et al., 2021, Wu
et al., 2021, de Jonge, 2022, Chen et al., 2023b] for compara-
bility reasons. To better support RL training and evaluation
in a convenient way, we developed a python-based negotia-
tion environment that also provides a core set of abstractive
behaviors (interfaces) to implement a negotiating agent.

During each negotiation session, the reservation value for
all domains is 0, the discount factor of negotiation outcomes
is ignored in negotiations, and the maximum round per
session is 1000. The repetition number is set to 300. For
the implementation details of DOREA agent, the batch size
is 256 and the size of both the offline and online reply
buffer is set to 2e+6. The learning rates of the actor network
and the critic network is 1e-4 and 3e-4, respectively. The
discount factor in RL training is 0.99. DOREA agent is
trained for 1e+6 timesteps. Moreover, the CQL algorithm is
based on the open SAC version 1, other parameter settings
are identical to the setup of Kumar et al. [2020]. Following
the suggestion of Lee et al. [2022], the ensemble size N is
set to 5. More details can be found in the appendix.

1See https://github.com/vitchyr/rlkit.

5.2 INFLUENCE OF OFFLINE DATASET

To investigate whether a useful strategy can be learned
through offline datasets and what the influence of offline
datasets on the DOREA’s performance is, two different
datasets were collected separately. In both datasets, there
are the same four opponents with each employing a dis-
tinct strategy from the four ANAC winner agents’ strategies
(winner strategies) – AgreeableAgent2018, PonpokoAgent,
Caduceus and Atlas3 2. The first one (referred to as winner
dataset) consists of the negotiation traces generated by four
agents with each using one of the winner strategies playing
against those opponents in all 18 domains. The other dataset
(referred to as random dataset) was built from negotiations
between a simple random agent that uses a random bidding
strategy and also accepts offers according to a probabil-
ity distribution (random strategy) and the four opponents.
Moreover, the negotiations between the random agent and
the opponents were repeated four times in order to obtain
an equal size of the winner dataset. Through training sepa-
rately with the two different datasets, two negotiating agents
referred to as DOREA-winner and DOREA-random can
be acquired. Note that, as the experiment below aims at
analyzing the influence of datasets on offline learning (cor-
responding to Sec. 4.1), the strategy fine-tuning mechanism
is therefore disabled to avoid performance improvements
achieved through this mechanism.

Figure 2 compares the performance of the two DOREA
agents and two baselines (i.e., strategies used for collect-
ing the two offline datasets) against the four opponents
encountered in the offline datasets. As depicted in the fig-
ure, DOREA-winner clearly achieved the best performance,
whereas DOREA-random had a much lower utility against
each of the four winners. Specifically, DOREA-winner led
DOREA-random with a large margin of between 104.5% to
175.8% in the four cases, and it achieved a mean score of
0.85 against the four opponents, 132.4% higher than that of
DOREA-random.

The results indicate that the training of an DOREA agent
with samples from advanced strategies than simple strategies
can bring about a considerable performance improvement.
This is because advanced strategies can exhibit more useful
state-actions pairs leading to high rewards. Another valu-
able observation is that both DOREA-winner and DOREA-
random managed to outperform the the strategies used for
collecting the two offline datasets. More precisely, DOREA-
winner exceeded the average performance of the four winner
strategies in terms of average utility against opponent by
28.4%, and DOREA-random advanced the random agent by
30.6%. The DOREA framework’s capability of solving a
distribution shift (see Sec.4.1) may account for this success.

2There were the ANAC winners in 2018, 2017, 2016 and 2015,
respectively.
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Figure 2: Box plots showing the utility against the four
opponents (each using one ANAC winner’s strategy) for
DOREA-winner, DOREA-random and two baselines (the
random strategy and the average utility of the four winner
agents). The results are obtained in the HouseKeeping do-
main. Points represent the utility of agreements reached
when playing against each opponent, and outlier is marked
by the diamond symbol.

Next, to look closer into the performance of the DOREA
agent, Figure 3 shows the results for each of the 18 do-
mains, where seven agents (including two DOREA agents,
the random agent and four ANAC winner agents) are con-
sidered and the repetition was set to 100 for each domain
to ensure statistical significance of the results. One can see
that DOREA-winner was the most successful agent with a
notable advantage, and ranked first in all domains except the
NiceOrDie domain in which it ranked second. Moreover, it
performed 37.3% higher than the average score of all agents
across 18 domains, and outperformed the second best agent
(Atlas3) by a margin of 22.4%. To sum up, the experimental
results show that the DOREA framework is capable of learn-
ing an effective strategy from offline datasets and that the
learned strategy was more performant than those strategies
used for collecting the data.

