
Adaptivity Complexity for Causal Graph Discovery
(Supplementary Material)

Davin Choo*1 Kirankumar Shiragur∗2

1 School of Computing, National University of Singapore
2 Broad Institute of MIT and Harvard

A MEEK RULES

Meek rules are a set of 4 edge orientation rules that are sound and complete with respect to any given set of arcs that has a
consistent DAG extension [Meek, 1995]. Given any edge orientation information, one can always repeatedly apply Meek
rules till a fixed point to maximize the number of oriented arcs.

Definition 1 (Consistent extension). A set of arcs is said to have a consistent DAG extension π for a graph G if there exists
a permutation on the vertices such that (i) every edge {u, v} in G is oriented u→ v whenever π(u) < π(v), (ii) there is no
directed cycle, (iii) all the given arcs are present.

Definition 2 (The four Meek rules [Meek, 1995], see Fig. 1 for an illustration).

R1 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c ∈ V such that c→ a and c ̸∼ b.

R2 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c ∈ V such that a→ c→ b.

R3 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c, d ∈ V such that d ∼ a ∼ c, d→ b← c, and c ̸∼ d.

R4 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c, d ∈ V such that d ∼ a ∼ c, d→ c→ b, and b ̸∼ d.

a b

c

a b

c
R1

a b

c

a b

c
R2

d

a c

b d

a c

b

R3

a

d c

b a

d c

b

R4

Figure 1: An illustration of the four Meek rules

There exists an algorithm [Wienöbst et al., 2021, Algorithm 2] that runs in O(d · |E|) time and computes the closure under
Meek rules, where d is the degeneracy of the graph skeleton1.

B DEFERRED DETAILS

B.1 BASIC RESULTS

Lemma 3 (Equation 3.10 of [Graham et al., 1994]). Let f(x) be any continuous, monotonically increasing function with
the property that x is an integer if f(x) is an integer. Then, ⌈f(x)⌉ = ⌈f(⌈x⌉)⌉.

*Equal contribution
1A d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most d. Note that the degeneracy of a

graph is typically smaller than the maximum degree of the graph.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<davin@u.nus.edu>

Lemma 17. For positive integer n, and arbitrary real numbers m,x, we have
⌈
⌈ x

m⌉
n

⌉
=
⌈

x
mn

⌉
.

Proof. Apply Lemma 3 with the function as f(x) = x/n on input as x/m.

Lemma 4. For r ≥ 2, we have r−1
2 ·

(
2
r

) 1
r−1 ≥ r

4 .

Proof. Multiplying the left-hand side by 4/r, we get

(r − 1) ·
(
2

r

)1+ 1
r−1

≥ (r − 1) ·
(
2

r

)
Since r > 1

≥ 1 Since r ≥ 2

Thus, the inequality holds.

Lemma 5 (Theorem 12 of [Choo et al., 2022]). For any causal DAG G∗, we have νk(G
∗) ≥ ⌈ν1(G

∗)
k ⌉.

B.2 ALGORITHM FOR BOUNDED SIZE INTERVENTIONS

Algorithm 3 Adaptivity-sensitive search.

Input: Essential graph E(G∗), adaptivity round parameter r ≥ 1, intervention size upper bound k ≥ 1.
Output: A sequence of intervention sets I1, . . . , Ir such that EI1,...,Ir

(G∗) = G∗ and |I| ≤ k for any intervention in
I ∈ Ii in intervention set Ii, 1 ≤ i ≤ r.

1: Initialize L = ⌈n1/r⌉.
2: for i = 1, . . . , r − 1 do
3: Initialize Ii ← ∅
4: for chain comp. H ∈ CC(EI1,...,Ii−1

(G∗)) do
5: if H is a clique then
6: Set V ′ ← V (H).
7: else
8: Compute clique tree TH of H .
9: Compute L-balanced partitioning S of TH via Algorithm 1.

10: Let V ′ ← ∪Kj∈SV (Kj).
11: end if
12: Add output of Algorithm 4 on V ′ to I.
13: end for
14: Intervene on all interventions in Ii.
15: end for
16: Define Ir as output of Algorithm 4 on remaining relevant vertices and intervene on all interventions in Ir.
17: return I1, . . . , Ir

Algorithm 4 Intervention subroutine.

Input: Set of vertices A, size upper bound k ≥ 1.
Output: A k-separating system B ⊆ 2A.

