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Abstract

Causal discovery from interventional data is an
important problem, where the task is to design
an interventional strategy that learns the hidden
ground truth causal graph G(V,E) on |V | = n
nodes while minimizing the number of performed
interventions. Most prior interventional strategies
broadly fall into two categories: non-adaptive and
adaptive. Non-adaptive strategies decide on a sin-
gle fixed set of interventions to be performed while
adaptive strategies can decide on which nodes
to intervene on sequentially based on past inter-
ventions. While adaptive algorithms may use ex-
ponentially fewer interventions than their non-
adaptive counterparts, there are practical concerns
that constrain the amount of adaptivity allowed.
Motivated by this trade-off, we study the prob-
lem of r-adaptivity, where the algorithm designer
recovers the causal graph under a total of r se-
quential rounds whilst trying to minimize the to-
tal number of interventions. For this problem,
we provide a r-adaptive algorithm that achieves
O(min{r, log n} · n1/min{r,logn}) approximation
with respect to the verification number, a well-
known lower bound for adaptive algorithms. Fur-
thermore, for every r, we show that our approxi-
mation is tight. Our definition of r-adaptivity in-
terpolates nicely between the non-adaptive (r = 1)
and fully adaptive (r = n) settings where our ap-
proximation simplifies to O(n) and O(log n) re-
spectively, matching the best-known approxima-
tion guarantees for both extremes. Our results also
extend naturally to the bounded size interventions.

*Equal contribution

1 INTRODUCTION

Learning causal relationships from data is a fundamental
problem that has found applications across various sci-
entific disciplines, including biology [King et al., 2004,
Cho et al., 2016, Tian, 2016, Sverchkov and Craven, 2017,
Rotmensch et al., 2017, Pingault et al., 2018, de Campos
et al., 2019], epidemiology, philosophy [Reichenbach, 1956,
Woodward, 2005, Eberhardt and Scheines, 2007], and econo-
metrics [Hoover, 1990, Rubin and Waterman, 2006]. Di-
rected acyclic graphs (DAGs) are a popular choice to model
causal relationships and it is well known that using obser-
vational data, the causal structure can only be learned up to
its Markov equivalence class (MEC) and additional assump-
tions or interventional data is required for the recovery task.
Here, we focus our attention on causal discovery using in-
terventions. As interventions are often costly, our objective
is to minimize interventions during the recovery process.

There is a rich literature on causal discovery from interven-
tional data, and causal discovery algorithms can be broadly
classified into two categories: adaptive [Shanmugam et al.,
2015, Greenewald et al., 2019, Squires et al., 2020, Choo
et al., 2022, Choo and Shiragur, 2023] versus non-adaptive
[Eberhardt et al., 2005, 2006, Eberhardt, 2010, Hu et al.,
2014]. Given an essential graph, non-adaptive algorithms
have to decide beforehand a collection of interventions such
that any plausible causal graph can be recovered while adap-
tive algorithms can decide on interventions sequentially
while using information gleaned from past interventions.

Adaptive algorithms are powerful and the interventional
cost of an optimal adaptive algorithm can even be expo-
nentially better than any non-adaptive algorithms in some
cases1. However, the sequential nature of adaptive algo-
rithms fundamentally hinders parallelization [Dean et al.,
2008, Balkanski and Singer, 2018] and may even be practi-
cally infeasible, e.g. hard constraints like timed deadlines

1On tree causal graphs, Ω(n) non-adaptive interventions are
needed in the worst case while O(logn) adaptive ones suffice.
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may restrict how many rounds of adaptivity one can afford
to do whilst minimizing the number of interventions.

The study of adaptivity is natural and has been studied across
a wide spectrum of problems in computer science and statis-
tics including parallel algorithms [Valiant, 1975, Cole, 1988,
Braverman et al., 2016], communication complexity [Pa-
padimitriou and Sipser, 1982, Duris et al., 1984, Nisan and
Widgerson, 1991, Alon et al., 2015], multi-armed bandits
[Agarwal et al., 2017], sparse recovery problems [Malioutov
et al., 2008, Haupt et al., 2009, Indyk et al., 2011], knapsack
[Dean et al., 2008], submodular optimization [Balkanski and
Singer, 2018], stochastic set covering [Goemans and Von-
drák, 2006], stochastic probing [Gupta et al., 2016, 2017],
local search algorithms [Brânzei and Li, 2022], and many
more [Scarlett, 2018, Canonne, Clément L and Gur, Tom,
2018, Raskhodnikova and Smith, 2006]. Typically, one can
obtain a lower objective cost if more rounds of adaptivity are
allowed and researchers have been trying to characterize the
trade-off between cost and adaptivity in various problems.

Beyond being a fundamental question in theory, understand-
ing adaptivity is also practically motivated in the problem
of causal discovery. Consider a scientific institute where lab
technicians carry out experiments suggested by their scien-
tist colleagues to make progress towards a common research
goal. A round of interaction involves the experimentalists
discussing with the scientists on what experiment(s) should
be performed next, where each round of interaction may in-
cur undesirable coordination overheads. Since the institute
has enough resources to run multiple (but bounded) number
of experiments simultaneously, a batch of experiments is
typically proposed in a single round of interaction. In this
work, we formally model the interactions between the two
parties through the framework of adaptivity in hopes that
our theoretical contributions will yield practical insights,
e.g. give guidance on how the two parties should interact.
Let us now formally define our problem setup.

