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Abstract

Randomized experiments (REs) are the corner-
stone for treatment effect evaluation. However, due
to practical considerations, REs may encounter dif-
ficulty recruiting sufficient patients. External con-
trols (ECs) can supplement REs to boost estima-
tion efficiency. Yet, there may be incomparability
between ECs and concurrent controls (CCs), re-
sulting in misleading treatment effect evaluation.
We introduce a novel bias function to measure the
difference in the outcome mean functions between
ECs and CCs. We show that the ANCOVA model
augmented by the bias function for ECs renders a
consistent estimator of the average treatment effect,
regardless of whether or not the ANCOVA model is
correct. To accommodate possibly different struc-
tures of the ANCOVA model and the bias function,
we propose a double penalty integration estima-
tor (DPIE) with different penalization terms for
the two functions. With an appropriate choice of
penalty parameters, our DPIE ensures consistency,
oracle property, and asymptotic normality even in
the presence of model misspecification. DPIE is
at least as efficient as the estimator derived from
REs alone, validated through theoretical and exper-
imental results.

1 INTRODUCTION

Randomized experiments (REs), which allow researchers
to scientifically quantify the impact of an intervention on
a particular outcome of interest, are widely employed in
a variety of areas. To make informed decisions, technol-
ogy businesses always conduct A/B testing to evaluate new
technologies, using a randomized experiment to compare
the performance of each new software implementation with
the previous version. Meanwhile, in the medical domain,

randomized clinical trials (RCTs) ensuring no systematic
differences between treatment groups are the cornerstone of
treatment effect evaluation. When analyzing data from REs,
analysis of covariance (ANCOVA) is a popular method that
can provide consistent results, even if the model is misspec-
ified. REs often require the use of external data to analyze
treatment effects better: for example, A/B testing is time-
consuming and requires a reasonably high number of users;
thus, it is crucial to do a preliminary offline evaluation of ex-
ternal data to implement new interventions more efficiently
and eliminate ineffective ones in advance [Gilotte et al.,
2018]; meanwhile, if data from earlier clinical stages (Phase
I or II) indicate that the product under investigation has a
favorable benefit-risk profile in a disease area with unmet
healthcare needs, then it is possible to design an RCT with
a larger treatment group and a relatively smaller concurrent
control (CC) group. Because the small CC group cannot pro-
vide sufficient power to the trial, it is reasonable to augment
RCTs with external controls (ECs) from earlier trials [Yuan
et al., 2019]. In this paper, we propose a new method that
combines the ECs with CCs to improve average treatment
effect (ATE) estimation.

Since Pocock [1976], who first introduced historical controls
to incorporate external data into analysis, numerous statisti-
cal methods have been developed. Specifying a set of covari-
ates in advance and then calculating the propensity score
for matching, stratification, or weighting [Greenland et al.,
1999, Rubin and Thomas, 1996, Rubin, 2007, Hernán and
Robins, 2016] is typical. However, these methods rely on the
exchangeability assumption that there are no unmeasured
confounders between ECs and CCs, which is unlikely in
real-world applications. Additionally, Bayesian approaches
[Spiegelhalter, 2004, Hobbs et al., 2013, Schmidli et al.,
2014, Ibrahim and Chen, 2000, Hobbs et al., 2012, Neuen-
schwander et al., 2009] can handle datasets combining both
ECs and CCs: appropriate priors can be selected for incorpo-
rating the ECs after evaluating the relationship between the
ECs and the CCs. Nevertheless, these methods can result
in type I error inflation [Viele et al., 2014]. Building upon
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the work of Stuart and Rubin [2008] and Yang et al. [2022],
who introduced a parametric bias function to adjust for the
outcome heterogeneity between the control groups due to
unmeasured confounders, Wu and Yang [2022] advanced
the idea by using the sieve estimation approach [Chen, 2007]
to estimate the unknown outcome model and bias function.
The bias function in their approach measures the difference
between experimental data and observational data. However,
Wu and Yang [2022] did not fully leverage the advantage of
REs [Wang et al., 2023] since these prior works were based
on the assumption that the outcome model was correctly
specified. In this paper, we extend the concept of the bias
function to handle cases of possible model misspecification.
Our bias function measures the difference between the EC
outcome mean function and the working model in REs and
guarantees consistency even when the outcome mean model
is not correctly specified, providing a robust solution to the
challenge of model misspecification. This is of great prac-
tical significance as simple models such as ANCOVA are
commonly used despite the possibility of misspecification.

We adopt the nonparametric sieve estimation approach
[Chen, 2007] to accurately estimate the bias function, there-
fore it is important to utilize feature selection techniques.
These techniques tackle the high-dimensional aspect of the
basis functions used in sieve estimation and address the
possibility of the working outcome mean model containing
irrelevant covariates. To resolve this, penalized terms can
be added to each parameter in the objective function for op-
timization along with regularization parameters. However,
using the same regularization terms for both the REs and
ECs can cause issues due to their differing levels of sparsity
and magnitude. Therefore, we implement different penal-
ized terms for the unknown bias function and the working
outcome mean model, considering their distinct levels of
sparsity and magnitude.