1: if k = 1 then
2: Set B ← A.
3: else
4: Define k′ = min{k, |A|/2}, a = ⌈|A|/k′⌉ ≥ 2, and ℓ = ⌈loga n⌉.
5: Compute labelling scheme of [Shanmugam et al., 2015, Lemma 1] on A with (|A|, k′, a).
6: Set B ← {Sx,y}x∈[ℓ],y∈[a], where Sx,y ⊆ A is the subset of vertices whose xth letter in the label is y.
7: end if
8: return B

C DEFERRED PROOFS

Theorem 2 (Atomic worst case). In the worst case, any r-adaptive algorithm needs to use at least Ω(min{r, log n} ·
n1/min{r,logn} · ν1(G∗)) atomic interventions against an adaptive adversary.

Proof. Without loss of generality, we may assume r ≤ log n and prove a lower bound of Ω(r · n1/r · ν1(G∗)).

Consider the case where the essential graph is a path on n nodes and the adversary can adaptively choose the source node as
long as it is consistent with the arc directions revealed thus far. On a path essential graph, ν(G∗) = 1.

Suppose r = 1. Then, by Theorem 13, we need to intervene on a G-separating system, which has size Ω(n). The claim
follows since ν(G∗) = 1.

Now, suppose r ≥ 2. If currently have length ℓ segment and k interventions are performed, then there must be some segment
of length at least ℓ/(k + 1). Recurse on that. If the final round has length ℓ segment, need at least ℓ/2 interventions because
G-separating system on a segment of length ℓ has size at least ℓ/2.

Suppose the algorithm intervenes on ki vertices on the i-th round, for 1 ≤ i ≤ r. where ki ≥ 1, so ki + 1 ≤ 2ki and so
1/(ki + 1) ≥ 1/(2ki).

Then, from the above discussion,

kr ≥
1

2
· n · 1

k1 + 1
· 1

k2 + 1
· . . . · 1

kr−1 + 1

≥ 1

2r
· n

k1 · k2 . . . · kr−1

So, the number of overall interventions used is

k1 + . . .+ kr

≥ k1 + . . .+ kr−1 +
1

2r
· n

k1 · k2 . . . · kr−1

≥ (r − 1) ·

(
r−1∏
i=1

ki

) 1
r−1

+
1

2r
· n

k1 · k2 . . . · kr−1

where the last inequality is the AM-GM inequality.

Let x = k1 · k2 . . . · kr−1. Then,
r∑

i=1

ki = k1 + . . .+ kr ≥ (r − 1) · x
1

r−1 +
1

2r
· n
x

Case 1: 1
2r ·

n
x ≥

r
4 · n

1
r

Then,
r∑

i=1

ki ≥
1

2r
· n
x
≥ r

4
· n 1

r ∈ Ω(r · n 1
r)

Thus, the claim holds as ν(G∗) = 1.

Case 2: 1
2r ·

n
x < r

4 · n
1
r

Then,

x >
4 · n1−1/r

2r · r
=

2 · n r−1
r

2r−1 · r
and Lemma 4 in Appendix B.1 tells us that

(r − 1) · x
1

r−1 > n
1
r · r − 1

2
·
(
2

r

) 1
r−1

≥ n
1
r · r

4
For r ≥ 2

So,
r∑

i=1

ki ≥ (r − 1) · x
1

r−1 ≥ r

4
· n 1

r ∈ Ω(r · n 1
r)

Thus, the claim holds as ν(G∗) = 1.

Theorem 3 (Bounded upper bound). Let E(G∗) be the observational essential graph of an underlying causal DAG G∗

on n nodes. There is a polynomial time r-adaptive algorithm that uses O(min{r, log n} · n1/min{r,logn} · log k · νk(G∗))
bounded sized interventions to recover G∗ from E(G∗), where each intervention involves at most k > 1 vertices.

Proof. We invoke Algorithm 3 with k > 1.

Number of interventions

The high level proof approach for is exactly the same as the proof of Theorem 1, except for how to compute intervention
sets from the maximal clique vertices (obtained by “balanced partitioning” in the first r − 1 rounds, within the while loop)
and the from the remaining relevant vertices (in the final r-th round, outside the while loop).

In each iteration of the while-loop, we intervene on at most L cliques for each connected component. To orient the edges
incident to these cliques we use the labelling scheme of Lemma 14 via Algorithm 4. So, the number of bounded size
interventions we perform per round is

O
(
L · log k · ν1(G

∗)

k

)
By Lemma 5, we know that νk(G∗) ≥ ⌈ν1(G

∗)
k ⌉. So, we can re-express the above bound asO (L · log k · νk(G∗)). Similarly,

we use O (L · log k · νk(G∗)) bounded size interventions in the final round. Thus, over all r adaptive rounds, we use a total
of

O (r · L · log k · νk(G∗))

bounded size interventions. Substituting L = ⌈n1/r⌉ yields our desired bound.