Problem setup Given r ≥ 1 adaptivity rounds and a par-
tially oriented observational essential graph of an underlying
causal graph G∗ = (V,E), adaptively design2 intervention
sets I1, . . . , Ir ⊆ 2V such that all arc orientations in G∗

will be recovered after intervening on them while minimiz-
ing the total number of interventions performed.

Formally, we require EI1∪...∪Ir (G∗) = G∗ while minimiz-
ing ∪ri=1|Ii|, where EI(G∗) denotes the partially oriented
interventional essential graph after performing interventions
I . Furthermore, each intervention I ∈ Ii in any intervention
set Ii has size |I| ≤ k. Atomic interventions when k = 1
and bounded size interventions when k > 1.

2The decision of Ii may depend on outcomes after recovering
arc orientations from intervening on I1, . . . , Ii−1.

1.1 CONTRIBUTIONS

Under standard assumptions of causal sufficiency, faithful-
ness and infinite sample regime3, we provide a r-adaptive
search algorithm that recovers the ground truth causal graph
by performing at most O(min{r, log n} · n1/min{r,logn} ·
ν1(G∗)) atomic interventions, where ν1(G∗) is the atomic
verification number of G∗ [Squires et al., 2020, Choo et al.,
2022, Choo and Shiragur, 2023]4, a natural lower bound for
the adaptive algorithms. See Definition 6 for definition of
ν1(G∗) and νk(G∗), the bounded size analog of ν1(G∗). To
the best of our knowledge, this is the first work to formal-
ize the trade-offs between sequentiality and parallelism by
studying adaptivity in the context of causal graph discovery.

Theorem 1 (Atomic upper bound). Let E(G∗) be the obser-
vational essential graph of an underlying causal DAG G∗

on n nodes and m edges. There is a r-adaptive algorithm
(Algorithm 2) that uses O(min{r, log n} · n1/min{r,logn} ·
ν1(G∗)) atomic interventions to recoverG∗ from E(G∗). Ig-
noring the time spent implementing the actual interventions,
Algorithm 2 runs in O(n1+1/r · (n+m)) time.

When r = 1, the upper bound becomes O(n), which is
worst case optimal since Ω(n) non-adaptive interventions
are necessary when the given essential graph is a path on n
vertices. Meanwhile, when r = log n, the upper bound be-
comesO(log n ·ν1(G∗)), matching the upper bound guaran-
tees of [Choo et al., 2022]. Again, this is worst case optimal
when the given essential graph is a path on n vertices.

In fact, for any r, our approximation factor is tight. We
formally show this in the following lower bound result.

Theorem 2 (Atomic worst case). In the worst case, any r-
adaptive algorithm needs to use at least Ω(min{r, log n} ·
n1/min{r,logn} · ν1(G∗)) atomic interventions against an
adaptive adversary.

We also extend our upper bound results to accommodate
bounded size interventions, where each intervention can
involve up to k vertices, for some pre-determined bound
k ≥ 1; atomic interventions are a special case of k = 1.

Theorem 3 (Bounded upper bound). Let E(G∗) be the ob-
servational essential graph of an underlying causal DAGG∗

on n nodes. There is a polynomial time r-adaptive algorithm
that usesO(min{r, log n} ·n1/min{r,logn} · log k · νk(G∗))
bounded sized interventions to recover G∗ from E(G∗),
where each intervention involves at most k > 1 vertices.

3These assumptions are common across all/most theoretical
causal graph discovery works and one may also interpret these
assumptions as having access to a conditional independence oracle.

4Given a MEC of an unknown ground truth causal graph G∗

and a graph G from the MEC, the goal of the verification problem
is determining whether G is G∗. By plugging in G with G∗ in
the verification problem, we see that the optimal solution to the
verification is a natural lower bound for the search problem.
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While the approximation ratio is worse than Theorem 1,
note that we are comparing against νk(G∗). Since using
bounded size interventions typically translates to using a
smaller number of interventions performed as k increases,
νk(G∗) could roughly be k times smaller than ν1(G∗).

Remark Since non-adaptive results and the upper bound
guarantees of [Choo et al., 2022] already matches our upper
bounds for regime of r ≥ log n, it suffices for us to design
and analyze algorithms for regime of 1 < r < log n.

1.2 OUTLINE

After giving preliminaries and related work in Section 2,
we slowly build up intuition towards our main results. We
first solve the problem using atomic interventions when the
input graph is a path or a tree (Section 3) before solving
the problem in full generality on any graph input, and also
generalizing to the setting of bounded size interventions
(Section 4). We show how our algorithm performs in prac-
tice on synthetic graphs in Section 5 and conclude with some
interesting future work directions in Section 6. For a cleaner
exposition, some details are deferred to the appendix.

2 PRELIMINARIES

We write {1, . . . , n} as [n] and use standard asymptotic
notations such as O(·) and Ω(·). A ∪̇ B refers to the union
of two disjoint sets A and B. Logarithms are in base 2.

2.1 GRAPH NOTATIONS

Let G = (V,E) be a graph on |V | = n vertices. We use
V (G), E(G) and A(G) ⊆ E(G) to denote its vertices,
edges, and oriented arcs respectively. The graph G is said to
be directed or fully oriented if A(G) = E(G), and partially
oriented otherwise. For any two vertices u, v ∈ V , we write
u ∼ v if these vertices are connected in the graph and u 6∼ v
otherwise. To specify the arc directions, we use u → v or
u← v. We useG[V ′] to denote the vertex-induced subgraph
for any subset V ′ ⊆ V of vertices.

A clique is a graph where u ∼ v for any pair of vertices
u, v ∈ V . A maximal clique is an vertex-induced subgraph
of a graph that is a clique and ceases to be one if we add
any other vertex to the subgraph. For an undirected graph
G, ω(G) refers to the size of its maximum clique.

