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Abstract

We consider missingness in the context of causal
inference when the outcome of interest may be
missing. If the outcome directly affects its own
missingness status, i.e., it is “self-censoring”, this
may lead to severely biased causal effect estimates.
Miao et al. [2015] proposed the shadow variable
method to correct for bias due to self-censoring;
however, verifying the required model assumptions
can be difficult. Here, we propose a test based on
a randomized incentive variable offered to encour-
age reporting of the outcome that can be used to
verify identification assumptions that are sufficient
to correct for both self-censoring and confounding
bias. Concretely, the test confirms whether a given
set of pre-treatment covariates is sufficient to block
all backdoor paths between the treatment and out-
come as well as all paths between the treatment
and missingness indicator after conditioning on the
outcome. We show that under these conditions, the
causal effect is identified by using the treatment
as a shadow variable, and it leads to an intuitive
inverse probability weighting estimator that uses a
product of the treatment and response weights. We
evaluate the efficacy of our test and downstream
estimator via simulations.

1 INTRODUCTION

“Self-censoring” is a type of missingness-not-at-random
(MNAR) phenomenon that poses a particularly difficult
obstacle to valid inference in settings with missing data. Re-
searchers have begun to address MNAR missing data prob-
lems, i.e., problems where the probability of missingness
depends on variables that exhibit missingness themselves.
However, the task of mitigating bias due to self-censoring re-
mains relatively unexplored [Mohan and Pearl, 2021]. Here,

we consider outcome-dependent self-censoring—situations
where the outcome determines its own missingness—in
the context of computing causal effects. This kind of self-
censoring is quite common in practice, for example, in stud-
ies where the outcome is an attribute associated with social
stigma (such as drug use or risky sexual behaviors) or in
general in settings where the outcome is ascertained by
voluntary survey response.

Recent work in missing data uses directed acyclic graphs
(DAGs) to represent substantive assumptions about causal
relations among variables, including indicators of missing-
ness [Daniel et al., 2012, Mohan et al., 2013, Mohan and
Pearl, 2021]. Within this framework, Bhattacharya et al.
[2019] and Nabi et al. [2020] derive a sound and com-
plete criterion for when it is possible to recover the full
data law of a missing data DAG model in the presence of
MNAR missingness and unmeasured confounding. How-
ever, this criterion specifically excludes self-censoring, i.e.,
self-censoring prevents non-parametric identification of the
full data law unless additional (non-structural) assumptions
are made about the data generating process.

When the full structure of the DAG is unknown, the pos-
sibility of unmeasured confounding, or the existence of
latent variables, poses a further challenge to observational
causal inference as this complicates the process of finding
a valid set of covariates to adjust for [Shpitser et al., 2012].
Methods for covariate adjustment under MNAR data have
been proposed by Saadati and Tian [2019] and Yang et al.
[2019]; however, these methods require full knowledge of
the structure of the missing data DAG and do not allow
for self-censoring on the outcome. Nabi and Bhattacharya
[2022] propose empirical tests to verify assumptions en-
coded in certain subclasses of MNAR models, but all of
these also exclude the possibility of self-censoring. To re-
cover the full data law given a self-censoring outcome and
under a certain completeness condition, Miao et al. [2015]
propose the use of a shadow variable, a variable that sat-
isfies a relevance assumption with respect to the outcome
and an exclusion restriction with respect to the outcome’s
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missingness indicator. However, empirical tests to verify
the shadow variable assumptions as well as the validity of
downstream covariate adjustment remains an open problem
that we seek to address in this work.

Here, we build on the work by Miao et al. [2015] on iden-
tification under self-censoring and Entner et al. [2013] on
covariate selection to propose a method for simultaneously
recovering the target law – the joint distribution of vari-
ables as if there were no missingness – and a valid covariate
adjustment set in the presence of a self-censoring outcome.

We propose a test, based on a randomized incentive vari-
able offered to encourage reporting of the outcome, which
can be used to verify identification assumptions that are
sufficient to correct for both self-censoring and confound-
ing bias. The test proceeds in two stages. The first stage
confirms dependence between the incentive for reporting
and the missingness indicator of the outcome. The second
stage executes a search for a pre-treatment covariate and
a covariate adjustment set that satisfies three conditions:
(i) independence between the treatment and the incentive
conditional on the outcome, missingness indicator of the
outcome, and the covariate adjustment set, (ii) dependence
between the pre-treatment covariate and the missingness in-
dicator of the outcome while conditioning on the covariate
adjustment set, and (iii) independence between the same
variables and adjustment set in test (ii) while additionally
conditioning on the treatment. We prove that, when these
conditions hold, one may use the treatment as a valid shadow
variable and that there is a valid covariate adjustment set.
We derive the corresponding identifying functional for the
causal effect and propose an intuitive inverse probability
weighting estimator that uses a product of the treatment and
response weights. We evaluate the efficacy of our method
via simulations.

Related work on self-censoring: Sportisse et al. [2020]
propose an imputation method for self-censored data that
assumes factorization according to a certain latent variable
DAG and parametric models for the missingness process.
Mohan et al. [2018] propose methods for recovery of the
full data law when all variables are discrete and when cer-
tain matrices corresponding to conditional probability tables
are invertible. Duarte et al. [2021] propose an algorithm for
computing bounds on the causal effect in the discrete setting,
which may converge to point identification in certain cases.
d’Haultfoeuille [2010] and Tchetgen Tchetgen and Wirth
[2017] propose instrumental variable methods that place
homogeneity restrictions on the missingness process in addi-
tion to requiring the presence of a valid instrument. Though
the randomized incentive variable we consider could be used
as an instrumental variable, the homogeneity restriction is
untestable and can be restrictive in many real-world settings.
To our knowledge, the testability of identifying assumptions
of the shadow variable method and covariate adjustment
under self-censoring has not been explored before.