Running time

Algorithm 3 only differs from Algorithm 2 by invoking Algorithm 4, which runs in polynomial time (see Lemma 14). Thus,
Algorithm 3 runs in polynomial time.

D EXPERIMENTS

The experiments are conducted on an Ubuntu server with two AMD EPYC 7532 CPU and 256GB
DDR4 RAM. Our code and entire experimental setup is available at https://github.com/cxjdavin/
adaptivity-complexity-for-causal-graph-discovery.

D.1 IMPLEMENTATION DETAILS

Checks to avoid redundant interventions The current implementation of [Choo et al., 2022]’s separator algorithm is
actually n-adaptive because it performs “checks” before performing each intervention — if the vertices in the proposed
intervention set S do not have any unoriented incident arcs, then the intervention set S will be skipped. One may think of
such interventions as “redundant” since they do not yield any new information about the underlying causal graph. As such,
we ran two versions of their algorithm: one without checks (i.e. O(log n)-adaptive) and one with checks (i.e. n-adaptive).
Note that each check corresponds to an adaptivity round because an intervention within a batch of interventions may turn
out to be redundant, but we will only know this after performing a check after some of the interventions within that batch
have been executed.

Scaling our algorithm with checks Since n
1

log n = 2, running Algorithm 2 (as it is) with adaptivity parameters r ∈
Ω(log n) does not make much sense. As such, we define a checking budget b = r − ⌈log n⌉ and greedily perform up to b
checks whilst executing Algorithm 2. This allows Algorithm 2 to scale naturally for r ∈ Ω(log n).

https://github.com/cxjdavin/adaptivity-complexity-for-causal-graph-discovery
https://github.com/cxjdavin/adaptivity-complexity-for-causal-graph-discovery

Non-adaptive intervention round For the final round of interventions, let V ′ be the set of remaining relevant vertices.
From our algorithm, we know that |V ′| ≤ L but we may even intervene on less vertices in the final round. By [Kocaoglu
et al., 2017], we only need to intervene on a graph-separating system of the subgraph G[V ′]. For atomic interventions, this
exactly correspond to the minimum vertex cover of V ′. To obtain this, we first compute the maximum independent set S of
V ′ (which can be computed efficiently on chordal graphs [Gavril, 1972, Leung, 1984]), then only intervene on V ′ \ S.

Optimization before final round Note that we can always compute the intervention set F ⊆ V which we would have
intervened if r = 1. At any point in time of the algorithm, if F involves less vertices than the number of vertices required
from the L-partitioning, then we simply treat the current adaptivity round as the final round, choose to intervene on F and
use any remaining adaptive budget for performing checks.

D.2 SYNTHETIC GRAPHS

We use synthetic moral randomly generated graphs from earlier prior works [Choo et al., 2022, Squires et al., 2020, Choo
and Shiragur, 2023]. For each of the graph classes and parameters, we generate 100 DAGs and plot the average with an error
bar.

1. Erdős-Rényi styled graphs (used by [Squires et al., 2020, Choo et al., 2022])
These graphs are parameterized by 2 parameters: number of nodes n and density ρ. Generate a random ordering
σ over n vertices. Then, set the in-degree of the nth vertex (i.e. last vertex in the ordering) in the order to be
Xn = max{1,Binomial(n − 1, ρ)}, and sample Xn parents uniformly form the nodes earlier in the ordering.
Finally, chordalize the graph by running the elimination algorithm of [Koller and Friedman, 2009] with elimination
ordering equal to the reverse of σ.
Parameters used: n = {10, 15, 20, . . . , 95, 100} and ρ = 0.1.

2. Tree-like graphs (used by [Squires et al., 2020, Choo et al., 2022])
These graphs are parameterized by 4 parameters: number of nodes n, degree d, emin, and emax. First, generate a
complete directed d-ary tree on n nodes. Then, add Uniform(emin, emax) edges to the tree. Finally, compute a
topological order of the graph by DFS and triangulate the graph using that order. As the original definition of this graph
class by [Squires et al., 2020] becomes very sparse as n grows, we tweaked the other parameters to scale accordingly
by defining new parameters dprop, emin,prop, emax,prop ∈ [0, 1] as follows: d = n · dprop, emin = n · emin,prop, and
emax = n · emax,prop.
Parameters used: n = {100, 150, 200, . . . , 450, 500}, dprop = 0.4, emin,prop = 0.2, emax,prop = 0.5.