The skeleton skel(G) of a (partially oriented) graphG is the
underlying graph where all edges are made undirected. A
v-structure refers to three distinct vertices u, v, w ∈ V such
that u→ v ← w and u 6∼ w. A simple cycle is a sequence
of k ≥ 3 vertices where v1 ∼ v2 ∼ . . . ∼ vk ∼ v1.
The cycle is partially directed if at least one of the edges
is directed and all directed arcs are in the same direction

along the cycle. A partially directed graph is a chain graph
if it contains no partially directed cycle. In the undirected
graph G[E \A] obtained by removing all arcs from a chain
graph G, each connected component in G[E \A] is called a
chain component. We use CC(G) to denote the set of chain
components, where each H ∈ CC(G) is a subgraph of G
and V = ∪̇H∈CC(G)V (H).

2.2 CHORDAL GRAPHS

An undirected graph is chordal if every cycle of length at
least 4 has an edge connecting two non-adjacent vertices of
the cycle. There are many known characterizations and prop-
erties of chordal graphs; see [Blair and Peyton, 1993] for an
introduction. One of the most common characterization is
the following: A graph G is chordal if and only if perfect
elimination ordering (PEO)5 exists [Fulkerson and Gross,
1965]. Furthermore, a PEO can be computed in linear time
via lexicographic BFS [Rose et al., 1976] and can used to
prove the following lemma which implies that a chordal
graph on n nodes has at most n maximal cliques.

Lemma 4 ([Fulkerson and Gross, 1965]; Lemma 6 in [Blair
and Peyton, 1993]). The set of maximal cliques of a graph
G is precisely the sets {vi} ∪ ({vi+1, . . . , vn} ∩N(vi)) for
which {vi} ∪ ({vi+1, . . . , vn} ∩ N(vi)) is not in {vj} ∪
({vj+1, . . . , vn} ∩N(vj)) for any vertex vj with j < i.

It is known that chordal graphs have a clique tree repre-
sentation. One way to construct a clique tree TG from a
chordal graph G in polynomial time is via the “maximum-
weight spanning tree property”: Let the vertex set of TG be
all maximal cliques of G, assign edge weight as the size
of intersection between every pair of maximal cliques, and
then compute the maximum weight spanning tree.

The following result is one of the many useful properties of
clique trees which we exploit in our algorithm later.

Lemma 5 (Lemma 5 of [Blair and Peyton, 1993]). Let
TG = (K,S) be the clique tree of a chordal graph G =
(V,E). For any two adjacent maximal cliques Ki and Kj

in TG, let Ti and Tj be the subtrees obtained by removing
the edge {Ki,Kj} from TG. Then, vertices vi and vj are
disconnected in G[V \ (V (Ki) ∩ V (Kj))].

2.3 CAUSAL GRAPH BASICS

Directed acyclic graphs (DAGs), a special case of chain
graphs where all edges are directed, are commonly used
as graphical causal models [Pearl, 2009] where vertices
represents random variables and the joint probability
density f factorizes according to the Markov property:

5An ordering σ is a PEO if for 1 ≤ i ≤ n, the node-induced
subgraphG[{v1, . . . , vi−1}∩N(vi)] on vi’s neighbors is a clique.
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f(v1, . . . , vn) =
∏n

i=1 f(vi | pa(vi)), where pa(vi) is the
values taken by vi’s parents in the DAG.

For any DAG G, we denote its Markov equivalence class
(MEC) by [G] and essential graph by E(G). Two graphs are
Markov equivalent if and only if they have the same skeleton
and v-structures [Verma and Pearl, 1990, Andersson et al.,
1997]. DAGs in the same MEC have the same skeleton;
Essential graph is a partially directed graph such that an
arc u→ v is directed if u→ v in every DAG in MEC [G],
and an edge u ∼ v is undirected if there exists two DAGs
G1, G2 ∈ [G] such that u→ v in G1 and v → u in G2.

An intervention S ⊆ V is an experiment where all variables
s ∈ S are forcefully set to some value, independent of the
underlying causal structure. An intervention is atomic if
|S| = 1 and bounded if |S| ≤ k for some k > 0; obser-
vational data is a special case where S = ∅. The effect of
interventions is formally captured by Pearl’s do-calculus
[Pearl, 2009]. We call any I ⊆ 2V an intervention set:
an intervention set is a set of interventions where each in-
tervention corresponds to a subset of variables. An ideal
intervention on S ⊆ V in G induces an interventional graph
GS where all incoming arcs to vertices v ∈ S are removed
[Eberhardt et al., 2012]. It is known that intervening on S
allows us to infer the edge orientation of any edge cut by S
and V \ S [Eberhardt, 2007, Hyttinen et al., 2013, Hu et al.,
2014, Shanmugam et al., 2015, Kocaoglu et al., 2017].

For ideal interventions, an I-essential graph EI(G) of G
is the essential graph representing the Markov equivalence
class of graphs whose interventional graphs for each in-
tervention is Markov equivalent to GS for any intervention
S ∈ I . There are several known properties about I-essential
graph properties (e.g. see [Hauser and Bühlmann, 2012,
2014]). For instance, every I-essential graph is a chain
graph with chordal chain components; this includes the case
of S = ∅. Also, orientations in one chain component do not
affect orientations in other components. Thus, to fully orient
any essential graph E(G∗), it is necessary and sufficient to
orient every chain component in E(G∗).