2 MOTIVATING EXAMPLE

For our motivating example, we describe a hypothetical
study inspired by Turner et al. [2009] for evaluating the ef-
fect of public health programs that encourage safe sex prac-
tices. Consider an observational study where researchers
offer a sexual education program to encourage condom use.
That is, enrollment into this program is not randomized.
In a follow-up survey, participants may also choose not to
disclose their post-program condom use habits, precisely
because of the opinions they hold on the practice. Hence,
to estimate the causal effect of the program on improving
condom use, the researchers must overcomes challenges
related to both confounding and self-censoring.

To incentivize response to answer sensitive questions re-
garding sexual behavior, the researchers randomly assigned
study participants to be surveyed via a phone interview
conducted by a real human being or an automated pro-
gram called the Telephone Audio Computer-Assisted Self-
Interviewing (T-ACASI) program. Turner et al. [2009] ap-
plied this randomized incentive strategy to successfully in-
crease response rates on questions pertaining to drug use or
risky sexual behaviors in a study conducted in Baltimore,
USA. One can also imagine other randomized incentives of-
fered to increase response1, such as random lotteries for gift
cards. Such incentives are often offered as part of studies
that have a survey component. However, in most cases, the
incentives can only encourage response but not guarantee it,
and so the issue of self-censoring still persists.

In this work, we aim to simultaneously address the chal-
lenges of covariate selection and overcoming self-censoring,
or non-response bias, inherent in observational studies that,
for example, ask respondents sensitive questions.

3 MODEL AND PROBLEM SETUP

We assume the causal structure of the system is represented
via a directed acyclic graph G defined over a set of vertices
V = {A, Y (1), RY , Y, I} ∪W ∪ U, where A represents
the treatment variable, Y (1) represents the outcome had we
– possibly contrary to fact – been able to observe it, RY
represents the corresponding binary missingness indicator
for the outcome, Y represents the factual observed outcome
– which may be either a numeric value or “?” if the obser-
vation is missing, I represents the incentive variable – a
randomized variable that affects whether or not an individ-
ual responds and we observe their corresponding outcome,
W represents an observed set of pre-treatment covariates,
and U denotes a set of unobserved (latent) covariates. The
entire set V is assumed to be causally sufficient, i.e., there

1The effect of the incentive on response need not be mono-
tonic. Our method simply relies on some correlation between the
incentive and response, which we can test using the observed data.
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are no additional unmeasured common causes of any two
variables in V.

The above setup describes a causal Bayesian network over
the variables V [Spirtes et al., 2000, Pearl, 2009], with an
added restriction on the relationship between the missing
variable Y (1), its missingness indicator, and the observed
outcome: Y = Y (1) when RY = 1 and Y = ? when
RY = 0. This is the missing data version of the consistency
assumption in causal inference [Nabi et al., 2022]. Due to
the fixed deterministic nature of this relationship, we omit
drawing the observed outcome Y in some of our figures.

Independences implied in the full data law p(V) can be
read off from G via the d-separation criterion [Pearl, 1988,
Mohan and Pearl, 2021]. Here, we make a faithfulness as-
sumption [Spirtes et al., 2000], which states that any inde-
pendencies in the distribution p(V) must correspond to d-
separation statements in G. Formally,A ⊥⊥ B | C in p(V) if
and only ifA ⊥⊥d-sep B | C in G. For tests that involve condi-
tioning on the missing outcome Y (1), we also assume an ex-
tension of faithfulness used in causal discovery procedures
for missing data settings [Tu et al., 2019]. This assumption
states that any independences that exist conditional on RY
in p(V) must also hold in the observed data, i.e., conditional
on RY = 1. Formally, we assume A ⊥⊥ B | C, RY in p(V)
if and only if A ⊥⊥ B | C, RY = 1 in p(V) when Y (1) is
one of A, B, or an element of the conditioning set C.

The above assumptions are commonly used across most
graphical model selection procedures [Spirtes et al., 2000].
We now list and provide brief justification for additional
structural assumptions important for our method. Let
paG(V ) denote the parents of the variable V in the graph G.
We assume that the data are generated from a distribution
p(V) that is Markov and faithful with respect to a DAG G
that satisfies the structural assumptions M1-M4.

(M1) The only parents of Y are Y (1) and RY , i.e.,
paG(Y ) = {Y (1), RY }.

(M2) There is an edge fromA to Y (1) and an edge from Y (1)

to RY (i.e. the causal path A→Y (1)→RY exists in
the graph).

(M3) The incentive I is randomly assigned (i.e. paG(I) = ∅)
and may only be a parent of the missingness indicator
RY .

(M4) Y is not a parent of any variables in V and does not
have any children, RY is not a parent of any variables
in V\{Y },A is not a parent of any variables in W∪U,
and Y (1) cannot be a parent of A nor any variables in
W∪U. That is, we have an ordering, {I}∪W∪U <
A < Y (1) < RY < Y .

Assumption M1 and disallowing RY from having any chil-
dren aside from Y in assumption M4 are standard restric-
tions in missing data DAG models [Mohan et al., 2013]. We
require assumption M2 as it simplifies our empirical tests.

However, M2 is a relatively mild assumption as the exis-
tence of these edges is the primary motivation for applying
our method. Assumption M3 makes sure that I is a valid
proxy variable for designing indirect tests about the validity
of the treatment as a shadow variable, which is described in
Section 4. Finally, assumption M4 states that W ∪U are
all pre-treatment variables.

Figure 1 graphically displays assumptions M1-M4. The red
edges are assumed to exist while the blue edges may or may
not exist. We draw Y here to illustrate M1, but we will omit
it and the red dashed edges in all figures going forward (due
to the deterministic nature of its relation with Y (1) andRY .)