Multiple methods have employed different penalties for dif-
ferent goals. However, they focused on decomposing one
function into different parts and applying different penalties
to those parts. Chernozhukov et al. [2017] proposed the Lava
estimator by decomposing the signals into a dense part and
a sparsity part, and then applying different penalties to each
component; Bühlmann and Ćevid [2020] proposed a spec-
tral deconfounding approach to estimate sparse parameters
given hidden variables, and demonstrated the Lava method
[Chernozhukov et al., 2017] as one of their special cases;
Xing et al. [2021], further, focused on the estimation of mul-
tivariate regression with hidden variables, and demonstrated
their method can be viewed as the multivariate generaliza-
tion of the Lava approach [Chernozhukov et al., 2017]. In
addition to decomposing the parameters into sparse and
dense parts, Wang and Zhou [2019] decomposed the func-
tion into an easy-to-interpret part and an uninterpretable
part, and then applied double penalties. Our approach makes
use of double penalties to deal with the possible different

structures of the working outcome mean function and bias
function to consistently select useful terms and enhance the
efficiency of the ATE estimator.

Different bias functions can utilize varying penalties, de-
pending on their structure. Our study focuses on the use of
the Smoothly Clipped Absolute Deviation (SCAD) penalty
[Fan and Li, 2001, Fan and Peng, 2004] to illustrate the
theorem in the context of variable selection. This is because
SCAD offers both oracle properties and asymptotic normal-
ity by selecting the appropriate regularization parameters.
Nevertheless, the existing results are limited to situations
where the models are correctly specified. To overcome this
limitation, we present a novel proof for the SCAD penalty
that extends its desirable properties to scenarios involving
potential misspecification of models.

Our main contributions can be summarized as follows:

a) We present a novel bias function to combine REs and
ECs and use sieve estimation [Chen, 2007] to provide a
flexible and computationally feasible way of estimating
the unknown bias function. Our ATE estimator for
REs is consistent regardless of the specification of the
working outcome mean model.

b) We introduce the Double Penalty Integration Estimator
(DPIE), which employs different penalized terms for
the unknown bias function and the working outcome
mean model to differentiate their different levels of
sparsity and magnitude. We prove that DPIE guaran-
tees consistency for the parameters that minimize the
least squares loss and has the oracle property of only se-
lecting non-zero parameters and exhibiting asymptotic
normality under the SCAD penalties.

c) We demonstrate that combining different data sources
results in a more efficient estimated ATE than using
only REs, as long as the number of basis function
terms in the bias function is fewer than that of the
working outcome mean function. The oracle property
of DPIE ensures the selection of relevant basis terms
when the outcome mean function is more complex and
less smooth than the bias function, leading to improved
efficiency. On the other hand, using single penalties
may result in a loss of the oracle property and fail-
ure to select useful basis terms, leading to decreased
efficiency.

The rest of the paper is organized as follows. We introduce
the basic idea in Section 2. Section 3 introduces the pro-
posed DPIE estimator and derives the theorem. We conduct
simulations for comparison in Section 4. Section 5 applies
the proposed estimators to an observational study from the
National Supported Work (NSW) and Current Population
Survey (CPS). Finally, we conclude the paper with a discus-
sion in Section 6.
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2 PROBLEM SETUP

Denote X ∈ X⊂ Rd as the vector of pre-treatment covari-
ates, A ∈ {0, 1} as the binary treatment, and Y ∈ R as
the outcome of interest. Following the potential outcomes
framework [Splawa-Neyman et al., 1990, Rubin, 1974], let
Y (a) be the potential outcome for the subject given the
treatment a, a = 0, 1.

In real life, one can use previous trials or real-world
data as ECs to supplement the REs. Assuming two
data sources are accessible: the RE data source hav-
ing n independent and identically distributed (i.i.d.) sub-
jects {(Xi, Ai, Yi) : i ∈ IRE} with n1 concurrent treat-
ments {(Xi, 1, Yi) : i ∈ ICT} and n0 concurrent controls
{(Xi, 0, Yi) : i ∈ ICC}, and the EC data source withm i.i.d.
subjects with {(Xi, 0, Yi) : i ∈ IEC}. Let N = n + m be
the total sample size. Define S as the indicator of the subject
in the REs: Si = 1 for i ∈ IRE and Si = 0 for i ∈ IEC.
Then the ATE is τ = E {Y (1)− Y (0) | S = 1}. Further,
let e (X) = P (A = 1 | X,S = 1) be the propensity score
and also define the conditional outcome mean function
as µa,s(X) = E (Y | X,A = a, S = s) for a = 0, 1 and
s = 0, 1.

