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A PROOFS

A.1 REGRET UPPER BOUND OF ALGORITHM 1

We start by recalling that ∆zt :“ fµ˚

pz˚q ´ fµ˚

pztq denotes the regret or gap of selecting allocation zt at round t instead
of the optimal allocation z˚. Now, define the event
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Also, define pRT “
řT

t“MN`1 ∆zt1tEtu. Then, from Kveton et al. [2015, Lemma 1], it holds that

RT ď E
”

pRT

ı

` p1 ` π2{3qKMN . (1)

Now, let us consider two sequence of constants pαiqiě1 and pβiqiě0 such that β0 “ 1, αi ą αj , βi ą βj for all i ą j,
limiÑ8 αi “ limiÑ8 βi “ 0 and

ř

iě1
βi´1´βi?

αi
ď 1{

?
6.

Let At denote the subset of items induced by the allocation zt chosen at round t. In other words, an item ai,j P At if
zt,i ě j. Similarly, let A˚ denote the corresponding subset induced by the optimal allocation z˚. Let Ãt “ AtzA

˚ and
mi,t “

αiK
2 log T
∆2

zt

. Now, similar to Kveton et al. [2015], define the series of mutually exclusive events pGi,tqiě1, where Gi,t

denotes the event that at least βiK items in Ãt were observed at most mi,t times and for all j ă i, less than β1K items
in Ãt were observed at most mi´1,t times. Then, under the event Ft, it holds that the event t

Ť

iě1 Gi,tu happens [Kveton
et al., 2015, Lemma 3]. Hence, we have

pRT “

8
ÿ

l“1

T
ÿ

t“MN`1

∆zt1tGl,t,∆zt ą 0u.

Now for any item ai,j , let us define the events

Fai,j ,l,t “ tz˚
i ă j ď zt,i, Tt´1pai,jq ď ml,tu, Gai,j ,l,t “ Gl,t

č

Fai,j ,l,t.

Let us now define the following events:

F k
ai,j ,l,t “ tz˚

i ă j ` k “ zt,i, Tt´1pai,j`kq ď ml,tu, k ě 0 .
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Note that because of the ordered structure. if ai,j has only been observed a certain number of times, then ai,jk would be
observed less than or equal number of times i.e., Tt´1pai,j`kq ď Tt´1pai,jq, which, in turn, implies that

rF k
ai,j ,l,t :“ tz˚

i ă j ` k “ zt,i, Tt´1pai,jq ď ml,tu Ď F k
ai,j ,l,t .

It turns out that Fai,j ,l,t “
ŤM´j

k“0
rF k
ai,j ,l,t

, which in turn implies Fai,j ,l,t Ď
ŤM´j

k“0 F k
ai,j ,l,t

“: Hai,j ,l,t. This implies that
ŤM

j“1tGl,t

Ş

Fai,j ,l,tu Ď
ŤM

j“1tGl,t

Ş

Hai,j ,l,tu. Now observe that Hai,1,l,t Ě Hai,2,l,t Ě . . . Hai,M ,l,t, implying that the

RHS of the above is a union over decreasing sets, and hence it holds that
ŤM

j“1tGl,t

Ş

Fai,j ,l,tu Ď tGl,t

Ş

Hai,i,l,tu. This
further implies
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Then, it holds that

1tGl,t,∆zt ą 0u ď
1

βlK

ÿ

pi,jq:z˚
i ăj

1tzt,i “ j, Tt´1pai,jq ď ml,t,∆zt ą 0u.

Therefore, we can bound pRT as
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ÿ
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βlK
,

Now let each item ai,j , which are not included in the optimal allocation z˚, be contained in Ni,j suboptimal allocations z
and ∆i,j,1 ě ∆i,j,2 ě . . . ě ∆i,j,Ni,j

be the gaps of these solutions. Then, we have
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where the last term is the solution of the optimization problem:

max
pz1,...,ztq

T
ÿ

t“1

Ni,j
ÿ

k“1

1tzt,i “ j ą z˚
i , Tt´1pai,jq ď

αlK
2 log T

∆2
i,j,k

,∆zt “ ∆i,j,ku
∆i,j,k

βlK
.

Then, similar to Kveton et al. [2015], we obtain

pRT ď
ÿ

pi,jq:z˚
i ăj

8
ÿ
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2αlK log T

βl∆i,j,Ni,j

ď
ÿ
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534K log T

∆i,j
,

where ∆i,j denotes the minimum gap as defined in main paper, and is given by ∆i,j,Ni,j . Now, from (1), we can complete
the proof.