5.3 PERFORMANCE OF DOREA WITH CHANGES
IN THE OPPONENT PREFERENCES

As the opponent encountered in the offline dataset may
change its preference profiles in subsequent online negotia-
tions for many reasons that are hard to model. This exper-
iment studies the performance of the DOREA framework
against opponents with varying preferences. We assume that
the opponent’s preferences remain static for 250 sessions
before being changed again in online negotiations. For sim-
plicity, we also assume that the opponent keeps its strategy

fixed when changing preferences. 100 distinct sets of prefer-
ence profiles of an opposing party are randomly generated
for each domain (i.e., these preferences are different to that
used in the offline dataset and are also different to each
other). In particular, this experiment focuses on the offline-
to-online performance against an opponent, that is, how well
an agent can adapt to an opponent when it changes from the
preferences shown in the offline dataset to some different
preferences in subsequent online negotiations. The DOREA
agent is trained with the winner dataset as described above.
Three baselines are introduced for comparative evaluation –
the DOREA agent without strategy fine-tuning (denoted as
DOREA w/o sft), the RL-agent that employs SAC algorithm
and learns from scratch online (denoted as SAC agent), and
another SAC based agent initialized by the parameters of
the DOREA agent (denoted as SAC-sft agent).

Illustrative examples of online negotiations against the four
opponents in the Housekeeping domain are presented in
Fig. 4, where the results are averaged by the negotiations
in which the opponent tries all of the 100 preference pro-
files. Quantitatively similar results have been obtained for
the other domains, which are not reported here due to lim-
ited space. According to the figure, the DOREA agent
clearly outperformed the baselines in terms of learning effi-
ciency and final performance. Precisely, the DOREA agent
achieved a stable performance around between 50 to 70
sessions, while both the SAC-sft and SAC agent reached it
much slowly (approximately after 200 sessions). Besides,
the DOREA agent obtained the highest average utility of
0.81, leading the SAC agent (i.e., learning from scratch) and
the DOREA agent w/o sft (i.e., no fine-tuing) by a large
margin. This shows the effectiveness of the strategy fine-
tuning mechanism, which provides helpful offline data for
the current negotiation and speeds up fine-tuning process,
starting from pessimistic initialization.

Table 2 summarizes the performance of the DOREA agent
and the baselines after 200 sessions in domains of small,
medium and large size (refer to Table 1). Like the results
observed above, the DOREA agent was still the best agent
across the three classes of domains with an average utility of
0.837. It clearly achieved a better performance, leading the
DOREA w/o sft by a margin of 28.8% on average. The SAC-
sft agent, following DOREA agent, were ranked second in
all three classes of domains. In sum, DOREA agent managed
to outperform the baselines when competing against an
opponent that changes its preferences in online negotiations.

Table 2: Average utility in three classes of domains, the
bounds are based on the 95% confidence interval.

Domain DOREA DOREA w/o sft SAC SAC-sft
Small domain 0.79±0.02 0.57±0.04 0.61±0.04 0.74±0.03

Medium domain 0.88±0.03 0.71±0.05 0.69±0.06 0.81±0.04

Large domain 0.84±0.03 0.67±0.03 0.65±0.40 0.77±0.04
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Figure 3: Domain utility of the two DOREA agents and baselines in all 18 domains. The average score of all agents in each
domain is marked as red solid line.

5.4 PERFORMANCE OF DOREA WITH CHANGES
IN THE OPPONENT STRATEGIES

This experiment investigates the performance of the
DOREA agent against opponents who adopt a different strat-
egy in subsequent online negotiations. Here an opponent
can use a new strategy that has not been seen during offline
learning phase. As such, the opponent strategy pool not only
includes the ANAC winner agents used in Sec. 5.2, that is,
AgreeableAgent2018, PonpokoAgent, Caduceus and Atlas3,
but also considers the runner-ups of respective ANAC edi-
tions – Agent36, CaduceusDC16, YXAgent and ParsAgent
as new strategies. Moreover, MiCRO [de Jonge, 2022], a
recently proposed effective negotiation strategy, is also con-
sidered in the pool as well. The experiment settings here are
similar to Sec.5.3 except that an opponent can change its
strategy while its preferences are kept fixed.