One of the fundamental challenges to identifying the ATE is
that Y (1) and Y (0) cannot be observed simultaneously. To
overcome this issue, we make the following three common
assumptions in the causal inference literature [Rubin, 1978]:

Assumption 1 {Y (0), Y (1)} ⊥⊥ A | X,S = 1 almost
surely, where ⊥⊥ means “independent of”.

Assumption 2 Y = Y (1)A+ Y (0)(1−A).

Assumption 3 There exist constants c1 and c2 such that
0 < c1 ≤ e(X) ≤ c2 < 1 almost surely.

Assumption 1 states that the treatment assignment is
unconfounded in the REs. Assumption 2 guarantees poten-
tial outcomes are unaffected by the received treatments.
Under Assumptions 1 and 2, with X = x , we have
τ(x) = E {Y (1)− Y (0) | X = x, S = 1} = E(Y | X =
x,A = 1, S = 1)− E(Y | X = x,A = 0, S = 1), and the
conditional outcome mean function under the randomized
experiments is µa,1 (X) = E {Y (a) | X,S = 1} = E(Y |
X,A = a, S = 1). Assumption 3 implies a sufficient
overlap of the covariate distribution between the treatment
groups, then averaging the treatment effect on the distribu-
tion of X is feasible, thus the ATE is τ = E {τ(X)} =
E {E(Y | X,A = 1, S = 1)− E(Y | X,A = 0, S = 1)} =
E {µ1,1 (X)− µ0,1 (X)}.

To confirm the overlap of the covariate spaces of ECs and
CCs, hence enabling the utilization of ECs to augment RCTs
to boost estimation efficiency, we consider the following
assumption:

Assumption 4 P(S = s|X) > 0 for all s almost surely.

The Analysis of covariance (ANCOVA) model is a pow-
erful tool for estimating the ATE in REs. The randomiza-
tion design allows for the ATE estimator τ̂ to be consis-
tent and asymptotically normal under arbitrary misspeci-
fication of the ANCOVA model [Wang et al., 2023]. Fol-
lowing the common practice, we use the ANCOVA model
as the working model in REs. To enhance the model’s
generality, we incorporate a k1-dimension basis function
of X pµ(X) = {pµ,1(X), . . . , pµ,k1(X)}T into the AN-
COVA model as µ̄A,1(X;β) = βint + βAA + βT

Xpµ(X),
where β is a K1 = (k1 + 2)-dimensional parameter
(βint, βA, β

T

X)
T. Under the ANCOVA model, it is common

to utilize ordinary least squares estimators for parameter
estimation. Denote β∗ = (βint∗, βA∗, β

T

X∗)
T as the mini-

mizer of E[{Y − µ̄A,1(X;β)}2 | S = 1]. Importantly, for
S = 1, βA∗ is the ATE τ regardless of the correctness of
the working model.

To use ECs to supplement CCs, it is crucial to remove biases
of EC data due to possible incomparability between ECs
and CCs. We define the bias function as

b0(X) = E(Y | X,A = 0, S = 0)− µ̄0,1(X;β).

If the working model µ̄0,1(X;β) is correctly specified,
the bias function reduces to E (Y | X,A = 0, S = 0) −
E (Y | X,A = 0, S = 1), which measures the difference
of the conditional mean of the control outcome given X
between ECs and CCs. In this case, if X captures all con-
founders of S and Y , then E (Y | X,A = 0, S = 1) =
E (Y | X,A = 0, S = 0), and thus b0(X) ≡ 0; otherwise,
b0(X) 6= 0. This special case is discussed in Wu and Yang
[2022], but their analysis requires the outcome model to be
correctly specified. In contrast, our setup does not necessi-
tate a correctly specified outcome model.

Further, let the ANCOVA model augmented by the bias
function b0(X) be µ̄A,S(X;β) = βint+βAA+βT

Xpµ(X)+
(1− S)b0(X), then

µ̄0,0(X;β) = βint + βT

Xpµ(X) + b0(X)

=µ̄0,1(X;β) + E(Y | X,A = 0, S = 0)− µ̄0,1(X;β)

=E(Y | X,A = 0, S = 0).

An important implication is that even if the outcome work-
ing model is misspecified, incorporating the bias function
b0(X) ensures that µ̄0,0(X;β) recovers the true outcome
mean under ECs. Denote β∗ = (βint∗, βA∗, β

T

X∗)
T as the

minimizer of E[{Y − µ̄A,S(X;β)}2]. The following theo-
rem demonstrates that βA∗ still identifies the ATE τ in the
combined RE and EC data.

