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(Supplementary Material)

We restate Theorem 3.1 below with a change of variables that moves the dependency on the number of agents from the
upper bound of the regret to the probability expression. This is the version of the Theorem we will prove when referring to
Theorem 3.1 from the main paper.

Theorem (Performance of the NQOVI algorithm). There exists an absolute constant cβ > 0 such that, for any fixed
δ ∈ (0, 1), if we set λ = 1 and β = cβdH

√
ι, with ι := log(dKH/δ), then, with probability at least 1− (n+ 2)δ,

Regret(K) ≤ O
(√

K
√
d3H5ι2

)
. (.1)

Let Z≥0 (Z≥1) be the set of non-negative (positive) integers.

All results that are direct adaptations or restatements from existing results in the single RL literature from (Jin et al., 2020)
will have their detailed proofs if necessary to understand the nuances of their adaptation to our setting. Such proofs will be
deferred to the last Section C of the supplementary material.

A AUXILIARY RESULTS

The following proposition is an immediate adaptation of an existing one in (Jin et al., 2020) for MDPs.

Proposition A.1 (Bounded parameters for Q-functions – Proposition 2.3 and Lemma B.1 in (Jin et al., 2020)). Consider
a linear stochastic game MG. Given a policy profile π, we have that for any i ∈ [n], there exist paremeters wi,π

h ∈ Rd,

h ∈ [H], such that Qi,π
h (x, a) = ⟨ϕ(x, a), wi,π

h ⟩ for any (x, a) ∈ S ×A and
∥∥∥wi,π

h

∥∥∥ ≤ 2H
√
d.

The following lemma is a restatement of another one in (Jin et al., 2020), though with some different notation.

Lemma A.1 (Concentration bound for self-normalized processes – Lemma D.4 in (Jin et al., 2020)). Let {Fτ}∞τ=0 be a
filtration. Let {xτ}∞τ=1 be a stochastic process on S such that xτ ∈ Fτ , and let {ϕτ}∞τ=1 be an Rd-valued stochastic process
such that ϕτ ∈ Fτ−1 and ∥ϕτ∥ ≤ 1. Let G be a function class of real-valued functions such that supx∈S |g(x)| ≤ H
for any g ∈ G, and with ϵ-covering number Nϵ with respect to the distance dist(g, g′) = supx∈S |g(x) − g′(x)|. Let
ΛA = λId +

∑A
τ=1 ϕτϕ

⊤
τ . Then for every A ∈ Z≥1, every g ∈ G, and any δ ∈ (0, 1], we have that with probability at least

1− δ, ∥∥∥∥∥
A∑

τ=1

ϕτ{g(xτ )− E[g(xτ )|Fτ−1]}

∥∥∥∥∥
2

Λ−1
A

≤ 4H2

[
d

2
log

(
λ+A/d

λ

)
+ log

Nϵ

δ

]
+

8A2ϵ2

λ
.

The following lemma is a key result in the proof of Theorem 3.1, as seen in Section 4 from the main paper.
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Lemma A.2 (Bounding the covering number). Let i ∈ [n], and let w̄i ∈ Rd be such that ∥w̄i∥ ≤ L, Λ̄ ∈ Rd×d be such that
its minimum eigenvalue is greater or equal than λ, and, for all (x, a) ∈ S ×A, let ϕ(x, a) ∈ Rd be such that ∥ϕ(x, a)∥ ≤ 1,
and let β > 0. Define the function class

Vi =
{
V : S → R

∣∣∣ V (·) = max
ν∈∆(Ai)

E ai∼ν
a−i∼π−i(·)

[
min

{
w̄⊤

i ϕ(·, a) + β
√
ϕ(·, a)⊤Λ̄−1ϕ(·, a), H

}]}
, (A.1)

where π−i(·) ∈ ∆(A−i). Let Nϵi be the ϵi-covering number of Vi with respect to the distance dist(V, V ′) = supx∈S |V (x)−
V ′(x)|. Then,

logNϵi ≤ d log(1 + 4L/ϵ) + d2 log
[
1 + 8d1/2β2/(λϵ2)

]
.