A verifying set I for a DAG G ∈ [G∗] is an intervention
set that fully orients G from E(G∗), possibly with repeated
applications of Meek rules (see Appendix A). In other words,
for any graph G = (V,E) and any verifying set I of G, we
have EI(G)[V ′] = G[V ′] for any subset of vertices V ′ ⊆ V .
Furthermore, if I is a verifying set for G, then I ∪ S is also
a verifying set for G for any additional intervention S ⊆ V .
While DAGs may have multiple verifying sets in general,
we are often interested in finding one with minimum size.

Definition 6 (Verifying set and verifying number). An in-
tervention set I is called a verifying set for a DAG G∗

if EI(G∗) = G∗. I is a minimum size verifying set if
EI′(G∗) 6= G∗ for any |I ′| < |I|. The verification num-
ber νk(G∗) denotes the size of the minimum size verifying
set of G∗ when each intervention has size at most k ≥ 1.

Recently, [Choo et al., 2022] proved two fundamental results
with respect to verification number. Theorem 7 characterizes
verification number of any given causal DAG while Theo-
rem 8 gives an adaptive search algorithm that is competitive
to the verification number of the underlying causal DAG.

Theorem 7 ([Choo et al., 2022]). Fix an essential graph
E(G∗) and G ∈ [G∗]. An atomic intervention set I is a min-
imal sized verifying set for G if and only if I is a minimum
vertex cover of covered edges C(G) of G. A minimal sized
atomic verifying set can be computed in polynomial time
since the edge-induced subgraph on C(G) is a forest.

Theorem 8 ([Choo et al., 2022]). Fix an unknown underly-
ing DAG G∗. Given an essential graph E(G∗) and interven-
tion set bound k ≥ 1, there is a deterministic polynomial
time algorithm that computes an intervention set I adap-
tively such that EI(G∗) = G∗, and |I| has size
1. O(log(n) · ν1(G∗)) when k = 1
2. O(log(n) · log(k) · νk(G∗)) when k > 1.

To obtain a competitive bound with respect to ν1(G∗),
[Choo et al., 2022] proved a stronger (but non-computable)
lower bound (Theorem 8) on ν1(G∗). We will rely on this
lemma to show a competitive bound for our algorithm later.

Lemma 9. For any causal DAG G∗,

ν1(G∗) ≥ max
I⊆V

∑
H∈CC(EI(G∗))

⌊
ω(H)

2

⌋

For any intervention set I ⊆ 2V , we write R(G, I) ⊆ E
to mean the set of oriented arcs in the I-essential graph
of a DAG G, and define GI = G[E \ R(G, I)] as the
fully directed subgraph DAG induced by the unoriented
arcs in G, where G∅ is the graph obtained after removing
all the oriented arcs in the observational essential graph
due to v-structures. The next result explains why it suf-
fices to study causal graph discovery via interventions
on causal graphs without v-structures: since R(G, I) =
R(G∅, I) ∪̇ R(G, ∅), any oriented arcs in the observational
graph can be removed before performing any interventions
as the optimality of the solution is unaffected.

Theorem 10 ([Choo and Shiragur, 2023]). For any DAG
G = (V,E) and intervention sets A,B ⊆ 2V ,

R(G,A ∪ B)

= R(GA,B) ∪̇ R(GB,A) ∪̇ (R(G,A) ∩R(G,B))

We will also borrow the following definition of relevant
nodes from [Choo and Shiragur, 2023].

Definition 11 (Relevant nodes). Fix a DAG G∗ = (V,E)
and arbitrary subset V ′ ⊆ V . For any intervention set I ⊆
V and resulting interventional essential graph EI(G∗), we
define the relevant nodes ρ(I, V ′) ⊆ V ′ as the set of nodes
within V ′ that is adjacent to some unoriented arc within the
node-induced subgraph EI(G∗)[V ′].
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2.4 RELATED WORK

There are two broad classes of causal graph discovery al-
gorithms. Given the observational essential graph, non-
adaptive algorithms need to recover any underlying causal
graph using a single fixed set of interventions while adap-
tive algorithms are allowed to adapt their interventional
decisions based on the outcomes of earlier interventions.

Non-adaptive search Separating systems are the central
mathematical objects for non-adaptive intervention design.
Roughly speaking, a separating system on a set of elements
is a collection of subsets such that for every pair of elements
from the set, there exists at least one subset which contains
exactly one element from the pair. Instead of all pairs of ele-
ments, let us consider the (typically smaller) G-separating
system for a given undirected graph G.

Definition 12 (G-separating system; Definition 3 of [Ko-
caoglu et al., 2017]). Given an undirected graph G =
(V,E), a set of subsets I ⊆ 2V is a G-separating system
if for every edge {u, v} ∈ E, there exists I ∈ I such that
either (u ∈ Ii and v 6∈ Ii) or (u 6∈ Ii and v ∈ Ii).

To simplify notation, we write G-separating system to re-
fer to skel(G)-separation system or skel(E(G))-separation
system, for any causal DAG G. It is known that the optimal
non-adaptive intervention set to learn a moral DAG G∗ is a
G∗-separating system [Kocaoglu et al., 2017].

Theorem 13 (Theorem 1 of [Kocaoglu et al., 2017]). For
any undirected graph G, an intervention set I learns every
possible causal graph D with skel(D) = G if and only if I
is a G-separating system.

Adaptive search There exists essential graphs6 where
non-adaptive interventions require exponentially more inter-
ventions than if one could use adaptive interventions.