A Y (1) RY

Y

I

W ∪U

Figure 1: Graph depicting assumptions M1-M4.

We briefly connect our notation and problem setup back to
the initial motivating example. The variable A represents
whether or not an individual enrolls in the sexual education
program. The variable Y (1) represents an individual’s (true)
post-program condom use habits. The variable RY repre-
sents whether an individual reports their condom use habits.
The variable I represents whether a participant was inter-
viewed by the T-ACASI program or by a human interviewer.
Finally, the variables W ∪U represent fully observed and
unobserved covariates in the problem, respectively. We now
formally define our target causal parameter.

Target of Inference

Under missingness, a causal effect of the treatment on
the outcome corresponds to a contrast between poten-
tial outcomes Y (A=a,RY =1) and Y (A=a′,RY =1), where
Y (A=a,RY =1) denotes the value of the outcome had the
treatment been set to some value a via intervention and
had the outcome been observed. Moving forward, we use
Y (a,1) and Y (a′,1) for brevity. Our target of inference is
the average causal effect (ACE), i.e., the mean difference
E[Y (a,1) − Y (a′,1)].2 In the next section we derive an iden-
tification formula for the ACE in terms of the observed data
distribution p(A, Y,RY ,Z) where Z ⊂ W based on the
backdoor adjustment formula from Pearl [1995] and the
shadow variable method proposed by Miao et al. [2015].

2Similar notation for representing potential outcomes under
missingness has been used in Nabi et al. [2022]. This can also be
expressed using do-notation as in Saadati and Tian [2019].
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4 IDENTIFICATION

In this section we demonstrate recovery of the ACE assum-
ing we are given a valid backdoor adjustment set and shadow
variable adjustment set Z ⊂W. Note that we use a strict
subset relation as we will use at least one of the remaining
pre-treatment covariates for verification of the identifying
assumptions. We can also ignore the incentive variable I
here because it does not play a role in identification, only in
the verification of the assumptions surrounding Z later on.

In the following, we focus on identification of E[Y (a,1)];
identification of E[Y (a′,1)] follows similarly. We perform
identification in two steps. In the first step, we assume we
have access to the underlying counterfactual Y (1). A set Z
is said to be a valid backdoor adjustment set relative to the
treatment A and outcome Y (1) if

(B1) Z does not contain any variables that are causal descen-
dants of A, and

(B2) A and Y (1) are d-separated when conditioning on Z in
a modified graph where all outgoing edges from A are
deleted.

If Z is a valid backdoor adjustment set, then we have the
following backdoor adjustment formula in terms of the full
data law involving Y (1) [Pearl, 1995].

E[Y (a,1)] =
∑
Z

E[Y (1) | A = a,Z]× p(Z) (1)

However, due to missingness, we have access to only the
margin p(A, Y,RY ,Z), which does not include Y (1). In
our problem setting, the counterfactual expression E[Y (1) |
A = a,Z] is not equal to the observed regression E[Y | A =
a,Z, RY = 1] since Y (1) 6⊥⊥ RY | A,Z from assumption
M2, i.e., due to self-censoring.

Next, we define shadow variables as described by Miao et al.
[2015], and use it to overcome the issue of self-censoring. A
variable S is a valid shadow variable if it is a fully observed
variable that satisfies the following independence relations.

(S1) S 6⊥⊥ Y (1) | RY = 1,Z, and

(S2) S ⊥⊥ RY | Y (1),Z.

A shadow variable S helps us recover the target law as
if there were no missingness by enabling identification of
the propensity score of the missingness indicator p(RY =
1 | A, Y (1),Z) from the margin p(A, Y,RY ,Z). Intuitively,
shadow variables have some non-zero effect on the self-
censoring variable, which means they contain some useful
information about it. In addition, they are independent of
the missingness mechanism, which makes it possible for us
to use the shadow variable to infer information about the
self-censoring variable using just observed rows of data. We
refer to the set Z ⊂W that satisfies conditions S1 and S2

as the shadow variable adjustment set. In our method, we
verify whether the treatment A is a valid shadow variable
and directly use it as such.

To identify (1), it is sufficient to identify the joint distribution
of p(A, Y (1),Z). By the chain rule of probability we have,

p(A, Y (1),Z) =
p(A, Y (1),Z, RY = 1)

p(RY = 1 | A, Y (1),Z)
. (2)

The numerator is a function of observed data due to consis-
tency. Identification of this joint then reduces to identifica-
tion of the propensity score p(RY = 1 | A, Y (1),Z). If we
are able to verify that A is a valid shadow variable, then the
independence A ⊥⊥ RY | Y (1),Z will hold from S2. Hence,
p(RY = 1 | A, Y (1),Z) = p(RY = 1 | Y (1),Z).3

Following Miao et al. [2015], we use an odds ratio factoriza-
tion of the propensity score to perform the identification of
p(RY = 1 | Y (1),Z). For two variables X,Y and a set of
variables Z, the conditional odds ratio function is defined as

OR(X,Y | Z) =
p(X | Y,Z)

p(X = x0 | Y,Z)
× p(X = x0 | Y = y0,Z)

p(X | Y = y0,Z)
,

where x0 and y0 are the specified reference values forX and
Y . From the above definition, the odds ratio is 1 whenever
X = x0 or Y = y0. Furthermore, the odds ratio is 1 for all
values of X,Y, Z if and only if X ⊥⊥ Y | Z.