Proof. Let V, V ′ ∈ Vi. Let ū(x, a) :=
√
ϕ(x, a)⊤Λ̄−1ϕ(x, a) and ū′(x, a) :=

√
ϕ(x, a)⊤(Λ̄′)−1ϕ(x, a), and let ḡ(x, a) =

min
{
w̄⊤

i ϕ(x, a) + βū(x, a), H
}

and ḡ′(x, a) = min
{
w̄⊤

i ϕ(x, a) + βū′(x, a), H
}

. Then,

dist(V, V ′) = sup
x∈S

∣∣∣ max
ν∈∆(Ai)

E ai∼ν
a−i∼π−i(x)

[ḡ(x, a)]− max
ν∈∆(Ai)

E ai∼ν
a−i∼π−i(x)

[ḡ′(x, a)]
∣∣∣

(a)

≤ sup
x∈S

ν∈∆(Ai)

∣∣∣E ai∼ν
a−i∼π−i(x)

[ḡ(x, a)]− E ai∼ν
a−i∼π−i(x)

[ḡ′(x, a)]
∣∣∣

= sup
x∈S

ν∈∆(Ai)

∣∣∣E ai∼ν
a−i∼π−i(x)

[ḡ(x, a)− ḡ′(x, a)]
∣∣∣

≤ sup
x∈S

ν∈∆(Ai)

E ai∼ν
a−i∼π−i(x)

|ḡ(x, a)− ḡ′(x, a)|

≤ sup
x∈S
a∈A

∣∣∣ḡ(x, a)− ḡ′(x, a)
∣∣∣

≤ sup
x∈S
a∈A

|min{w̄⊤
i ϕ(x, a) + βū(x, a), H} −min{(w̄′

i)
⊤ϕ(x, a) + βū′(x, a), H}|

(b)

≤ sup
x∈S
a∈A

|w̄⊤
i ϕ(x, a) + βū(x, a)− ((w̄′

i)
⊤ϕ(x, a) + βū′(x, a))|

≤ sup
x∈S
a∈A

|(w̄i − w̄′
i)

⊤ϕ(x, a)|+ β sup
x∈S
a∈A

|ū(x, a)− ū′(x, a)|

(A.2)

Inequality (a) follows from the property |maxν∈∆(Ai) f(ν) − maxν∈∆(Ai) h(ν)| ≤ maxν∈∆(Ai) |f(ν) − h(ν)|
for any f, h : ∆(Ai) → R since, letting ν̄ = argmaxν∈∆(Ai) f(ν) and ν̃ = argmaxν∈∆(Ai) h(ν), we ob-
serve that: (i) if maxν∈∆(Ai) f(ν) > maxν∈∆(Ai) h(ν), then maxν∈∆(Ai) f(ν) − maxν∈∆(Ai) h(ν) ≤ f(ν̄) −
h(ν̄) ≤ maxν∈∆(Ai) |f(ν) − h(ν)|; and (ii) if maxν∈∆(Ai) f(ν) ≤ maxν∈∆(Ai) h(ν), then maxν∈∆(Ai) h(ν) −
maxν∈∆(Ai) f(ν) ≤ h(ν̃) − f(ν̃) ≤ maxν∈∆(Ai) |f(ν) − h(ν)|. Inequality (b) follows from min{·, H} being a non-
expansive operator.

We can continue bounding,

dist(V, V ′)
(a)

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣(w̄i − w̄′
i)

⊤ϕ
∣∣∣

+ sup
ϕ:∥ϕ∥≤1

β
∣∣∣√ϕ⊤Λ̄−1ϕ−

√
ϕ⊤(Λ̄′)−1ϕ

∣∣∣
(b)

≤ ∥w̄i − w̄′
i∥+ sup

ϕ:∥ϕ∥≤1

β
√∣∣ϕ(x, a)⊤(Λ̄−1 − (Λ̄′)−1)ϕ(x, a)