Theorem 1 (Identification) Under the augmented ANCOVA
model, we have βA∗ = τ.
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Theorem 1 provides a vehicle to integrate REs and ECs
for robust estimation of the ATE. Consistent estimation
of τ still depends on an accurate approximation of un-
known b0(X). Thus, we adopt the method of sieves [Chen,
2007]. Denote pb(X) as the K2-dimension basis functions.
Based on Theorem S1 in the Supplementary Material, there
exists a K2-vector δ∗ such that the uniform convergence
pT

b (X)δ∗ →b0(X) and therefore the uniform convergence

βint + βAA+ βT

Xpµ(X) + (1− S)pT

b (X)δ∗

→βint + βAA+ βT

Xpµ(X) + (1− S)b0(X)

hold as K2 →∞. Then our final working model becomes

µ̄A,S(X;β, δ) = βint+βAA+βT

Xpµ(X)+(1−S)δTpb(X).

We consider using the least squares loss function to obtain
estimators for β∗ and δ∗. To overcome the risk of overfitting
in sieve estimation, where high-dimensional basis functions
are used, it is necessary to add regularizers to the target
function. Additionally, as the working models µ̄A,1(X;β)
may contain irrelevant covariates, adding regularizers to the
target functions is recommended to select proper covari-
ates. In the subsequent section, we thoroughly explore the
significance of the structural properties of regularizers to
effectively accommodate the inherent characteristics of the
problem at hand.

3 A DOUBLE PENALTY
REGULARIZATION METHOD

3.1 MAIN IDEA

The common penalty regularization methods use the same
regularization parameter for the two penalty functions on
β∗ and δ∗. However, it is important to note that β∗ and
δ∗ may have distinct complexities, and it is beneficial to
apply different penalties, instead of the same penalty, to
both parameters.

To begin with, we denote Pλ (γ) = λP (γ) as the penalty
function with regularization parameter λ for any parame-
ter γ and any penalization P (·). There are various choices
for the penalty function, like Lasso [Tibshirani, 1996],
Smoothly Clipped Absolute Deviation (SCAD) [Fan and
Li, 2001, Fan and Peng, 2004] penalties, or use black-box
methods like the random forest. To overcome the limitations
caused by adding the same penalty to all parameters, we
set up different penalties for β and δ, separately. In other
words, we provide a double penalty regularization method
(DPIE) for the whole parameters set (β, δ) based on the in-
tegration data. Hence, the penalized least squares estimator

using double penalties is

(
β̂, δ̂
)

= argmin
β,δ

[
N∑
i=1

{Yi − µ̄Ai,Si
(Xi;β, δ)}2

+N

K1∑
j=1

Pλ1,j (|β|) +N

K2∑
j=1

Pλ2,j (|δ|)

]
.

There are multiple ways to search two regularization pa-
rameters λ1 and λ2. One simple way is to define a scaling
tuning parameter sc as sc = λ2/λ1, then one can use cross-
validation to choose sc given a particular search range and
within each sc value, one can also use cross-validation to
choose λ2. Both cross-validation steps can use the software
cv.ncvreg function in the R package ncvreg, which
finds the tuning parameter based on the minimum cross-
validated error.

On the other hand, if we only use the RE data, we have

β̂RE = argmin
β

[
N∑
i=1

Si{Yi − µ̄Ai,Si
(Xi;β, δ)}2

+ n

K1∑
j=1

Pλ1,j
(|β|)

]
.

3.2 THEORETICAL ANALYSIS

The goal of this section is to derive the statistical properties
of the DPIE. More interestingly, we aim to show the DPIE
is at least as efficient as the ATE estimator based only on
the REs.

For concreteness, we will focus on using the SCAD penalty
to illustrate the theorem for variable selection. It is worth
mentioning that our setup can also be developed for differ-
ent penalty functions, but we will not be discussing those
in this study. When the working function µ̄A,S(X;β, δ)
is correctly specified, the penalized maximum likelihood
estimator with the SCAD penalty performs both oracle prop-
erties as well as asymptotic normality by selecting the ap-
propriate regularization parameters λ [Fan and Li, 2001,
Fan and Peng, 2004]. In the following, we will show the
DPIE derived under the penalized least squares loss func-
tion with double SCAD penalties also has the oracle prop-
erty and asymptotic normality under the working model
µ̄A,S(X;β, δ).

Following the framework in Fan and Li [2001], Fan and
Peng [2004], we rewrite the working model as

µ̄A,S(X;β, δ)

=βint + βAA+ βT

Xpµ(X) + (1− S)δTpb(X)

=pTθ,

where θT = (βT, δT) and p = {1, A, pT
µ(X), (1 −

S)pT

b (X)}T with dimension K = K1 + K2. In REs, we

384



have pTθ = pT
µβ, and in ECs, we have pTθ = pT

µβ + pT

b δ.
Denote g as the unknown true density function of (Y, p)
and f as the density function such that minimizing the
least squares loss is equivalent to maximizing the quasi-log-
likelihood function; the Gaussian distribution is one such
example. Denote Pλ (θ) as the SCAD penalty function:

P
′

λ(θ) = λ

{
1 (θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

1 (θ > λ)

}
for some a > 2 and θ > 0, where P

′

λ(θ) is the first order
derivative of Pλ(θ). Then one can rewrite the penalized
least squares estimator as the penalized quasi-likelihood
estimator(

β̂, δ̂
)

= argmax
β,δ

Q(β, δ)

= argmax
β,δ

[
N∑
i=1

{ln f (Yi, pi,β, δ)}

−N
K1∑
j=1

Pλ1,j
(|β|)−N

K2∑
j=1

Pλ2,j
(|δ|)

]
.