Without loss of generality, we pick any arbitrary value y0
in the state space of Y (1) to be the reference value for the
outcome and RY = 1 to be the reference value of the miss-
ingness indicator. Let π0(Z) denote the propensity score
for RY at the reference value y0, i.e., π0(Z) := p(RY =
1 | Y (1) = y0,Z). Let η(Y (1),Z) denote the conditional
odds ratio function relating Y (1) and RY at values where
RY = 0, i.e., η(Y (1),Z) := OR(RY = 0, Y (1) | Z). Then
the odds ratio factorization of the propensity score can be
written as (to keep our results self-contained, a proof of this
factorization is provided in the Appendix),

p(RY = 1 | Y (1),Z) =

π0(Z)

π0(Z) + η(Y (1),Z)(1− π0(Z))
(3)

Whenever Y (1) = y0, η(Y (1),Z) = 1, and we have that
p(RY = 1 | Y (1) = y0,Z) = π0(Z) because the denomi-
nator simplifies to a value of 1. At any other value of Y (1),
η(Y (1),Z) 6= 1, and the odds ratio factorization of the
propensity score will return a different value.

When A is a valid shadow variable and the conditional
distribution p(Y (1) | RY = 1, A,Z) satisfies a widely used

3Note that from (2) we identify the full target law. However,
there may be cases when recovery of the full target law is not
necessary to recover the causal effect of interest.
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completeness condition4, Miao et al. [2015] show that π0
and η (and hence the propensity score) are identified from
the observed data.

Consider Figure 2, which demonstrates how certain sets of
pre-treatment covariates might be sufficient to adjust for
confounding but not missingness or vice versa. In this DAG,
the set {W1} satisfies B1 and B2. However, it does not
satisfy S1 and S2 when considering the treatment A as the
shadow variable because of the open collider at Y (1) on the
path A→Y (1)←W2→RY . On the other hand, the set
{W2} satisfies S1 and S2 when considering the treatment
A as the shadow variable, but the backdoor path through
W1 remains open. Only sets that include both W1 and W2

such as Z = {W1,W2} satisfy all of B1, B2, S1, and S2
simultaneously. We now present our main identification
results that relies on a set of covariates that satisfy all these
conditions simultaneously.

A Y (1) RY I

W1 W2W3

Figure 2: Graph demonstrating how different subsets of W
satisfy the identifying assumptions B1, B2, S1, and S2.

Theorem 1. Under structural assumptions M1-M4 and
completeness of p(Y (1) | RY = 1, A,Z), if Z satisfies
B1 and B2 and A is a valid shadow variable satisfying
S1 and S2 conditional on Z, then the expected value of
the counterfactual outcome E[Y (a,1)] is identified from the
observed data distribution p(A, Y,Z, RY ) as follows:

E[Y (a,1)] = E
[

RY × I(A = a)× Y
p(RY = 1|Y (1),Z)× p(A = a|Z)

]
(4)

A full proof of Theorem 1 is provided in the Appendix, but
the intuition is simple. The use of RY in the numerator of
(4) ensures that we use only observed rows of data. Further,
under our assumptions, both propensity scores in the de-
nominator are identified as functions of the observed data;
p(A = a | Z) depends on only observed data quantities and
p(RY = 1 | Y (1),Z) is identified via the odds ratio factor-
ization in (3) with the treatment as a shadow variable. We
can then apply standard laws of probability to show that (4)
is equivalent to the full data law adjustment functional in (1).
Since Z is assumed to be a valid backdoor adjustment set,
this further implies equivalence of (4) to the counterfactual
mean E[Y (a,1)].

4For all square-integrable functions h(A, Y (1)),
E[h(A, Y (1)) | RY = 1, A,Z] = 0 almost surely if and
only if h(A, Y (1)) = 0 almost surely (see Newey and Powell
[2003] or Section 3 of Miao et al. [2015] for more details).

The above identification argument relies on the absence of
certain edges from the graph G in order to satisfy assump-
tions S1, S2, B1, and B2. Figure 3 shows the edges that, if
present, preclude identification. In the figure we use bidi-
rected edges as a shorthand for a path involving unmeasured
variables. For example, A↔Y (1) is shorthand for the pres-
ence of a d-connecting path A←U1 · · ·Uk→Y (1), where
U1, . . . , Uk are unmeasured variables in U. In the figure, it
is possible for the treatment A and a set Z ⊂W to satisfy
the shadow variable conditions S1 and S2 whenever the red
dashed edges are absent. Similarly, it is possible for Z ⊂W
to satisfy the backdoor conditions B1 and B2 whenever the
green dashed edge is absent. In essence, our method in the
next section tests for the absence of these edges.

A Y (1) RY I

W

Figure 3: Red and green dashed edges impede identification.

5 TESTS FOR IDENTIFICATION
CONDITIONS

Entner et al. [2013] propose a two-stage test to verify
whether a set of pre-treatment covariates Z satisfy B1 and
B2 for backdoor adjustment when there is no missing data
or sample selection bias. However, from the previous sec-
tion we have seen that, to overcome self-censoring, Z must
also satisfy the shadow variable conditions S1 and S2 for
some candidate shadow variable. Testing S2 using observed
data is impossible in general, though, as such a test involves
conditioning on the counterfactual variable Y (1). Here, we
augment the test from Entner et al. [2013] so that it is ca-
pable of testing for the backdoor adjustment conditions in
addition to the shadow variable assumptions when consid-
ering the treatment A as a shadow variable and only using
observed data quantities. This allows us to validate the cru-
cial identifying assumptions laid out in the previous section.