∣∣
= ∥w̄i − w̄′

i∥+ β
√∥∥Λ̄−1 − (Λ̄′)−1

∥∥
≤ ∥w̄i − w̄′

i∥+ β
√∥∥Λ̄−1 − (Λ̄′)−1

∥∥
F

(A.3)

where (a) follows from the assumption supx∈S maxa∈A ∥ϕ(x, a)∥ ≤ 1, and (b) follows from the inequality |√p−√
q| ≤√

|p− q| for any p, q ≥ 0. Now, we notice that (A.3) is a bound of the same form of equation (28) from (Jin et al., 2020,
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Lemma D.6), and so we can use the proof of this lemma to obtain that the ϵi-covering number of Vi, denoted by Nϵi can be
upper bounded as logNϵi ≤ d log(1 + 4L/ϵ) + d2 log

[
1 + 8d1/2β2/(λϵ2)

]
. This finishes the proof.

B PROVING THEOREM 3.1

For simplicity, we will use the following notation: at episode k, we denote πi,k = {πi,k
h }h∈[H] as the policy induced by

{Qi,k
h }Hh=1 as performed by agent i ∈ [n] (line 14 of Algorithm 1) across time steps h ∈ [H], thus for a fixed step h ∈ [H]

we let V i,k
h (xk

h) = Ea∼πk
h(x

k
h)
[Qi,k

h (xk
h, a)] with πk

h(x
k
h) being a Nash equilibrium from the stage game (Qi,k

h (xk
h, ·))i∈[n].

With some abuse of notation, we similarly define V i,k
h (x) = Ea∼πk

h(x)
[Qi,k

h (x, a)] with πk
h(x) being a Nash equilibrium

from the game (Qi,k
h (x, ·))i∈[n]. Let ϕτ

h := ϕ(xτ
h, a

τ
h).

B.1 PRELIMINARY TECHNICAL RESULTS

We now bound the parameters {wi,k
h }(i,h,k)∈[n]×[H]×[K] from the NQOVI algorithm.

Lemma B.1 (Parameter bound – Lemma B.2 in (Jin et al., 2020)). For any (i, k, h) ∈ [n]× [K]× [H], the parameter wi,k
h

in the NQOVI algorithm satisfies
∥∥∥wi,k

h

∥∥∥ ≤ (1 +H)
√

d(k−1)
λ .

Now we use Lemma A.2 and Lemma A.1 to prove a useful concentration bound for NQOVI.

Lemma B.2 (Concentration bound on value functions for NQOVI – Lemma B.3 in (Jin et al., 2020)). Consider the setting
of Theorem 3.1. There exists an absolute constant C independent of cβ such that for any fixed δ ∈ (0, 1), the following event
Ei holds with probability at least 1− δ for a fixed i ∈ [n]: for every (k, h) ∈ [K]× [H],∥∥∥∥∥

k−1∑
τ=1

ϕτ
h[V

i,k
h+1(x

τ
h+1)− PhV

i,k
h+1(x

τ
h, a

τ
h)]

∥∥∥∥∥
(Λk

h)
−1

≤ CdH
√
log[(cβ + 1)dKH/δ].

The following lemma crucially depends on the principle of optimism.

Lemma B.3 (Difference with an arbitrary Q-function – Lemma B.4 in (Jin et al., 2020)). Consider the setting of Theorem 3.1.
There exists an absolute constant cβ such that for β = cβdH

√
ι with ι = log(dKH/δ) and any fixed joint policy π̄, such

that for any i ∈ [n]: given the event Ei defined in Lemma B.2, we have for all (x, a, h, k) ∈ S ×A× [H]× [K] that

⟨ϕ(x, a), wi,k
h ⟩ −Qi,π̄

h (x, a) = Ph(V
i,k
h+1 − V i,π̄

h+1)(x, a) + ∆i,k
h (x, a),

for some ∆i,k
h (x, a) such that |∆i,k

h (x, a)| ≤ β
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a).

The following key lemma makes use of optimism by using Lemma B.3 and of the fact that we choose a Nash equilibrium at
each stage game.