The results are given in Table 3, where the column “average
utility against opponent" indicates the average utility against
an agent (each row) achieved by all agents in the opponent
strategy pool, and each entry of other columns means the
average utility obtained by the column agent playing against
the row agent. The first part (first four rows) of the table
represents strategies seen in the offline datasets and the

Table 3: Comparison of the DOREA agent with baselines
against an opponent with a different strategy in online nego-
tiations. All results are obtained across all 18 domains.

Average util.
against opponent SAC-sft DOREA

w/o sft DOREA

AgreeableAgent2018 0.54±0.06 0.79±0.06 0.83±0.03 0.82±0.07

PonpokoAgent 0.60±0.04 0.85±0.02 0.84±0.05 0.87±0.03

Caduceus 0.62±0.06 0.84±0.03 0.86±0.04 0.88±0.07

Atlas3 0.52±0.08 0.81±0.03 0.85±0.06 0.87±0.01

CaduceusDC16 0.61±0.02 0.65±0.04 0.69±0.05 0.72±0.01

YXAgent 0.45±0.08 0.42±0.07 0.41±0.02 0.52±0.06

Agent36 0.47±0.04 0.55±0.04 0.57±0.04 0.71±0.04

ParsAgent 0.53±0.05 0.61±0.02 0.65±0.03 0.73±0.05

MiCRO 0.51±0.02 0.59±0.05 0.62±0.05 0.69±0.04

lower part represents new strategies.

Some interesting observations follow from these outcomes.
First, when encountering the four winner strategies that
have been used during offline training, the performance of
the DOREA agent w/o sft was better than the mean perfor-
mance of the opponent strategies (see the second column of
the table), 48.96% higher than the mean score of the oppo-
nents. However, this advantage in performance decreased
about 13.95%, when the opponent switched to an unknown
strategy. This demonstrates that overall the DOREA agent
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Figure 4: Four illustrative examples of fine-tuning performance of DOREA agent against four ANAC winner agents in the
HouseKeeping domain. DOREA w/o sft represents the DOREA agent without strategy fine-tuning, SAC denotes the agent
learning from scratch using SAC and SAC-sft denotes an SAC based agent initialized by the DOREA agent. The solid lines
and shaded regions represent mean and standard deviation, respectively.

w/o sft was an effective strategy, but strategy adjustment
was required when facing unknown strategies if a stronger
performance is expected. Then, relying on the fine-tuning
mechanism, the DOREA agent further improved perfor-
mance, achieving on average an increase of 9.58% over
its variant without fine-tuning. There was only one special
case where the DOREA agent got a slightly worse util-
ity (around 1.20%) than the DOREA agent w/o sft against
AgreebleAgent2018. We suspect that in this case, the ini-
tial strategy was already good enough, making the DOREA
agent end up with a similar performance level. The SAC-sft
agent again lagged behind the DOREA agent with a consid-
erable difference like results shown in Sec.5.3. These results
validate that the strategy fine-tuning mechanism is effective
for negotiations where the opponent changes its strategy.

6 CONCLUSION AND FUTURE WORK

This paper proposes a novel Deep Offline Reinforcement
learning Negotiating Agent (DOREA) framework to learn
strategy from previous negotiation datasets. The DOREA
framework consists of two key components: the offline learn-
ing based strategy module and the strategy fine-tuning mech-
anism. The offline learning based strategy module leverages
previously collected datasets to learn an effective negoti-
ation strategy without interaction with opponents. More-
over, the strategy fine-tuning mechanism quickly fine-tunes
the learned strategy via interactions and allows to adapt to
changes of opponent preferences or strategies. Experimen-
tal results show that it is effective against a diverse set of
state-of-the-art negotiating agents when exclusively using
offline datasets, and is also capable of adapting to opponent
preference or strategy changes.

We think the results clearly justify to invest further research
efforts into this approach and open several new research
avenues, among which we consider the following as most
promising. First, as opponent modeling is another helpful
way to improve the efficiency of negotiation, it’s worth-
while investigating how to combine opponent modeling

techniques with the proposed framework. Then, as the ac-
ceptance strategy also has impact on the performance of the
learned strategy, it is very promising to explore the possi-
bility to train the acceptance strategy instead of using the
simple one used in the framework. A third important avenue
we see is to enlarge the scope of the proposed framework to
other negotiation forms such as concurrent negotiations and
multi-lateral negotiations.
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