5.1 METHOD

The two-stage method described in Entner et al. [2013]
searches for a W ∈ W and Z ⊆ W \ {W} such that (i)
W 6⊥⊥ Y | Z and (ii) W ⊥⊥ Y | Z, A. They assume the
same partial order of variables as in assumption M4 except
that the variables I and RY are not present in the graph. In
addition, Y is a fully observed variable. Entner et al. [2013]
proved that, when conditions (i) and (ii) hold, Z is a valid
backdoor adjustment set for the causal effect of A on Y .
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For our method, we propose to test if

(C1) I 6⊥⊥ RY

and then search for some W ∈W and Z ⊆W \{W} such
that

(C2) A ⊥⊥ I | Y (1), RY = 1,Z

(C3) W 6⊥⊥ RY | Z

(C4) W ⊥⊥ RY | A,Z

Conditions C1 and C2 are used to confirm the absence of
the red dashed edges in Figure 3 that would prevent us from
using A as a valid shadow variable; conditions C3 and C4
are a modification of the tests from Entner et al. [2013] that
indirectly confirm the validity of Z as a backdoor adjustment
set for the counterfactual outcome by using the missingness
indicator to formulate the tests instead. This is formalized
in the theorem below.

Theorem 2. When C1-C4 hold in a distribution p(V) that
is Markov and faithful w.r.t a causal DAG G satisfying as-
sumptions M1-M4, Z is a valid backdoor adjustment set
for the causal effect of A on Y (1), and A is a valid shadow
variable with Z as a shadow variable adjustment set.

Proof. From Entner et al. [2013], if C3 and C4 hold, Z is a
valid backdoor adjustment set for computing the effect of A
on RY . From assumptions M2 and M4, all backdoor paths
betweenA and Y (1), i.e.,A← · · ·→Y (1), also extend into
a backdoor path A← · · ·→Y (1)→RY to RY . Thus, if Z
blocks all backdoor paths between A and RY , it also blocks
all backdoor paths between A and Y (1), making Z a valid
adjustment set for the effect of A on Y (1).

Next, we prove that Z can be used for shadow variable ad-
justment usingA as the shadow variable. Condition S1 holds
trivially as we have A→Y (1) according to assumption M2.
We now prove S2 also holds: that A ⊥⊥ RY | Y (1),Z. First,
under assumption M2, C1 ensures that the randomized in-
centive I has a directed edge to RY and no other outgoing
edges. In order for A to be a valid shadow variable, all
paths between A and RY conditional on Y (1) and Z must
be blocked. The following 4 cases cover all possible paths
between A and RY given our assumptions.

1. Causal paths from A to RY . One possible causal path
A→Y (1)→RY exists by assumption M4, but it is
blocked by conditioning on Y (1). The second possi-
bility of A→RY cannot exist because it would im-
ply an open path between I and A conditional on
Y (1), RY = 1, and Z, contradicting C2.

2. Paths of the form A→Y (1)← . . .→RY . Any open
paths of this form contradict C2, as it implies the de-
pendence A 6⊥⊥ I | Y (1), RY ,Z.

3. Backdoor paths of the formA← . . .→RY that do not
contain Y (1) as a collider. As previously noted, all such
backdoor paths are blocked by Z based on conditions
C3 and C4.

4. Backdoor paths containing Y (1) as a collider, i.e.,
A← . . .→Y (1)← . . .→RY . All such paths are still
blocked despite conditioning on Y (1) as Z blocks all
backdoor paths between A and Y (1).

Therefore, Z is a valid backdoor adjustment set for the
causal effect of A on Y (1), fulfilling B1 and B2, and it is
also a valid shadow variable adjustment set for A to be a
valid shadow variable, fulfilling S1 and S2 for A.

We use Figure 4 to illustrate an example of how our tests pro-
ceed. Let us begin by only considering the solid blue edges.
First, we confirm that C1 holds. Next, none of the conditions
C2-C4 can be satisfied by using Z = ∅ and W = Wi for
i = 1, 2, 3. When considering singleton adjustment sets, we
get that, for W =W3 and Z = {W1}, condition C2 is sat-
isfied. However, this set does not satisfy C3 and C4 because
of the open collider at W1 that introduces an open backdoor
path between A and Y (1). Finally for adjustment sets of
size 2, we get that, when W = W3 and Z = {W1,W2},
all conditions are satisfied, providing the correct conclusion
that the effect is identified via (4) using Z = {W1,W2}.

A Y (1) RY I

W1 U1

W2

U2

W3

Figure 4: W =W3, Z = {W1,W2}

Next, consider the same DAG in Figure 4 with the green
dashed edge being present. Because there is unmeasured
confounding between the treatment and outcome variables,
there is no possible Z that can be a valid backdoor adjust-
ment set. Therefore, C3 and C4 can never be satisfied. Next,
let us consider a DAG where the red dashed edge is present.
The unmeasured confounding between A and RY violates
S2 when usingA as a shadow variable and also creates a col-
lider path between A and I that ensures that C2 will never
be satisfied. In both cases, our method correctly concludes
that no adjustment set is possible.

5.2 LIMITATIONS

There exist DAGs where our identification strategy works
but where our method is not able to detect the existence
of a valid backdoor and shadow variable adjustment set.
Consider Figure 5 where W3 is now a confounder between
the treatment and outcome. Despite Z = {W1,W2,W3}
fulfilling all the critical assumptions set up in Theorem 1,
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our method will incorrectly conclude that there is no valid
adjustment set because there exists no W ∈W that can be
used as an auxiliary variable to test C3 and C4. This same
limitation exists in the method proposed by Entner et al.
[2013] in settings without missing data.

A Y (1) RY I

W1 U1

W2

U2W3

Figure 5: Setting where identification is possible using Z =
{W1,W2,W3}, but there are no observed independence
constraints that our method can use to verify this.

Furthermore, the incentive variable I is assumed to be a ran-
domized variable in our method. In existing observational
studies, it may not always be possible to identify such a
variable. However, it may be possible to relax this condition
such that I is conditionally randomized based on a set of pre-
treatment covariates. This could potentially allow for more
flexibility in the identification of a valid incentive variable,
but we do not pursue this line of inquiry here.