Lemma B.4 (Optimism bounds). Consider the setting of Theorem 3.1. Given the event Ei defined in Lemma B.2, we have
that for all (x, a, h, k) ∈ S ×A× [H]× [K],

Q
i,br(πk

−i),π
k
−i

h (x, a) ≤ Qi,k
h (x, a) and V

i,br(πk
−i),π

k
−i

h (x) ≤ V i,k
h (x).

Proof. We prove the claims by induction in h = H + 1, . . . , 1. The base case H + 1 is trivial, since Q
i,br(πk

−i),π
k
−i

H+1 (x, a) =

Qi,k
H+1(x, a) = 0. Now, at step h+ 1 we have the induction hypothesis Q

i,br(πk
−i),π

k
−i

h+1 (x, a) ≤ Qi,k
h+1(x, a). Then we have

that
V

i,br(πk
−i),π

k
−i

h+1 (x)
(a)
= max

ν∈∆(Ai)
E ai∼ν
a−i∼πk

−i,h+1(x)
[Q

i,br(πk
−i),π

k
−i

h+1 (x, a)]

(b)

≤ max
ν∈∆(Ai)

E ai∼ν
a−i∼πk

−i,h+1(x)
[Qi,k

h+1(x, a)]

(c)
= Ea∼πk

h+1(x)
[Qi,k

h+1(x, a)]

= V i,k
h+1(x, a),

(B.1)
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where (a) follows by definition of best response, (b) from the induction hypothesis, and (c) from the fact that NQOVI chooses
a Nash equilibrium at every stage game.

Now, we have

Q
i,br(πk

−i),π
k
−i

h (x, a)
(a)

≤ ⟨ϕ(x, a), wi,k
h ⟩+ Ph(V

i,k
h+1 − V

i,br(πk
−i),π

k
−i

h+1 )(x, a) + β
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

(b)

≤ ⟨ϕ(x, a), wi,k
h ⟩+ β

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

(c)
=⇒ Q

i,br(πk
−i),π

k
−i

h (x, a) ≤ min{⟨ϕ(x, a), wi,k
h ⟩+ β

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a), H}

= Qi,k
h (x, a),

(B.2)

where (a) follows from Lemma B.3, (b) from (B.1), and (c) from Q
i,br(πk

−i),π
k
−i

h ≤ H . From here we can repeat the steps

in (B.1) to obtain V
i,br(πk

−i),π
k
−i

h (x) ≤ V i,k
h (x). This finishes the proof.

B.2 PROOF OF THEOREM 3.1

Let us first condition on the event
⋂n

i=1 Ei where Ei is defined in Lemma B.2. Since P[not Ei] ≤ δ, applying union bound let
us conclude that P[

⋂
i∈[n] Ei] ≥ 1− nδ.

For any k ∈ [K], given the policy πk = {πk
i }i∈[n] defined by NQOVI, we define the functions Q̂k

h and V̂ k
h recursively as:

V̂ k
H+1(x) = Q̂k

H+1(x) = 0 and

Q̂k
h(x, a) = PhV̂

k
h+1(x, a) + 2β

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h,

V̂ k
h (x) = Ea∼πk

h
[Q̂k

h(x, a)]

for any h = H, . . . , 1 and (x, a) ∈ S ×A. Notice that since 2β
√

(ϕk
h)

⊤(Λk
h)

−1ϕk
h ≤ 2β

√
(ϕk

h)
⊤ϕk

h = 2β
∥∥ϕk

h

∥∥ ≤ 2β, we

have that Q̂k
h and V̂ k

h are nonnegative with maximum value 2βH .

Let k ∈ [K]. We claim that for any (h, x, a) ∈ [H]× S ×A,

max
i∈[n]

(Qi,k
h (x, a)−Qi,πk

h (x, a)) ≤ Q̂k
h(x, a), and

max
i∈[n]

(V i,k
h (x)− V i,πk

h (x)) ≤ V̂ k
h (x).