3. G(n, p)-union-tree (used by [Choo and Shiragur, 2023])
These graphs are parameterized by 2 parameters: number of nodes n and edge probability p. An Erdős-Rényi G(n, p)
and a random tree T on n vertices are generated. Take the union of their edge sets, orient the edges in an acyclic fashion,
then add arcs to remove v-structures.
Parameters used: n = {10, 15, 20, . . . , 95, 100} and p = 0.03.

D.3 ALGORITHMS BENCHMARKED

While both the algorithm of [Choo et al., 2022] and Algorithm 2 have been implemented to take in a parameter k for
bounded-size interventions, our experiments focused on the case of atomic interventions, i.e. k = 1.

separator: Algorithm of [Choo et al., 2022]. With checks, it allows for full adaptivity.

separator_no_check: separator but we remove checks that avoid redundant interventions, i.e. O(log n) rounds
of adaptivity.

adaptive_r1: Algorithm 2 with r = 1, i.e. non-adaptive

adaptive_r2: Algorithm 2 with r = 2

adaptive_r3: Algorithm 2 with r = 3

adaptive_rlogn: Algorithm 2 with r = log2 n

adaptive_r2logn: Algorithm 2 with r = 2 log2 n. Can perform checks that avoid redundant interventions.

adaptive_r3logn: Algorithm 2 with r = 3 log2 n. Can perform checks that avoid redundant interventions.

adaptive_rn: Algorithm 2 with r = n, i.e. full adaptivity allowed

D.4 EXPERIMENTAL RESULTS

As expected, we observe that higher rounds of adaptivity leads to lower number of interventions required. When r ∈ O(log n),
Algorithm 2 can match [Choo et al., 2022] with checks disabled. When r = n, Algorithm 2 can match [Choo et al., 2022]
with its full adaptivity.

References

Davin Choo and Kirankumar Shiragur. Subset verification and search algorithms for causal DAGs. In International
Conference on Artificial Intelligence and Statistics, 2023.

Davin Choo, Kirankumar Shiragur, and Arnab Bhattacharyya. Verification and search algorithms for causal DAGs. Advances
in Neural Information Processing Systems, 35, 2022.

Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum
independent set of a chordal graph. SIAM Journal on Computing, 1(2):180–187, 1972.

Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete mathematics: A foundation for computer science, 1994.

Murat Kocaoglu, Alex Dimakis, and Sriram Vishwanath. Cost-Optimal Learning of Causal Graphs. In International
Conference on Machine Learning, pages 1875–1884. PMLR, 2017.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

Joseph Y-T Leung. Fast algorithms for generating all maximal independent sets of interval, circular-arc and chordal graphs.
Journal of Algorithms, 5(1):22–35, 1984.

Christopher Meek. Causal Inference and Causal Explanation with Background Knowledge. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, UAI’95, page 403–410, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc. ISBN 1558603859.

Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G. Dimakis, and Sriram Vishwanath. Learning Causal Graphs with
Small Interventions. Advances in Neural Information Processing Systems, 28, 2015.

Chandler Squires, Sara Magliacane, Kristjan Greenewald, Dmitriy Katz, Murat Kocaoglu, and Karthikeyan Shanmugam.
Active Structure Learning of Causal DAGs via Directed Clique Trees. Advances in Neural Information Processing
Systems, 33:21500–21511, 2020.

Marcel Wienöbst, Max Bannach, and Maciej Liśkiewicz. Extendability of causal graphical models: Algorithms and
computational complexity. In Cassio de Campos and Marloes H. Maathuis, editors, Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine Learning Research, pages
1248–1257. PMLR, 27–30 Jul 2021. URL https://proceedings.mlr.press/v161/wienobst21a.html.

https://proceedings.mlr.press/v161/wienobst21a.html

(a) Number of interventions

(b) Time

Figure 2: Experiment 1

(a) Number of interventions

(b) Time

Figure 3: Experiment 2

(a) Number of interventions

(b) Time

Figure 4: Experiment 3

	Meek rules
	Deferred details
	Basic results
	Algorithm for bounded size interventions

	Deferred proofs
	Experiments
	Implementation details
	Synthetic graphs
	Algorithms benchmarked
	Experimental results