6 ESTIMATION PROCEDURE

The first step in a practical estimation procedure is to verify
C1. If this test fails, then we are unable to empirically verify
the validity of candidate adjustment sets using the given in-
centive I . If it succeeds, Algorithm 1 then searches over all
possible assignments for W and Z to see if there is a com-
bination of assignments that fulfills C2-C4. The search in
Algorithm 1 proceeds in a style similar to the PC algorithm
[Spirtes et al., 2000] for causal discovery (and the order of
tests described for Figure 4) where conditioning sets of size
0 are tested first, followed by sets of size 1, and so on. Such
an exponential search is unavoidable in situations where no
valid adjustment set exists.5 We use likelihood ratio tests for
all tests in Algorithm 1; however, suitable non-parametric
tests such as kernel conditional independence tests can also
be applied [Zhang et al., 2011]. If Algorithm 1 returns a
set Z, then we have found a set satisfying B1, B2, S1, and
S2, and we may use A as a valid shadow variable and Z
as a valid adjustment set. Otherwise, we conclude that no
adjustment set could be validated using our tests.

If we find a valid set Z, we then estimate the distribution
p(A | Z) using the full dataset as it involves only fully ob-
served variables. As the treatment is typically binary, we
use a logistic regression model in our procedure. More flex-
ible models such as generalized additive models or random
forests are also possible depending on the sample size.

5If desired, one may also perform a search for candidate ad-
justment sets using only a subset of all possible subsets of W.

Algorithm 1 for finding a valid adjustment set Z.

1: for each W ∈W do
2: Zf ←W \ {W}
3: for i from 0 to |Zf | do
4: Zs← all possible subsets of Zf with size i
5: for each Z ∈ Zs do
6: if C2-C4 are true using W and Z then
7: return Z
8: end if
9: end for

10: end for
11: end for
12: return “no adjustment set found”

Next, we estimate the propensity score for RY , p(RY =
1 | Y (1),Z). Let the cardinality of Z be |Z| = k. In
our estimation procedure, we use the odds ratio factor-
ization of the propensity score in (3) with the parame-
terizations π0(Z) = expit(β1Z1 + β2Z2 . . . βkZk) and
η(Y (1),Z) = exp(γY (1))6. In total, we estimate k + 1 pa-
rameters to recover the propensity score of RY ; therefore,
we need k + 1 mean-zero estimating equations of the form
E[( RY

p(RY =1|Y (1),Z;β,γ)
−1)×h(A,Z)]. A simple choice for

the first k equations is to use h(A,Z) = Zi for each Zi ∈ Z.
For the final equation, we use h(A,Z) = A, where A is the
mean of the variable A. This gives us the following system
of equations:

E


(

RY

p(RY =1|Y (1),Z;β,γ)
− 1

)
Z1

Z2

. . .
Zk
A


 = 0 (5)

Because the expression RY

p(RY =1|Y (1),Z;β,γ)
is 0 for each

individual in the dataset where RY = 0, the system of
estimating equations only uses observed rows of Y (1).

Using the estimated parameters for p(A | Z) and p(RY =
1 | Y (1),Z), we get estimates of both propensity scores
for each row of data. Since inverse probability weighting
estimators can be unstable due to large weights, we clip
these propensity scores between values plow = 0.01 and
phigh = 0.99 [Hernán and Robins, 2010, Crump et al.,
2009]. Finally, we estimate the causal effect by taking the
empirical average for the expectation shown in identifying
functional (4) for treatment values a and a′.

A summary of our procedure is as follows: (i) Test C1,
if it holds, proceed to (ii), else, terminate the algorithm.
(ii) Test C2-C4 using Algorithm 1, if it returns a set Z,

6Although we use specific parameterizations for the propensity
score and odds ratio in our estimation procedure, our identification
strategy is non-parametric. Different strategies for estimating the
odds ratio is given by Tchetgen Tchetgen et al. [2010].
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proceed to (iii), else terminate the algorithm. (iii) Estimate
the propensity scores for RY and A and plug them into an
inverse probability weighted estimator for the ACE based
on the identifying functional in (4).

Complexity of the Search Procedure

The worst-case computational complexity of the proposed
method is exponential due to the number of subsets that
are considered when testing conditions C1 through C4.
However, in practice, the complexity may not necessarily
pose any significant challenges to applying this method. Ac-
cording to a meta study that evaluated studies in applied
health research that used DAGs, most of these studies only
use DAGs with roughly twelve variables [Tennant et al.,
2021]. DAGs of this size and those of similar sizes should
pose no computational issues for our method. For high-
dimensional settings, researchers typically rely on some
sparsity assumptions such as limiting the maximum size of
the conditioning set (as in causal discovery applications)
or, alternatively, finding a low-dimensional representation
of the high-dimensional confounders that is sufficient for
adjustment [Ma et al., 2019]. It is possible to apply such
methods in conjunction with ours to deal with self-censoring
in the high-dimensional case.

7 SIMULATION STUDY

For our simulations, we generate data according to the graph
shown in Figure 6 and modifications of it that violate the
shadow variable or backdoor conditions. We generate the
pre-treatment covariates W from a multivariate normal dis-
tribution with mean 0 and covariance matrix Σ such that the
off-diagonal entries, corresponding to the covariance of error
terms, are non-zero for the pairs (W2,W3), (W2,W4), and
(W3,W4). This is equivalent to a structural equation model
with correlated errors where we have unmeasured confound-
ing of the form W2↔W3, W2↔W4, and W3↔W4. We
generate A, Y (1), and RY as binary variables as functions
of their parents in Figure 6. To generate RY , we use the
odds ratio factorization and parameterization specified in
Section 6. The incentive variable I is normally distributed
with a mean of 0 and variance 2. Precise details of the data
generating process are provided in the Appendix.