Let

αN = max
1≤j1≤K1,1≤j2≤K2

{
P

′

λ1
(|β∗,j1 |) , P

′

λ2
(|δ∗,j2 |) ,

β∗,j1 6= 0, δ∗,j2 6= 0

}
,

bN = max
1≤j1≤K1,1≤j2≤K2

{
P

′′

λ1
(|β∗,j1 |) , P

′′

λ2
(|δ∗,j2 |) ,

β∗,j1 6= 0, δ∗,j2 6= 0

}
,

where P
′′

λ (θ) is the second-order derivative of Pλ(θ). We
present the regularity conditions on the penalty functions
given by Fan and Peng [2004]:

Assumption 5 Let the values of β∗,1, . . . , β∗,s1 be nonzero
and β∗,s1+1, . . . , β∗,K1

be zero. Similarly, let the values of
δ∗,1, . . . , δ∗,s2 be nonzero and δ∗,s2+1, . . . , δ∗,K2 be zero.
Then β∗, δ∗ satisfy:

min
1≤j≤s1

|β∗,j |/λ1 →∞, min
1≤j≤s2

|δ∗,j |/λ2 →∞,

max
s1+1≤j≤K1

|β∗,j |/λ1 → 0, max
s2+1≤j≤K2

|δ∗,j |/λ2 → 0,

as N →∞.

Fan and Peng [2004] showed under Assumption 5, the
SCAD penalties have αN = 0 and bN = 0 as N large
enough, where the former ensures the existence of root-
N/K-consistent penalized likelihood estimator, and the lat-
ter ensures the penalty function does not have much more
influence on the penalized likelihood functions, making the
penalty estimator have the same efficiency as the maximum
likelihood estimator.

Denote ‖v‖p as the Lp-norm of a vector v. Based on these
assumptions, we can provide the consistency and the asymp-
totic normality of the estimated parameters.

Theorem 2 Suppose that the density function f (Y, p, β, δ)
and the true density function g(p, Y ) satisfy Assumptions S1–
S10 on the Supplementary Material, and the SCAD penalty
functions Pλ1

(·) , Pλ2
(·) satisfy Assumption 5. IfK4/N →

0 as N → ∞, then there is a local maximizer
(
β̂, δ̂
)

of

Q(β, δ) such that ‖β̂ − β∗‖2 = Op

{
(K/N)

1/2
}
, ‖δ̂ −

δ∗‖2 = Op

{
(K/N)

1/2
}
.

Denote β∗ = (βT
∗1, β

T
∗2)T, where β∗1 6= 0 with s1 dimen-

sions and β∗2 = 0. Similarly, denote δ∗ = (δT
∗1, δ

T
∗2)T,

θ∗ = (θT
∗1, θ

T
∗2)T where δ∗1 6= 0 with s2 dimensions and

δ∗2 = 0, and θ∗1 6= 0 with s = s1 + s2 dimensions and
θ∗2 = 0. Then we have the following theorem:

Theorem 3 Under Assumption 5 and Assumptions S1–
S10 in the Supplementary Material, if λ1, λ2 → 0,√
N/Kλ1 → ∞,

√
N/Kλ2 → ∞ and K5/N → 0 as

N → ∞, then with probability tending to 1, β̂, δ̂ in Theo-
rem 2 must satisfy

a) (Sparsity) β̂2 = 0, δ̂2 = 0.

b) (Asymptotic normality)
√
NWA1/2 (θ∗1)

(
θ̂1 − θ∗1

)
→ N

(
0,WA−1/2(θ∗1)B(θ∗1)A−1/2(θ∗1)WT

)
in distribution, where W is a q × s matrix such that
WWT → G, and G is a q × q nonnegative symmetric
matrix. For simplicity, the specific forms of W , A(θ)
and B(θ) are deferred to the Supplementary Materials.

Theorems 2-3 demonstrate that under proper selection of
tuning parameters, the estimator θ̂ is consistent and asymp-
totic normal for θ∗.

However, using a single λ may fail to achieve such de-
sirable results. To emphasize the importance of adding
different penalties, we provide a simple analytical calcu-
lation: let β1∗ = Op(N

−1/2), β2∗ = Op(N
−1), δ1∗ =

Op
(
N−1/10

)
, δ2∗ = Op

(
N−1/3

)
. Assuming λ1 = N ε

and λ2 = Nγ such that β1∗, β2∗, δ1∗ and δ2∗ all satisfy
Assumption 5:

N−1/2

N ε
→∞, N

−1

N ε
→ 0,

N−1/10

Nγ
→∞, N

−1/3

Nγ
→ 0.