(B.3)

We prove the claim by induction in h = H + 1, . . . , 1. The base case H + 1 is trivial, since Qi,k
H+1(x, a) = Qi,πk

H+1(x, a) =

Q̂k
H+1(x, a) = 0 for every i ∈ [n]. Now, at step h + 1 we have the induction hypothesis maxi∈[h](Q

i,k
h+1(x, a) −

Qi,πk

h+1(x, a)) ≤ Q̂k
h+1(x, a). Taking expectations over a ∼ πk

h+1(x) let us immediately obtain

max
i∈[h]

(V i,k
h+1(x)− V i,πk

h+1 (x)) ≤ V̂ k
h+1(x). (B.4)

Now, for any i ∈ [n],

Qi,k
h (x, a)−Qi,πk

h (x, a) = min{(wi,k
h )⊤ϕ(x, a) + β

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a), H} −Qi,πk

h (x, a)

(a)

≤ Ph(V
i,k
h+1 − V i,πk

h+1 )(x, a) + 2β
√

ϕ(x, a)⊤(Λk
h)

−1ϕ(x, a)

(b)

≤ PhV̂
k
h+1(x, a) + 2β

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

= Q̂k
h(x, a),

(B.5)
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where (a) follows from Lemma B.3 and (b) from (B.4). Taking expectations let us obtain V i,k
h (x) − V i,πk

h (x) ≤ V̂ k
h (x).

This finishes the proof for the claim in (B.3).

We now introduce the following notation: δkh := Ea∼πk
h(x

k
h)
[Q̂k

h(x
k
h, a)] − Q̂k

h(x
k
h, a

k
h), and ξkh+1 := PhV̂

k
h+1(x

k
h, a

k
h) −

V̂ k
h+1(x

k
h+1) with ξk1 := 0. Then, for any (h, k) ∈ [H]× [K],

V̂ k
h (xk

h) = Ea∼πk
h(x

k
h)
[Q̂k

h(x
k
h, a)]

= δkh + Q̂k
h(x

k
h, a

k
h)

= δkh + PhV̂
k
h+1(x

k
h, a

k
h) + 2β

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h

= δkh + ξkh+1 + 2β
√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h + V̂ k
h+1(x

k
h+1).

Now, let us focus on the regret performance metric.

Regret(K) =

K∑
k=1

max
i∈[n]

(V
i,br(πk

−i),π
k
−i

1 (so)− V i,πk

1 (so))

(a)

≤
K∑

k=1

max
i∈[n]

(V i,k
1 (so)− V i,πk

1 (so))

(b)

≤
K∑

k=1

V̂ k
1 (so)

=

K∑
k=1

H∑
h=1

ξkh︸ ︷︷ ︸
(I)

+

K∑
k=1

H∑
h=1

δkh︸ ︷︷ ︸
(II)

+2β

K∑
k=1

H∑
h=1

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h︸ ︷︷ ︸
(III)

,

(B.6)

where (a) follows from Lemma B.4 and the fact that we are conditioned on the event
⋂n

i=1 Ei; (b) follows from (B.3).

We first analyze the term (I) from (B.6). Let us define the filtration {F(k,h)}(k,h)∈L⋆ where L⋆ is a sequence such that
L⋆ ⊂ Z≥1 × [H] and its elements are arranged as follows. Firstly, we let the second coordinate take values from 1 to H
and repeat this periodically ad infinitum, so that each period has H elements of L⋆. Finally, we let the first coordinate take
the value corresponding to the current number of periods so far progressed in the second coordinate (and so its value is
unbounded). Consider any element (k, h) ∈ L⋆. We denote by (k, h)−1 its previous element in L⋆. We let F(k,h) contain
the information of the tuple (xk̄

h̄
, ak̄

h̄
) whose indexes (k̄, h̄) belong to the set L⋆ up to the element (k, h) ∈ L⋆.

We then can conclude that {ξkh}(k,h)∈L⋆ is a martingale difference sequence due to the following two properties:

1. ξkh ∈ F(k,h)−1 . For h = 1, E[ξkh|F(k,h)−1 ] = 0 is trivial, so we focus on h = 2, . . . ,H . Then, since
xk
h ∼ Ph−1(·|xk

h−1, a
k
h−1) (line 16 of NQOVI), we have E[V̂ k

h (xk
h)|F(k,h)−1 ] = Ex′∼Ph−1(·|xk

h−1,a
k
h−1)

[V̂ k
h (x′)] =

Ph−1V̂
k
h (xk

h−1, a
k
h−1), which immediately implies E[ξkh|F(k,h)−1 ] = 0.