A Y (1) RY

W1 W2 W3 W4

I

Figure 6: Graph used in our simulations.

Our first set of experiments focuses on evaluating the effec-

tiveness of Algorithm 1 for finding a valid adjustment set
when such a set exists and to correctly identify that no valid
adjustment set exists when no such set exists. Before de-
scribing the experiments, we define key terms for evaluating
accuracy. A true positive (TP) occurs when an adjustment
set exists and the algorithm identifies the correct set of co-
variates. If the algorithm does not find an adjustment set or
returns an incorrect one, then this is a false negative (FN). A
true negative (TN) occurs when no possible adjustment set
exists and the algorithm correctly finds no adjustment set.
If the algorithm detects an adjustment set when no such set
exists, this is considered a false positive (FP). Sensitivity is
defined as #TP

#TP+#FN , and specificity is defined as #TN
#TN+#FP .

The experiment proceeds as follows. We first run 200 trials
with data generated according to Figure 6 where Algorithm 1
should return Z = {W2,W3,W4}. We then run 200 trials
where the algorithm should return no adjustment set as no
valid set exists using data generated according to a DAG
where we add edge A→RY to Figure 6 with probability
0.5 or where we treatW4 as a latent variable with probability
0.5. The size of the dataset for each of these trials ranges
from 500 to 10,000, and we use a significance level of α =
0.05 for our tests. However, note that the effective sample
size for some tests is roughly 60% of the full sample size
due to the missingness of the outcome. Table 1 summarizes
the results. In the Appendix, we also report results of this
experiment using α = 0.01 and α = 0.1.

Sample Size Sensitivity Specificity
500 0.011 0.350

2500 0.577 0.556
5000 0.812 0.818

10000 0.930 0.925

Table 1: Results of covariate search experiment.

The second set of experiments uses data from Figure 6 to
evaluate the effectiveness of our method for downstream es-
timation. We compare these estimates to the bias introduced
by either failing to adjust for missing data but using the
correct backdoor adjustment set, or by failing to use a valid
backdoor adjustment set but correctly adjusting for missing
data. To estimate the ACE without adjusting for missing
data, we subset the dataset to only rows of data where the
outcome is observed and use a standard inverse probability
weighting estimator. To estimate the ACE while using an
invalid backdoor adjustment set, we use a subset of the cor-
rect adjustment set, {W2,W3}, after correctly adjusting for
missing data. We compare these two estimates with one ob-
tained by running our full procedure described in Section 6
with α = 0.05. We also generate estimates obtained using
an independence oracle in Algorithm 1 to emphasize the
importance of reliable conditional independence tests. We
run 200 trials each for the sample sizes 500, 2,500, 5,000,
and 10,000.
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(a) (b) (c)

Figure 7: Simulation results for estimating the average causal effect using different methods and sample sizes.

Results for 500 samples exhibit high bias due to inaccuracy
of the tests and are reported in the Appendix in the interest of
space. The red line in Figure 7 shows the ground truth causal
effect. At sample size 10,000, the search algorithm correctly
identifies the adjustment set for 93% of the trials, so the
estimates from the method are nearly identical to the esti-
mates from using the independence oracle. As the sample
size increases, estimation from failing to adjust for missing
data and confounding bias converge to biased values for the
ACE. The method that ignores missingness produces reason-
able estimates at low sample sizes, but it shows asymptotic
convergence to a biased estimate. As expected, estimates ob-
tained by using our full pipeline converge to the ground truth
causal effect as sample size increases. Python code imple-
menting our estimation procedure and to reproduce our nu-
merical studies can be found online: https://github.
com/jacobmchen/mnar-recoverability.

8 CONCLUSION

In this paper, we discuss methods for causal effect estima-
tion with a self-censoring outcome and when the underlying
causal structure of the graph is unknown. We prove that
when a set Z ⊂ W satisfies both the backdoor adjust-
ment set and the shadow variable adjustment set criteria,
then identification of the average causal effect is possible
through an inverse probability weighting functional. We
further describe a series of tests that may be used to empir-
ically identify such a valid set Z using the observed data.
We present a simple search algorithm that uses our tests as
a subroutine and estimates the average causal effect using
an inverse probability weighting estimator if a valid set Z
is found. Finally, we conclude with experiments based on
synthetic data that demonstrate the accuracy of our search
algorithm and estimation procedure.

We have thus made progress on identifying situations where
it is possible to overcome self-censoring and confounding to
compute an unbiased estimate for the average causal effect.
To the best of our knowledge thus far in the literature, all
methods for covariate selection under MNAR data do not

allow for self-censoring on the outcome and require prior
knowledge of the underlying causal structure.

As self-censoring is a difficult problem, however, many
open questions remain: To what extent can we relax the
assumption that the incentive I must be randomized? Can
we design semiparametric estimation strategies for the tests
and final estimation piece that exhibit desirable statistical
properties, such as robustness to model mispecification and
lower asymptotic variance? Is it possible to apply different
identification strategies, such as frontdoor adjustment pro-
posed by Pearl [1995], to identify the average causal effect
under self-censoring of the outcome when backdoor adjust-
ment is not applicable? These issues and open questions
may be the focus of future research.

Acknowledgements

DM was partially supported by the National Institutes of
Health under award number K25ES034064 from NIEHS.

References

Rohit Bhattacharya, Razieh Nabi, Ilya Shpitser, and
James M. Robins. Identification in missing data mod-
els represented by directed acyclic graphs. In Proceed-
ings of the 35th Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 2019.

Richard K. Crump, V. Joseph Hotz, Guido W. Imbens, and
Oscar A. Mitnik. Dealing with limited overlap in esti-
mation of average treatment effects. Biometrika, 96(1):
187–199, 2009.