A.2 PROBABILITY OF ERROR OF ALGORITHM 2

As a first step we define an event η which helps us in the rest of the proof. Note that Bubeck et al. [2013] also defined a
similar event ξ in their proof of Theorem 1, but our event is different from theirs. In η we only consider the |Φ| (ď 2N )
sized subset of phases where some item from the boundary set Φ is accepted or rejected, whereas Bubeck et al. [2013]
considered all the MN ´ 1 phases. Let k1 ď k2 . . . ď k|Φ| be the phases where items in Φ were accepted or rejected. Under
this notation HΦ “ max

1ďiď|Φ|

MN`1´ki

∆2
rMN`1´kis

. Consider the event η defined by

t@i P t1, . . . ,MNu,@k P tk1, . . . , k|Φ|u,

ˇ

ˇ

ˇ

ˇ

ˇ

1

Tk

Tk
ÿ
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Xi,s ´ µi

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

4
∆rMN`1´ksu



Note that by abuse of notation, we have renamed our items as 1, . . . ,MN above. Also Xi,s denotes the bernoulli reward
received for item i in its sth pull so far. Recall that Tk was defined as T´MN

ĚlogpMNqpMN`1´kq
By Hoeffding’s inequality and

union bound, we bound the probability of the complement event η̄ as

Ppη̄q ď
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4
∆rMN`1´kjs

˛
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ÿ
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2 expp´2Tkj
p∆rMN`1´kjs{4q2q

ď 2MN |Φ| exp

ˆ

´
T ´ MN

8ĎlogpMNqHΦ

˙

Next, we show that assuming the event η, the algorithm does not make any error. The proof of this part is very similar to the
proof of Theorem 1 in Bubeck et al. [2013]. The main difference is that in our case since we always accept items (items) that
are in the top of some list and reject items that are in the bottom of some list, we do not make any error until we reach an
item in the boundary i.e. Φ. We will claim that the event η prevents these errors from happening. This is done by induction
on the phases where some boundary item is accepted or rejected i.e. phases k1, . . . , k|Φ|. Since we only need to argue about
correctness for these phases, we defined η only for k P tk1, . . . , k|Φ|u. Note that this is the critical difference between our
event η and the corresponding event ξ defined in proof of Theorem 1 in Bubeck et al. [2013]). Define k0 “ 0 and consider
j ě 1. Using an induction approach we assume that no errors have happened till phase kj´1. As explained above the next
error can only occur at an item in boundary and therefore has to occur at phase kj . We show that under event η, this cannot
happen. We will need the following observation.

Observation A.1. Let e be the first item to be erroneously accepted or rejected. As mentioned above e P Φ. From Algorithm
2, we know that there is some active item e1 in the same list as e with the highest empirical gap p∆e1 among all the active
items. By the design of our algorithm, if e was accepted it is the top item of its list which also contains the active element
e1 ñ µe1 ď µe. Since e was erroneously accepted, it does not belong to the top K items ñ e1 also does not belong to the
top K items. Similarly if e was erroneously rejected (i.e. it belongs to top K items), it is the bottom of its list which contains
the active element e1 ñ µe ď µe1 . Thus e1 also belongs to top K items.

Event η implies that at the end of stage kj , empirical means of rewards of all items are within 1
4∆rMN`1´kjs of their true

reward means. Let Akj “ ta1, . . . , aMN`1´kj u be the active set of items during phase kj with decreasing true reward means
i.e. µa1 ě . . . ě µMN`1´kj . We assume that K 1 items in the top K are left to be found at the starting of phase kj . Using
the induction assumption this implies ta1, . . . , aK1 u P t1, . . . ,Ku * and taK1`1, . . . , aMN`1´kj

u P tK ` 1, . . . ,MNu.
Now there can be two types of errors.

• Type 1 error - An item al is accepted for some l ě K 1 ` 1.

• Type 2 error - An item al is rejected for some l ď K 1.

As done in Bubeck et al. [2013], we only show that Type 1 error does not occur and the other can be shown symmetrically.
We know that a boundary item is accepted or rejected in phase kj , thus al is a boundary item. Since al is not in the top
K items, using Observation A.1, we get that there is some active item ap (in the same list as al) also not in top K i.e.
p ě K 1 ` 1 such that it has the highest empirical gap among all active items.

From here on wards our proof resembles the proof in Bubeck et al. [2013]. We can basically replace aj in their proof with
our ap, K with MN and k with kj , and repeat the steps that follow. However, to make it work we will have to use that ap is
not in the top K items as explained in Observation A.1. We show that ∆rMN`1´kjs ą maxtµa1

´ µK , µK ´ µaMN`1´kj
u.