Adaptive search has been studied for special graph classes
by [Shanmugam et al., 2015, Greenewald et al., 2019,
Squires et al., 2020]. More recently, [Choo et al., 2022]
showed that O(log n · ν1(G∗)) atomic inteventions suf-
fices to fully recover for any general causal graph G∗ on
n nodes while [Choo and Shiragur, 2023] showed that
O(log |ρ(∅, V (H))| · ν1(G∗)) atomic inteventions suffices
to fully recover edge directions within a subgraph H of G∗.
Both papers also gave results in terms of bounded size inter-
ventions where their guarantees incur an additionalO(log k)
factor when comparing to νk(G∗) by invoking Lemma 14
suitably.

Lemma 14 (Lemma 1 of [Shanmugam et al., 2015]). Let
(n, k, a) be parameters where k ≤ n/2. There is a polyno-
mial time labeling scheme that produces distinct ` length

6If the essential graph is an undirected path on n vertices, then
a G-sparating system has size Ω(n) while adaptive search only
requires O(logn) atomic interventions by “binary search”.

labels for all elements in [n] using letters from the integer
alphabet {0}∪ [a] where ` = dloga ne. In every label index,
any integer letter is used at most dn/ae times. This labelling
scheme is a separating system: for any i, j ∈ [n], there
exists some digit d ∈ [`] where the labels of i and j differ.

3 WARMUP: PATHS AND TREES

When the essential graph E(G∗) is a path or tree, there are
n possible DAGs, each associated with setting a node as
a root and orienting all edges away from it. It is known
that ν(G∗) = 1 because the covered edges for each DAG
are precisely the edges incident to the hidden root (e.g. see
[Greenewald et al., 2019, Choo et al., 2022]).

In this section, we investigate how to optimally solve with
r-adaptivity on these special classes of graphs.

3.1 PATHS

When the adaptivity parameter r = 1, any 1-adaptive algo-
rithm behaves exactly like a non-adaptive algorithm. Thus,
it is necessary and sufficient to intervene on a G∗-seperating
system, and such a system on a path has size Θ(n).

Meanwhile, when the adaptive parameter r = 2, we already
see an interesting trade-off occurring: how much (and how)
should we intervene now versus later? Our next lemma tells
us how to balance the number of interventions done in the
first and second adaptive rounds in a worst case fashion.

Lemma 15. Suppose E(G∗) is a path on n vertices. There
is a 2-adaptive algorithm that uses at most O(

√
n) inter-

ventions in total. In the worst case, Ω(
√
n) is necessary for

any 2-adaptive algorithm.

Proof. Without loss of generality, up to the inclusion of
floors and ceilings, let us assume that n is a square number.

Suppose the vertices on the path are labelled v1, v2, . . . , vn
where vi ∼ vi+1 for 1 ≤ i ≤ n− 1.

In the first round, we intervene on
√
n evenly

spaced vertices: v√n, v2
√
n, v3

√
n, . . . , vn. After ap-

plying Meek’s rule R1, at most one segment of
vi·
√
n, vi·

√
n+1, vi·

√
n+2, . . . , v(i+1)·

√
n will remain

unoriented. That is, the total number of relevant vertices is
at most

√
n. In the second round, we intervene on all these

relevant vertices, incurring a total of O(
√
n) interventions.

For the worst case lower bound, consider any arbitrary 2-
adaptive algorithm A. If A makes strictly less than

√
n

interventions in the first round, then there exists a consec-
utive sequence of

√
n vertices vi, vi+1, . . . , vi+

√
n which

is not intervened by A. If the root node of the path was vi,
then this entire segment vi ∼ vi+1 ∼ . . . ∼ vi+√n remains
unoriented after the first round of interventions. Thus, in the
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second round, A needs to at least intervene on a separating
system of this segment, which has a size at least Ω(

√
n).

Therefore, in the worst case, any 2-adaptive algorithm needs
to perform at least Ω(

√
n) number of interventions to orient

E(G∗) when it is a path on n vertices.

The key technical algorithmic idea in Lemma 15 is the strat-
egy of “balanced partitioning”, which balances the worst
case size of the largest possible unoriented component after
a round of intervention. See Fig. 1 for an example.

v1 . . . v30 . . . v42 . . . v50 . . . v100G∗

v1 . . . v30 . . . v42 . . . v50 . . . v100E(G∗)

v1 . . . v30 . . . v42 . . . v50 . . . v100EI(G∗)

Figure 1: Path example with n = 100 with v42 as the hid-
den source. After intervening on I = {v10, v20, . . . , v100}
atomically and applying Meek rules, only the segment
v41 ∼ v42 ∼ . . . ∼ v49 remains unoriented.

Interestingly, we can generalize this “balanced partitioning”
strategy to larger values of adaptivity parameter r as follows:
Suppose we perform L interventions per round in the first
r− 1 rounds and then intervene on the G-separating system
on the remaining relevant vertices in the final round, where
L is an integer that depends on r which we define later. In
each of the r − 1 rounds, we will choose the L vertices
judiciously by a “balanced partitioning”. If we further insist
that the final G-separating system has size at most L, then
we get a recurrence relation n

(L+1)r−1 ≤ L while incurring
a total of ≈ r · L interventions. We formally prove this next.

Lemma 16. Suppose E(G∗) is a path on n vertices. There
is a r-adaptive algorithm that uses at most O(r · n1/r)
interventions in total.

Proof. Observe that no matter how we intervene on a path,
the remaining relevant vertices will form a subpath.

Let L = dn1/re. In the first r − 1 rounds, we will par-
tition the remaining unoriented subpath into equal length
segments. For instance, if the subpath length is currently `,
then we partition it into segments of length d`/(L+ 1)e or
b`/(L+ 1)c. Thus, the length of the subpath with relevant
vertices in the next round will be at most d`/(L+ 1)e.