2. |ξkh| ≤ |Ph−1V̂
k
h (xk

h−1, a
k
h−1)|+ |V̂ k

h (xk
h)| ≤ 4βH < ∞ since V̂ k

h (x) ∈ [0, 2βH] for any x ∈ S.

Therefore, we can use the Azuma-Hoeffding inequality to conclude that, for any ϵ > 0,

Pr

(
K∑

k=1

H∑
h=1

ξkh > ϵ

)
≤ exp

(
−2ϵ2

(KH)(16β2H2)

)
.

We choose ϵ =
√
8KH3β2 log

(
1
δ

)
. Then, with probability at least 1− δ,

(I) =
K∑

k=1

H∑
h=1

ξkh ≤

√
8KH3β2 log

(
1

δ

)
≤ 8βH

√
KHι, (B.7)
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recalling that ι = log
(
dKH

δ

)
. We call Ē the event such that (B.7) holds.

The term (II) can be analyzed in a very similar way as in (I) to show that {δkh}(k,h)∈L∗ is a martingale difference sequence,
and thus obtain that with probability at least 1− δ,

(II) =
K∑

k=1

H∑
h=1

δkh ≤ 8βH
√
KHι. (B.8)

We call Ẽ the event such that (B.8) holds.

We now analyze the term (III) from (B.6). Then for a fixed h ∈ [H],

K∑
k=1

(ϕk
h)

⊤(Λk
h)

−1ϕk
h ≤ 2 log

[
det(ΛK+1

h )

det(λId)

]

where the inequality follows from the so-called elliptical potential lemma (Abbasi-yadkori et al., 2011, Lemma 11), whose
conditions are satisfied from our bounded sequence {ϕk

h}Kk=1 and the fact that the minimum eigenvalue of Λk
h is lower

bounded by λ = 1 for every (h, k) ∈ [H]× [K]. Now, we have that ΛK+1
h is a positive definite matrix whose maximum

eigenvalue can be bounded as
∥∥ΛK+1

h

∥∥ ≤
∥∥∥∑K

k=1 ϕ
k
h(ϕ

k
h)

⊤
∥∥∥ + λ ≤ K + λ, and so det(ΛK+1

h ) ≤ det((K + λ)Id) =

(K + λ)d. We also have that det(λId) = λd. Then, we obtain that

K∑
k=1

(ϕk
h)

⊤(Λk
h)

−1ϕk
h ≤ 2 log

[
K + λ

λ

]d
= 2d log(K + 1) ≤ 2dι, (B.9)

where the last inequality holds since log(K + 1) ≤ log
(
dKH

δ

)
= ι for d ≥ 2, δ > 0.

Now, going back to term (III),

(III) = 2β

H∑
h=1

K∑
k=1

√
(ϕk

h)
⊤(Λk

h)
−1ϕk

h

(a)
≤ 2β

H∑
h=1

√
K

√√√√ K∑
k=1

(ϕk
h)

⊤(Λk
h)

−1ϕk
h

(b)

≤ 2βH
√
2dKι, (B.10)

where (a) follows from the Cauchy-Schwartz inequality, and (b) from (B.9).

Now, using the results in (B.7), (B.8), and (B.10) back in (B.6), we conclude that,

Regret(K) ≤ 8βH
√
KHι+ 8βH

√
KHι+ 2βH

√
dKι

= 16cβ
√
d2KH5ι2 + 2cβ

√
d3KH4ι2

(a)
≤ 18cβ

√
d3KH5ι2, (B.11)

where (a) follows from
√
ι ≤ ι which follows from equation (C.5).

Finally, applying union bound let us conclude that P[
⋂

i∈[n] Ei ∩ Ē ∩ Ẽ ] ≥ 1 − (n + 2)δ, i.e., our final result holds with
probability at least 1− (n+ 2)δ. This finishes the proof of Theorem 3.1.