Rhian M. Daniel, Michael G. Kenward, Simon N. Cousens,
and Bianca L. De Stavola. Using causal diagrams to guide
analysis in missing data problems. Statistical Methods in
Medical Research, 21(3):243–256, 2012.

Guilherme Duarte, Noam Finkelstein, Dean Knox, Jonathan
Mummolo, and Ilya Shpitser. An automated approach

366

https://github.com/jacobmchen/mnar-recoverability
https://github.com/jacobmchen/mnar-recoverability


to causal inference in discrete settings. arXiv preprint
arXiv:2109.13471, 2021.

Xavier d’Haultfoeuille. A new instrumental method for deal-
ing with endogenous selection. Journal of Econometrics,
154(1):1–15, 2010.

Doris Entner, Patrik Hoyer, and Peter Spirtes. Data-driven
covariate selection for nonparametric estimation of causal
effects. In Artificial Intelligence and Statistics, pages 256–
264. PMLR, 2013.

Miguel A. Hernán and James M. Robins. Causal Inference:
What If. CRC Boca Raton, FL, 2010.

Shujie Ma, Liping Zhu, Zhiwei Zhang, Chih-Ling Tsai, and
Raymond J Carroll. A robust and efficient approach to
causal inference based on sparse sufficient dimension
reduction. Annals of statistics, 47(3):1505, 2019.

Wang Miao, Lan Liu, Eric Tchetgen Tchetgen, and Zhi
Geng. Identification, doubly robust estimation, and semi-
parametric efficiency theory of nonignorable missing data
with a shadow variable. arXiv preprint arXiv:1509.02556,
2015.

Karthika Mohan and Judea Pearl. Graphical models for pro-
cessing missing data. Journal of the American Statistical
Association, 116(534):1023–1037, 2021.

Karthika Mohan, Judea Pearl, and Jin Tian. Graphical mod-
els for inference with missing data. Advances in neural
information processing systems, 26, 2013.

Karthika Mohan, Felix Thoemmes, and Judea Pearl. Esti-
mation with incomplete data: The linear case. In Proceed-
ings of the International Joint Conferences on Artificial
Intelligence Organization, 2018.

Razieh Nabi and Rohit Bhattacharya. On testability and
goodness of fit tests in missing data models. arXiv
preprint arXiv:2203.00132, 2022.

Razieh Nabi, Rohit Bhattacharya, and Ilya Shpitser. Full
law identification in graphical models of missing data:
Completeness results. In Proceedings of the 37th Inter-
national Conference on Machine Learning, pages 7153–
7163. PMLR, 2020.

Razieh Nabi, Rohit Bhattacharya, Ilya Shpitser, and James
Robins. Causal and counterfactual views of missing data
models. arXiv preprint arXiv:2210.05558, 2022.

Whitney K. Newey and James L. Powell. Instrumental vari-
able estimation of nonparametric models. Econometrica,
71(5):1565–1578, 2003.

Judea Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann,
1988.

Judea Pearl. Causal diagrams for empirical research.
Biometrika, 82(4):669–688, 1995.

Judea Pearl. Causality. Cambridge University Press, 2009.

Mojdeh Saadati and Jin Tian. Adjustment criteria for recov-
ering causal effects from missing data. In Joint European
Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 561–577. Springer, 2019.

Ilya Shpitser, Tyler VanderWeele, and James M Robins. On
the validity of covariate adjustment for estimating causal
effects. arXiv preprint arXiv:1203.3515, 2012.

Peter L. Spirtes, Clark N. Glymour, and Richard Scheines.
Causation, prediction, and search. MIT Press, 2000.

Aude Sportisse, Claire Boyer, and Julie Josse. Estimation
and imputation in probabilistic principal component anal-
ysis with missing not at random data. Advances in Neural
Information Processing Systems, 33:7067–7077, 2020.

Eric J. Tchetgen Tchetgen and Kathleen E. Wirth. A general
instrumental variable framework for regression analysis
with outcome missing not at random. Biometrics, 73(4):
1123–1131, 2017.

Eric J. Tchetgen Tchetgen, James M. Robins, and Andrea
Rotnitzky. On doubly robust estimation in a semiparamet-
ric odds ratio model. Biometrika, 97(1):171–180, 2010.

Peter W. G. Tennant, Eleanor J. Murray, Kellyn F. Arnold,
Laurie Berrie, Matthew P. Fox, Sarah C. Gadd, Wendy J.
Harrison, Claire Keeble, Lynsie R. Ranker, Johannes Tex-
tor, Georgia D. Tomova, Mark S. Gilthorpe, and George
T. H. Ellison. Use of directed acyclic graphs (DAGs) to
identify confounders in applied health research: review
and recommendations. International Journal of Epidemi-
ology, 50(2):620–632, 2021.

Ruibo Tu, Cheng Zhang, Paul Ackermann, Karthika Mohan,
Hedvig Kjellström, and Kun Zhang. Causal discovery in
the presence of missing data. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages
1762–1770. PMLR, 2019.

Charles F. Turner, Alia Al-Tayyib, Susan M Rogers, Eliza-
beth Eggleston, Maria A. Villarroel, Anthony M. Roman,
James R. Chromy, and Phillip C. Cooley. Improving epi-
demiological surveys of sexual behaviour conducted by
telephone. International Journal of Epidemiology, 38(4):
1118–1127, 2009.

Shu Yang, Linbo Wang, and Peng Ding. Causal inference
with confounders missing not at random. Biometrika, 106
(4):875–888, 2019.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard
Schölkopf. Kernel-based conditional independence test
and application in causal discovery. In Proceedings of the

367



Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, pages 804–813, 2011.

368


	Introduction
	Motivating Example
	Model and Problem Setup
	Identification
	Tests For Identification Conditions
	Method
	Limitations

	Estimation Procedure
	Simulation Study
	Conclusion