After r − 1 rounds, the length of the remaining unoriented
subpath is at most (via repeated applications of Lemma 17):⌈⌈⌈

n

L+ 1

⌉
/(L+ 1)

⌉
. . .

⌉
≤ . . . ≤

⌈
n

(L+ 1)r−1

⌉
Since L = dn1/re, we see that

⌈
n

(L+1)r−1

⌉
≤ L. Therefore,

by intervening on all the remaining relevant vertices in the
final r-th round, the total number of interventions performed
will be O(r · L) ⊆ O(r · n1/r).

Lemma 17 (See appendix for proof). For positive integer n,

and arbitrary real numbersm,x, we have
⌈
d x

me
n

⌉
=
⌈

x
mn

⌉
.

3.2 TREES

While the high-level strategy employed in Lemma 16 also
works for trees, how we perform the “balanced partitioning”
is slightly different since the vertices are no longer arranged
in a line. Instead, we rely on Algorithm 1 to partition a tree
on n nodes into subtrees using L node removals such that
each subtree has size at most dn/(L+ 1)e.

The correctness of Algorithm 1 is proven in Lemma 18 and
the resulting r-adaptive search result is given in Lemma 19.

Algorithm 1 Balanced partitioning on trees.

Input: A tree G = (V,E) with |V | = n, an integer L.
Output: A subset of vertices A ⊆ V such that |A| ≤ L
and subtrees inG[V \A] have size at most dn/(L+1)e.

1: Initialize A← ∅
2: while tree G = (V,E) has size |V | > d n

L+1e do
3: Root G arbitrarily.
4: Compute size of subtrees Tu at each node u ∈ V
5: if there is a subtree Tu of size 1 + d n

L+1e then
6: Add u to A; Update G← G[V \ V (Tu)].
7: else
8: Find a subtree Tu of size |V (Tu)| > 1+d n

L+1e,
s.t. |V (Tw)| ≤ d n

L+1e for all children w of u.
9: Add u to A; Update G← G[V \ V (Tu)].

10: end if
11: end while
12: return A

Lemma 18. Given a tree G = (V,E) with |V | = n and
an integer L ≤ n, Algorithm 1 runs in polynomial time and
returns a subset of vertices A ⊆ V such that |A| ≤ L and
subtrees in G[V \A] have size at most dn/(L+ 1)e.

Proof. We first prove the correctness then the running time.

Correctness Consider an arbitrary iteration of the while
loop. We will argue two things:

1. The size of G decreases by at least d n
L+1e.

2. The newly pruned subtree(s) have size at most d n
L+1e.

Since n − L · d n
L+1e ≤ d

n
L+1e, the while loop terminates

after at most L iterations. Thus, |A| ≤ L as we only add
one vertex per iteration to A.

if-case: Since |V (Tu)| = 1+d n
L+1e, removing V (Tu) from

V decreases the size of G by at least d n
L+1e. Furthermore,

the subtree pruned by u’s removal has size exactly d n
L+1e.
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else-case: This case happens when no subtrees has size
exactly 1 + d n

L+1e. So, if a subtree has size strictly larger
than d n

L+1e, then it must have size at least 2 + d n
L+1e.

We first show how to find such a subtree Tu in Line 8:

1. Initialize u as the root node.

2. If all children w of u have subtree sizes |V (Tw)| ≤
d n
L+1e, we have found Tu and can stop.

3. Otherwise, update u to any child w with subtree
size |V (Tw)| > d n

L+1e, and go to step 2. Note that
|V (Tw)| ≥ 2 + d n

L+1e from the above discussion.

Since |V (Tu)| > 1 + d n
L+1e, removing V (Tu) from V

decreases the size of G by at least d n
L+1e. Furthermore,

each subtree pruned by u’s removal has size at most d n
L+1e

since all subtrees of children w of u has size at most d n
L+1e.

Running time Rooting the tree and computing sizes of
each rooted subtree can be done in polynomial time via
depth-first search and dynamic programming. Finding the
node u in within the while loop can also be done in poly-
nomial time. Since the while loop executes at most L ≤ n
times, the algorithm runs in polynomial time.

Lemma 19. Suppose E(G∗) is a tree on n vertices. There
is a r-adaptive algorithm that uses at most O(r · n1/r)
interventions in total.

Proof. Since the underlying causal DAG is a tree, when-
ever E(G∗) is not fully oriented, the chain components are
singletons and at most one tree (of size at least two).

Let L = dn1/re. Consider the following algorithm:

1. Run Algorithm 1 on the tree chain component of E(G∗)
to obtain a subset of vertices A of size |A| ≤ L.

2. Intervene on all vertices in A.

3. If the essential graph is still not fully oriented and we
have used less than r − 1 rounds, go back to step 1.

4. In the final round, we intervene on all vertices7 in the
tree chain component (if it exists).

In the first r− 1 adaptive rounds, the new tree chain compo-
nent must have size at most one of the pruned subtrees, i.e.
size at most 1/(L+1) factor smaller than before. After r−1
rounds, the largest possible size of the tree chain component
is at most (via repeated applications of Lemma 17):⌈⌈⌈

n

L+ 1

⌉
/(L+ 1)

⌉
. . .

⌉
≤ . . . ≤

⌈
n

(L+ 1)r−1

⌉
7We could have further optimized by intervening on a G-

separating system of the remaining tree component but this does
not affect the asymptotics in the worst case. For instance, if the
underlying causal DAG is a single path, then the final round will
still be a path and thus the G-separating system size is still roughly
at least half the remaining nodes.