C REMAINING PROOFS

Proof of Lemma A.1. First, from our assumptions, for any g ∈ G, there exists a g̃ in the ϵ-covering such that g = g̃ +∆g

with supx∈S |∆g(x)| ≤ ϵ. Then,∥∥∥∥∥
A∑

τ=1

ϕτ{g(xτ )− E[g(xτ )|Fτ−1]}

∥∥∥∥∥
2

Λ−1
A

≤ 2

∥∥∥∥∥
A∑

τ=1

ϕτ{g̃(xτ )− E[g̃(xτ )|Fτ−1]}

∥∥∥∥∥
2

Λ−1
A︸ ︷︷ ︸

(I)

+2

∥∥∥∥∥
A∑

τ=1

ϕτ{∆g(xτ )− E[∆g(xτ )|Fτ−1]}

∥∥∥∥∥
2

Λ−1
A︸ ︷︷ ︸

(II)

,
(C.1)
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where we used ∥a+ b∥ ≤ ∥a∥+ ∥b∥ =⇒ ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2 +2 ∥a∥ ∥b∥ ≤ 2 ∥a∥2 +2 ∥b∥2 for any a, b ∈ Rd, and
which actually holds for any weighted Euclidean norm.

We start by analyzing the term (I) in equation (C.1). Let ετ := g̃(xτ ) − E[g̃(xτ )|Fτ−1]. Now, we observe that 1)
E[ετ |Fτ−1] = 0 and 2) ετ ∈ [−H,H] since g̃(xτ ) ∈ [0, H]. From these two facts we obtain that ετ |Fτ−1 is H-sub-
Gaussian. Therefore we can apply the concentration bound of self-normalized processes from Theorem 1 of (Abbasi-yadkori
et al., 2011) along with a union bound over the ϵ-covering of G to conclude that, with probability at least 1− δ,

(I) =

∥∥∥∥∥
A∑

τ=1

ϕτετ

∥∥∥∥∥
2

Λ−1
A

≤ log

(
det(ΛA)

1/2 det(λId)
−1/2

δ/Nϵ

)
(a)
≤ 2H2

(
d

2
log

(
λ+AB/d

λ

)
+ log

(
Nϵ

δ

))
, (C.2)

where (a) follows from det(λId) = λd and from the determinant-trace inequality from Lemma 10 in (Abbasi-yadkori et al.,
2011) which let us obtain det(ΛA) ≤ (λ+AB/d)d.

Now we analyze the term (II) in equation (C.1). Let ε̄τ := ∆g(xτ )− E[∆g(xτ )|Fτ−1]. Then,

∥∥∥∥∥
A∑

τ=1

ϕτ ε̄τ

∥∥∥∥∥ ≤
A∑

τ=1

∥ϕτ ε̄τ∥
(a)
≤

A∑
τ=1

|ε̄τ | ≤
A∑

τ=1

|∆g(xτ )|+ |E[∆g(xτ )|Fτ−1]| ≤
A∑

τ=1

2ϵ = 2Aϵ,

where (a) follows from ∥ϕτ∥ ≤ 1. Thus, using this result, we obtain

(II) ≤ 1

λ

∥∥∥∥∥
A∑

τ=1

ϕτ ε̄τ

∥∥∥∥∥
2

≤ 1

λ
4A2ϵ2.

We finish the proof by multiplying by two the terms (I) and (II), and then adding them up to use them as an upper bound
to (C.1) .

Proof of Lemma B.1. For any vector v ∈ Rd,

|v⊤wi,k
h | = |v⊤(Λk

h)
−1

k−1∑
τ=1

ϕτ
h[r

i
h + max

a∼π∗

π∗ as in line 7 of Algorithm 1

Qi,k
h+1(x

τ
h+1, a)]|

(a)
≤ (1 +H)

k−1∑
τ=1

|v⊤(Λk
h)

−1ϕτ
h|

(b)

≤ (1 +H)

√√√√[ k−1∑
τ=1

v⊤(Λk
h)

−1v

][k−1∑
τ=1

(ϕτ
h)

⊤(Λk
h)

−1ϕτ
h

]
(c)
≤ (1 +H)