Hence, we have −1 < ε < −1/2 and −1/3 < γ < −1/10,
which means we cannot find a common λ for β∗ and δ∗.
If the magnitudes of parameters are much different, one
penalty cannot satisfy the requirements for consistency and
oracle properties. A toy numerical experiment in the Sup-
plemental Materials demonstrates that utilizing different
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penalties for β∗ and δ∗ yields superior performance com-
pared to using a single penalty, particularly when β∗ and
δ∗ have different magnitudes. We also illustrate this in the
Simulation.

It should be noted that Theorem 2-3 can be expanded to
incorporate different forms of f , not just the form equiv-
alent to the least squares loss. This means we can ex-
tend to other losses, not solely the least squares loss. If
f isn’t the form equivalent to the least squares loss, under
certain regularity conditions of f and g, the θ̂ that max-
imizes the penalized quasi-log-likelihood function Q(θ)
will converge to θ̃∗, where θ̃∗ minimizes the Kullback-
Leibler Information Criterion (KLIC) between f and g,
KLIC(g : f, θ) = E [log {g(Y, p)/f(Y, p, θ)}]. Detailed
discussions are included in the Supplementary Material.

3.3 COMPARISON BETWEEN THE DPIE AND
THE RE-ONLY ESTIMATOR

We now show the advantage of the DPIE based on the com-
bined data compared with the estimator based only on the
REs. To facilitate comparison, we consider a simplifying
assumption that the residual error ε in Y = µ̄A,S(X) + ε is
homogeneous with V(ε) = σ2.

Theorem 4 Under Assumption 5 and Assumptions S1–S10
in Supplementary Material, if λ1, λ2 → 0,

√
N/Kλ1 →

∞,
√
N/Kλ2 →∞ and K5/N → 0 as N →∞. For the

least squares estimate β̂ and δ̂,

a) in combined data, τ̂ − τ → N {0,V(τ̂)} in distribu-
tion;

b) in the RE data, τ̂RE − τ → N {0,V(τ̂RE)} in distri-
bution; and

c) V(τ̂RE) ≥ V(τ̂) and the inequality holds iff pµ =
Mpb(X) for some matrix M .

Theorem 4 shows that the estimate of τ will remain accurate,
regardless of the validity of the ANCOVA working model.
When incorporating ECs, the estimator is no less efficient
than the estimator obtained from the REs alone.

4 SIMULATION

In this section, first, we illustrate the importance of adding
different penalties for different data sources, then we com-
pare the proposed estimator of τ with existing competitors
combining the REs and the ECs.

4.1 SIMULATION STUDY 1

We generate two data sources with sample sizes n =
m = 1000. Covariates X ∈ R50 are generated by Xd ∼

Uniform
[
1−
√

3, 1 +
√

3
]
, d = 1, . . . , 50, and outcome

is generated by Y = XTβ0 + (1− S)XTδ0 + ε, where
ε ∼ N (0, 1). We simulate T = 100 Monte Carlo times,
and specify the true β0 = (1, . . . , 50)T/50.

To examine the instances where various penalties are re-
quired and validate the argument presented in Section 3, we
specify three cases for δ0:

a) ‖δ0‖1 ≥ ‖β0‖1 and half of parameters in δ0 equal to
zero: c‖β0‖1 = ‖δ0‖1 and c = 1, 3, 5, 7, 9.

b) ‖δ0‖1 < ‖β0‖1 and half of parameters in δ0 equal to
zero: c‖β0‖1 = ‖δ0‖1 and c = 0.1, 0.3, 0.5, 0.7, 0.9.

c) Vary the sparsity level of δ0 while ensuring that its
magnitude satisfies ‖δ0‖1 = ‖β0‖1: the number of
variables in δ0 equal to zero one by one.

In each case, we compare the results based on

a) Results based on the combined data and use the double
SCAD penalty (denoted as “DPIE”).

b) Results based on the combined data and use the single
SCAD penalty (denoted as “SPIE”).

c) Results based only on the RE data (denoted as “RE”).

All results are based on re-fitting models with the parameters
chosen in each method, and compare the results based on the

mean squared error MSE =

√
d−1

∑d
i=1

(
β̂i − β0,i

)2
and the percentage of incorrectly selecting more (denoted
as “Over-select”) and fewer parameters (denoted as “Under-
select”). Figure 1 shows the MSE results and the percent-
age of Under-select and Over-select in case a). When the
magnitudes of two parameters differ, using different penal-
ties improves accuracy when compared to using the same
penalties for all parameters. Moreover, the gained accuracy
improves as the magnitude difference increases. The right
panel of Figure 1 shows the percentage of incorrectly select-
ing more or fewer variables. When ‖δ0‖1 > ‖β0‖1, using
the same penalties makes it difficult to select β0, resulting in
a large MSE. These findings are consistent with the theoret-
ical results in Section 3. Case b) for ‖δ0‖1 < ‖β0‖1 shows
a similar phenomenon, and thus the results are deferred to
the Supplementary Material.