Since L = dn1/re, we see that
⌈

n
(L+1)r−1

⌉
≤ L. Therefore,

by intervening on all the remaining relevant vertices in the
final r-th round, the total number of interventions performed
will be O(r · L) ⊆ O(r · n1/r).

Fig. 2 illustrates a potential partitioning example when the
essential graph is a tree on n = 16 nodes and r = 2.

Figure 2: Tree example on n = 16 nodes where the boxed
vertices represent a subset A ⊆ V of size |A| =

√
n = 4.

Observe that the subtrees in G[V \ A] each are of size at
most dn/(

√
n+ 1)e = d16/5e = 4.

4 FULL GENERALITY

Building upon the intuition developed in Section 3, we now
show how to obtain Theorem 1. We also present a matching
worst case lower bound (Theorem 2), and extend our results
to the bounded size intervention settings (Theorem 3).

Let us now describe the algorithmic idea behind our atomic
intervention result. By Theorem 10, we can remove all ori-
ented edges from earlier rounds of interventions and focus
on each undirected chain component. Let L be a suitably
chosen value that depends on r, which we define later. Since
these chain components are chordal graphs, we can effi-
ciently compute their clique tree representation for each
chain component G. Invoking Algorithm 1 to compute a
“balanced partitioning” on the clique tree TG, we obtain
L maximal cliques from each chain component G. Inter-
vening on all these cliques incurs a cost of O(L · ν1(G∗))
interventions, as the sum of maximal cliques in each chain
component is a lower bound for the verification number
(see Lemma 9). Performing this operation for r − 1 rounds
leaves us with chain components, each with at most L maxi-
mal cliques. In the final r-th round, we intervene on all the
vertices in these unoriented connected components which
additionally incurs a cost of at most O(L · ν1(G∗)). There-
fore, the total cost in all iterations is at mostO(r·L·ν1(G∗)).
Setting L ≈ n1/r above gives the desired guarantees.

To formally prove our result, we first begin with following
lemma which tells us that intervening on all vertices within
a maximal clique of a chordal graph breaks up the chain
component according to its clique tree representation.

Lemma 20. Let TG = (K,S) be the clique tree of a chordal
graphG = (V,E). For any maximal cliqueKi in TG, if two
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maximal cliques K1 and K2 are disjoint in TG[K \ {Ki}],
then v1 ∈ V (K1) and v2 ∈ V (K2) are not in the same
connected component of G[V \ V (Ki)].

Proof. Since K1 and K2 are disjoint in TG[K \ {Ki}], the
removedKi must lie on the unique path betweenK1 andK2

in the tree TG. As V (Ki) = ∪{Ki,Kj}∈S(V (Ki)∩V (Kj)),
Lemma 5 tells us that the removal of Ki will makes v1 and
v2 disconnected in G[V \ V (Ki)].

We are now ready to prove Theorem 1 using Algorithm 2.

Algorithm 2 Adaptivity-sensitive search.

Input: Essential graph E(G∗), adaptivity param. r ≥ 1.
Output: A sequence of intervention sets I1, . . . , Ir
such that EI1,...,Ir (G∗) = G∗.

1: Initialize L = dn1/re.
2: for i = 1, . . . , r − 1 do
3: Initialize Ii ← ∅
4: for chain comp. H ∈ CC(EI1,...,Ii−1(G∗)) do
5: if H is a clique then Set V ′ ← V (H).
6: else Compute clique tree TH of H . Compute

L-balanced partitioning S of TH via
Algorithm 1. Let V ′ ← ∪Kj∈SV (Kj).

7: Add V ′ to Ii.
8: end for
9: Intervene on all vertices in Ii.

10: end for
11: Define Ir as all remaining relevant vertices and inter-

vene on vertices in Ir.
12: return I1, . . . , Ir

To visualize the full generalization of Algorithm 2, think of
Fig. 2 as the clique tree representation of a chain component
of the essential graph where each node is a maximal clique.
When we intervene on a “node” in Fig. 2, we actually inter-
vene on the entire maximally clique in an atomic fashion so
that all incident edges to the clique vertices are oriented.

Theorem 1 (Atomic upper bound). Let E(G∗) be the obser-
vational essential graph of an underlying causal DAG G∗

on n nodes and m edges. There is a r-adaptive algorithm
(Algorithm 2) that uses O(min{r, log n} · n1/min{r,logn} ·
ν1(G∗)) atomic interventions to recoverG∗ from E(G∗). Ig-
noring the time spent implementing the actual interventions,
Algorithm 2 runs in O(n1+1/r · (n+m)) time.

Proof. Consider Algorithm 2. Since we always intervene
on all relevant vertices outside of the for loop, we are guar-
anteed to fully recover G∗.

Number of interventions

By Lemma 18, we know that invoking Algorithm 1 for any
clique tree TH on maximal cliques KH of H returns a set

AH ⊆ KH of at most |AH | ≤ L clique nodes such that
subtrees in TH [KH \AH ] have size at most d|TH |/(L+1)e.

By Lemma 9,∣∣∣∣∣∣
⋃

H∈CC(EI1∪...∪Ii−1
(G∗))

AH

∣∣∣∣∣∣
=

∑
H∈CC(EI1∪...∪Ii−1

(G∗))

|AH | ∈ O(L · ν1(G∗))

So, within the for loop, we incur at most O(r · L · ν1(G∗))
interventions.