This cannot hold since at stage kj since only kj ´ 1 items have been accepted or rejected implying that ∆rMN`1´kjs ď

maxtµa1
´ µK , µK ´ µaMN`1´kj

u. This will give us a contradiction similar to Bubeck et al. [2013]. However, to show this
we need to use the implication of our observation that ap is also not in the top K items and that it has the highest empirical
mean reward i.e. pµap ě pµa for all a P Akj . This is true since it has the highest empirical gap and it led to acceptance of al
(see Algorithm 2).

*By abuse of notation we are using i to denote the ith item from the top.



• Proof of ∆rMN`1´kjs ě µa1 ´ µK :

pµap,Tkj
ě pµa1,Tkj

ñ µap
`

1

4
∆rMN`1´kjs ě µa1

´
1

4
∆rMN`1´kjs

ñ ∆rMN`1´kjs ě µa1 ´ µap

Now, since ap is not in the top K items we know that µap
ď µK ñ ∆rMN`1´kjs ě µa1

´ µK .

• Proof of ∆rMN`1´kjs ą µK ´ µaMN`1´kj
:

Let σ : t1, . . . ,MN `1´kju Ñ Akj
be a permutation with σp1q “ p, such that pµσp1q,Tkj

ě . . . ě pµσpMN`1´kjq,Tkj
.

Since ap has the highest empirical gap in this phase, we know that,

pµap,Tkj
´ pµσpK1`1q,Tkj

ě pµσpK1q,Tkj
´ pµσpMN`1´kjq,Tkj

(2)

We claim that there are at least K 1 ` 1 items (a1, . . . , aK1 , ap) in Akj
such that their empirical mean rewards

are ě µK ´ 1
4∆rMN`1´kjs. This is trivially true for a1, . . . , aK1 since for i ď K 1, event η implies pµai,Tkj

ě

µai ´ 1
4∆rMN`1´kjs ě µK ´ 1

4∆rMN`1´kjs. Since ap is not in the top K items and has empirical mean reward
pµap,Tkj

ě pµa1,Tkj
, this also holds for ap. This basically implies that both pµσpK1q, pµσpK1`1q are ě µK ´ 1

4∆rMN`1´kjs.
Note that, since pµσpMN`1´kjq is smallest it is ď pµMN`1´kj which under η, is ď µMN`1´kj ` 1

4∆rMN`1´kjs. Also
under η, pµap,Tkj

ď µap ` 1
4∆rMN`1´kjs. Putting all of these together we get that

pµap
`

1

4
∆rMN`1´kjsq ´ pµK ´

1

4
∆rMN`1´kjsq ě pµK ´

1

4
∆rMN`1´kjsq ´ pµMN`1´kj

`
1

4
∆rMN`1´kjsq

ñ ∆rMN`1´kjs ě 2µK ´ µap ´ µMN`1´kj ą µK ´ µMN`1´kj

where the last inequality again holds because ap is not in in the top K items i.e. µK ą µap
.

This completes our proof.

B DETAILED EXPERIMENTS

Regret Minimization: Here, we present simulation results for other choices of parameters M,N,K and for 100
independent trials. In Figure 1, we plot the results for synthetic bandit instance with Bernoulli rewards and with
N “ 10,M “ 20,K “ 10. Next, in Figure 2, we plot the results for synthetic bandit instance with Gaussian re-
wards and with N “ 5,M “ 20,K “ 10 . Finally, in Figure 3, we plot the results for semi-synthetic bandit instance with
100 clusters (i.e., 100 total number of arms) and with N “ 5,M “ 20,K “ 10. Similar to those reported in the main paper,
in these experiments too we observe that our algorithm Ordered-CombUCB fair much better than the baseline CombUCB.

K-Best Arm Identification: Similar to the main paper, we generate a hard banidt instance by sampling arm means
uniformly in r0.45, 0.55s and then sampling the rewards from Gaussian distributions with aforementioned means and
projected to r0, 1s. We run our algorithm ordered SAR and the baseline algorithm SAR for rounds T P r1000, . . . , 10000s.
To mitigate the effect of randomness (as seen in the plots reported in the main paper), we increase number of independent
trials to 1000 and plot the probability of error for both algorithms in Figure 4. Similar to those reported in the main paper,
here too ee find that the failure probability of Ordered SAR is consistently lower than that of SAR.
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Figure 1: Comparison of cumulative regret for CombUCB and Ordered CombUCB on synthetic Bernoulli bandit instance.
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Figure 2: Comparison of cumulative regret for CombUCB and Ordered CombUCB on synthetic Gaussian bandit instance.
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Figure 3: Comparison of cumulative regret for CombUCB and Ordered CombUCB on semi-synthetic bandit instance.
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Figure 4: Comparison of probability of error for SAR and Ordered SAR on Gaussian bandit instance.
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