In contrast, in Case c), where we vary the sparsity levels
of δ0 while keeping the magnitude the same (δ0 = β0),
the DPIE and SPIE methods demonstrate similar perfor-
mances. Refer to the figure in the Supplementary Material
for a visual representation. This finding also aligns with
the theoretical result in Section 3, where we only need to
restrict the magnitude of different parameters to guarantee
consistency and oracle properties.
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Figure 1: Simulation results based on 100 Monte Carlo times. The left panel shows the MSE versus the magnitude ratio
between δ0 and β0. The right panel shows the percentage of wrongly choosing more and fewer parameters, separately.

4.2 SIMULATION STUDY 2

We now compare the proposed estimator of τ with ex-
isting competitors combining the REs and the ECs. We
generate REs and ECs with sample sizes n = m =
1000. Covariates X ∈ R2 are generated by Xd ∼
Uniform [−1.5, 1.5] , d = 1, 2. The treatments A in the
REs are generated by Binomial(1000, 0.5). We consider
two settings for generating outcomes:

S1 Y = −1.5X2
1−1.5X2+2A+(1−S)(10X2

1+4X3
2 )+ε,

where ε ∼ N (0, 1);

S2 Y = −1.5X2
1−1.5eX2 +2A+(1−S)(10X2

1 +4X3
2 )+

ε, where ε ∼ N (0, 1).

In each case, we approximate the µ̄1,1(X;β), µ̄0,1(X;β)
and b0(X) using the power series basis functions with the
power up to three. We use the double SCAD penalty method
to select important features of µ̄1,1(X;β), µ̄0,1(X;β) and
b0(X), where, in Setting S1, the working models are correct,
while in Setting S2, the working models are misspecified
for µ̄1,1(X;β), µ̄0,1(X;β). After selecting parameters, we
estimate the variance using the linear regression estimated
variance of τ̂ . We compare our method with the power
prior Bayesian method [Lin et al., 2019] and the Matching
procedure [Stuart and Rubin, 2008].

Table 1 shows the absolute bias of the estimated ATE τ̂ , true
variances v, estimated variances v̂, MSE, and 95% Wald
confidence intervals. In both settings, combining EC and
RE data improves accuracy and efficiency. The Bayesian
method uses the estimated probability of trial inclusion
P(S = 1 | X) to adjust the EC, which borrows less infor-
mation from ECs than correctly estimating the bias function,

Table 1: The absolute bias, estimated variance, the true
variance, MSE and the 95% Wald confidence intervals of τ̂ ,
compared with the Bayesian methods (denoted as |τ̂ − τ |B
and vB) and the Matching method (denoted as |τ̂ −τ |M and
vM ) in two settings (denoted as S1, S2).

×10−3 S1 S2
EC+RE RE EC+RE RE

|τ̂ − τ | 2.43 4.05 4.42 4.67
|τ̂ − τ |B 110.7 111.5
|τ̂ − τ |M 646 645
vB 326 328
vM 457 457
v 3.33 3.94 3.33 3.97
v̂ 3.27 4.00 3.30 4.01

MSE 3.34 3.96 3.35 3.99
CI 94.6% 95.6% 95% 95.8%

resulting in worse results. The matching procedure in Stuart
and Rubin [2008] measures the difference between the ECs
and CCs in two stages: first they used ECs to match CCs,
balancing covariates between the ECs and CCs in this pro-
cess. They then determined the bias value, δ, between ECs
and CCs using matched groups of CCs and ECs. This δ is
constant for all X and may not be accurate. In contrast, our
methods use a bias function, b0(X), which adapts to differ-
ent X values and accounts for all differences, irrespective
of whether they arise from covariates or the outcome. Con-
sequently, our approach is more effective than the two-stage
method proposed by Stuart and Rubin (2008). As shown in
Table 1, Stuart and Rubin [2008] approach has a larger bias
compared to our method and the Bayesian method due to
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the less accurate bias term, δ.

5 REAL DATA ANALYSIS

We apply the proposed DPIE estimator as well as other meth-
ods in Section 4 to the data from the National Supported
Work (NSW) study. This study aims at evaluating the effect
of a job training program on future earnings, containing an
experimental sample from a randomized evaluation of the
NSW program, and a nonexperimental sample from the Cur-
rent Population Survey (CPS) program. 15992 external con-
trol units are included in the original CPS dataset, whereas
260 random control units are included in the NSW dataset.
We use the Matching procedure [Abadie and Imbens, 2006]
to match each random control unit with 2 external control
units without replacement, therefore, we use 520 external
control units (ECs) and 260 random control units (CCs) as
the control group, and 260 random treatment units as the
treatment group.