By Lemma 20, we know that each iteration reduces the max-
imum number of maximal cliques in any chain component
size by a factor of L + 1. After r − 1 rounds, the largest
clique tree in any chain component has at most

n

(L+ 1)r−1
=

n

(dn1/re+ 1)r−1
≤ dn1/re = L

maximal cliques. So, if we intervene on all remaining rel-
evant vertices in the final r-th round, this incurs at most
O(L · ν1(G∗)) interventions via Lemma 9.

Therefore, in total, we use O(r ·L · ν1(G∗)) ⊆ O(r · n1/r ·
ν1(G∗)) atomic interventions.

Running time

Throughout, executing Meek rules after performing an inter-
vention can be done inO(d ·m) ⊆ O(n ·m) time [Wienöbst
et al., 2021], where d is the degeneracy of the input graph.
Now, consider an arbitrary iteration of the while loop. There
are at most n chain components. Given a chordal graph
with n nodes and m edges, a clique tree can computed in
O(n + m) time [Blair and Peyton, 1993, Galinier et al.,
1995]. Given a tree with n nodes, computing a L-balanced
partitioning (Algorithm 1) takesO(n) time using depth-first
search. So, each iteration takes O(n · (n+m)) time. Since
there are L = dn1/re iterations, the overall running time is
O(L · n · (n+m)) ⊆ O(n1+1/r · (n+m)).

Atomic worst case. Our lower bound (Theorem 2) gener-
alizes the idea behind the lower bound proof in Lemma 15
(for the special case of r = 2): on a path essential graph
with ν1(G∗) = 1, the adaptive adversary repeatedly hides
the source node in the largest possible unoriented segment
based on the current round of interventions. See Appendix
C for the full proof of Theorem 2.

Bounded size interventions. With bounded size interven-
tions, each intervention is now allowed to involve k ≥ 1
vertices, for some pre-determined upper bound k. Algo-
rithmically, we tweak Lines 7 and 11 in Algorithm 2 to
use the labelling lemma of Lemma 14, which incurs addi-
tional O(log k) multiplicative factor when comparing with
νk(G∗). See Appendix B for the tweaked algorithm and
Appendix C for the full proof of Theorem 3.
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5 EXPERIMENTS

While our main contributions are theoretical, we also per-
formed some experiments to empirically validate that Algo-
rithm 2 is practical and that fewer interventions are generally
needed when higher levels of adaptivity are allowed.

Using the synthetic experimental setup of [Squires et al.,
2020, Choo et al., 2022, Choo and Shiragur, 2023], we
benchmarked our adaptivity-sensitive search algorithm with
varying values of r together with the algorithm of [Choo
et al., 2022]. For full experimental details, implementation
details, and source code, please see Appendix D.

Checks to avoid redundant interventions The current
implementation of [Choo et al., 2022]’s separator algo-
rithm is actually n-adaptive because it performs “checks”
before performing each intervention — if the vertices in
the proposed intervention set S do not have any unoriented
incident arcs, then the intervention set S will be skipped.
One may think of such interventions as “redundant” since
they do not yield any new information about the underlying
causal graph. As such, we ran two versions of their algo-
rithm: one without checks (i.e. O(log n)-adaptive) and one
with checks (i.e. n-adaptive). Note that each check corre-
sponds to an adaptivity round because an intervention within
a batch of interventions may turn out to be redundant, but
we will only know this after performing a check after some
of the interventions within that batch have been executed.

Scaling our algorithm with checks Since n
1

log n = 2,
running Algorithm 2 (as it is) with adaptivity parameters
r ∈ Ω(log n) does not make much sense. As such, we define
a checking budget b = r − dlog ne and greedily perform
up to b checks whilst executing Algorithm 2. This allows
Algorithm 2 to scale naturally for r ∈ Ω(log n).

Empirical trends Fig. 3 shows a subset of our results
(see Appendix D for all experimental results). As expected,
we observe that higher rounds of adaptivity leads to lower
number of interventions required. When r = n, Algorithm 2
can match [Choo et al., 2022] with its full adaptivity.

Figure 3: Subset of experimental results

6 CONCLUSION

In our work, we define r-adaptivity that interpolates be-
tween non-adaptivity (for r = 1) and full adaptivity (for
r = n). We provide a r-adaptive algorithm that achieves
O(min{r, log n} · n1/min{r,logn}) approximation with re-
spect to the verification number.

Let us denote νr as the necessary number of interventions
required when allowed r rounds of adaptive interventions.
Amongst r ∈ {1, 2, . . . , n}, the only two values of νr

that we currently understand are the extremes of ν1 (non-
adaptive) and νn (full adaptivity), where ν1 is the size of a
skel(G∗)-separating system and νn corresponds to the veri-
fication number of G∗. Furthermore, we also know that νr

is non-decreasing as r decreases from n to 1. Ideally, given
an input r, we want to compete against νr. Unfortunately,
as we only currently understand ν1 and νn, and ν1 could
potentially even be exponentially larger than νn (e.g. when
the essential graph is a path), we gave approximations in
terms of ν1 in this work while it may be the case that ν1 is
a weak lower bound for r-adaptive algorithms, especially
for smaller values of r. As such, understanding the correct
bound for a given r is an interesting open direction to pursue
and with the hopes that one can design an corresponding r-
adaptive search algorithm achieving a good approximation
with respect to νr, possibly better than Algorithm 2.

Here, we studied the complexity of adaptivity for causal
discovery under the standard assumptions of causal suffi-
ciency, faithfulness, and infinite sample regime. When these
assumptions are violated, wrong causal conclusions may
be drawn and possibly lead to unintended downstream con-
sequences. Hence, it is of great interest to remove/weaken
these assumptions while maintaining theoretical guarantees.
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