This analysis includes the eight original covariates from the
NSW and CPS datasets (age, education, Black, Hispanic,
married, having no college degree (denoted as “nodeg”), real
earnings in 1974 (denoted as “re74”), and real earnings in
1975 (denoted as “re75”) as well as their 2-way interactions.
The outcome of interest is the real earnings in 1978 (denoted
as “re78”). For a better regression, we divide all the real
earnings (re74, re75, re78) by 1000, scale all covariates
between 0 and 1, and omit variables with the same value
across observations. There are 86 covariates in total, with
43 covariates in the bias function and 43 covariates in the
outcome mean function. Accordingly, we use the mean of
real earnings in 1978 in the REs as the true value, 1.794.

Table 2 shows the estimated control mean τ̂ (reported as
“Est”) in the random group, i.e., S = 1, along with its stan-
dard error (reported as “ se”) and 95% Wald confidence inter-
vals using the proposed DPIE estimator, the SPIE estimator
and the SCAD estimator only based on the RE data. The
number of variables selected in the outcome mean model
(reported as “#var_µ̄A,S”)and in the bias function are also
reported (reported as “#var_b0”). Even the bias function is
as complex as the outcome mean model, the DPIE improves
efficiency by increasing the sample size, resulting in the
standard error of DPIE being smaller than that of RE in this
real data scenario. On the other hand, the SPIE estimator has
a larger bias than the DPIE, because the magnitude of the
outcome mean function is much smaller than that of the bias
function, leading to a biased estimate compared with the
DPIE, which is consistent with our simulation results shown
in Figure 1. Based on the DPIE estimator, the estimated
average treatment effect is 1.704.

Table 2: The first panel shows estimated τ̂ and correspond-
ing standard error, bias, 95% Wald confidence interval and
the number of selected variables in the outcome mean model.
The second panel shows estimated variables in the outcome
mean model µ0,1(X) and the bias function b0(X) based on
the DPIE estimator.

Est se bias #var_µ̄A,S #var_b0
DPIE 1.857 (0.746 , 2.969) 0.567 0.063 4 4
SPIE 1.626 (0.582 , 2.671) 0.533 0.168 5 1
RE 1.698 (0.455, 2.941) 0.634 0.097 4 /

6 DISCUSSION

We introduce a bias function to measure the discrepancy
between the ECs and the working model in REs and use
sieve estimation and feature selection techniques to handle
the high-dimensional nature of the basis functions and to
prevent irrelevant covariates from being included in the out-
come mean model. We propose a double penalty integration
estimator (DPIE) that takes advantage of the different levels
of smoothness of the outcome mean and bias functions. Our
results demonstrate that the DPIE is consistent, has the ora-
cle property, and is asymptotically normal when the penalty
parameters are selected appropriately. Moreover, our esti-
mator is robust to model misspecification and is at least as
efficient as the REs alone.

We provide a general framework with a broad class of
choices for combining multiple datasets and employing flex-
ible penalized regression procedures. Combining several
treatments for a more accurate estimation of the value func-
tions in policy evaluation and individual treatment regimes
is a direct extension of our method. In addition, our outcome
Y can be extended to multiple types, including survival [Lee
et al., 2022] and zero-inflation outcomes [Yu et al., 2021].
In lieu of better estimating the outcome mean function to en-
hance the ATE estimate, one may directly combine the bias
function and the heterogeneous treatment effects (HTEs;
Yang et al. [2023]), which are the causal effects of a treat-
ment given the characteristics of the subjects, to obtain a
more accurate estimate of the HTEs. Evaluating the HTEs
is the primary question in many domains, including preci-
sion medicine and tailored policy recommendations [Colnet
et al., 2020, Chu et al., 2023]. Finally, we exclusively con-
sider the SCAD penalty in our theoretical study. The SCAD
penalty addresses consistency, oracle property, and asymp-
totic normality of some local minimizer of the penalized
loss. However, it doesn’t ensure the uniqueness of the so-
lution or provide methods for identifying the specific local
minimizer with the desired properties among a large pool of
potential local minimizes [Zhang, 2010]. This gap between
theory and practice presents an interesting avenue for future
research. To address this concern, we propose several po-
tential approaches: Fan et al. [2014] introduced a general
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procedure based on the LLA algorithm and derive a lower
bound on the probability that a specific local solution exactly
matches the oracle estimator, which could be applicable in
real-world scenarios; Kim and Kwon [2012] provided con-
ditions for determining the uniqueness of a local minimizer.
Additionally, we recommend varying initial values in R’s
ncvfit function, and selecting the estimate that minimizes
error. Alternatively, using unpenalized estimated covariates
as initial values can be considered. Moreover, A general
theoretical framework for multiple penalties, such as the
adaptive Lasso [Zou, 2006] and minimax concave penalty
[Zhang, 2010] of double penalty selection, would therefore
be desirable.
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