√
d

√√√√k−1∑
τ=1

v⊤(Λk
h)

−1v

(d)
≤ (1 +H)

√
d(k − 1)

λ
∥v∥ ,

where (a) follows from the bounded rewards and Qi,k
h+1(·, ·) ≤ H; (b) from applying Cauchy-Schwarz twice as in the

following series of inequalities: given q = (q1, . . . , qm) and q = (p1, . . . , pm) where qi and pi are vectors of same arbitrary
dimension we have

∑m
i=1 |q⊤i pi| ≤

∑m
i=1 ∥qi∥ ∥pi∥ ≤

√∑m
i=1 ∥qi∥

√∑m
i=1 ∥pi∥ ; (c) follows from (Jin et al., 2020,

Lemma D.1); and (d) from (Λk
h)

−1 ⪯ λ−1Id. The proof concludes by considering that
∥∥∥wi,k

h

∥∥∥ = maxv:∥v∥=1 |v⊤wi,k
h |.
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Proof of Lemma B.2. We obtain that, with probability at least 1− δ, δ ∈ (0, 1),∥∥∥∥∥
k−1∑
τ=1

ϕτ
h[V

i,k
h+1(x

τ
h+1)− PhV

i,k
h+1(x

τ
h, a

τ
h)]

∥∥∥∥∥
2

(Λk
h)

−1

(a)
≤ 4H2

[
d

2
log

(
λ+ (k − 1)/d

λ

)
+ logNϵi + log

1

δ

]
+

8(k − 1)2ϵ2

λ

(b)

≤ 4H2

[
d

2
log

(
λ+ (k − 1)/d

λ

)
+ d log

(
1 +

4(1 +H)
√

d(k − 1)

ϵ
√
λ

)

+d2 log

(
1 +

8d1/2β2

λϵ2

)
+ log

1

δ

]
+

8(k − 1)2ϵ2

λ

(C.3)

where (a) is a direct application of Lemma A.1; and (b) follows from the realization that, from lines 9 and 10 in Algorithm 1,
V i,k
h+1(·) ∈ V with V as in Lemma A.2 and so we can use the bound on the covering number derived in such lemma with

L = (1 +H)
√

d(k−1)
λ by using the bound from Lemma B.1.

Recalling that λ = 1 and β = cβdHι with ι = log(dKH/δ) in the setting of Theorem 3.1, we claim that, after setting
ϵ = dH

K in our previous equation, there exists an absolute constant C > 0 independent of cβ such that∥∥∥∥∥
k−1∑
τ=1

ϕτ
h[V

i,k
h+1(x

τ
h+1)− PhV

i,k
h+1(x

τ
h, a

τ
h)]

∥∥∥∥∥
2

(Λk
h)

−1

≤ Cd2H2 log((cβ + 1)dKH/δ). (C.4)

Proving (C.4) would conclude the proof.

We first introduce a couple of useful results:

ι2 = log

(
dKH

δ

)
≥ log(dKH) ≥ log(4) > 1, (C.5)

log

(
(cβ + 1)dKH

δ

)
= log(cβ + 1) + ι ≥ ι > 1. (C.6)

Replacing λ = 1 and ϵ = dH
K in the right-hand side of (C.3) and doing some algebraic calculations, let us conclude that

(C.3) ≤ 4d2H2

[
log

(
1 +

K

d

)
+ log

(
1 +

8K3/2

d1/2

)
+ log

(
1

δ

(
1 +

8β2K2

d3/2H2

))]
+ 8d2H2.

(C.7)

Replacing β = cβdH
√
ι in the previous expression and doing some algebraic work let us obtain

(C.7) ≤ 8d2H2 log

(
1 +

8K3/2

d1/2

)
︸ ︷︷ ︸

(I)

+4d2H2 log

(
1

δ

(
1 + 8c2βd

1/2ιK2
))

︸ ︷︷ ︸
(II)

+ 8d2H2 log

(
(cβ + 1)dKH

δ

) (C.8)

where the inequality has made use of (C.6). We now upper bound the terms highlighted in (C.8). Then,

(I) ≤ 8d2H2 log
(
1 + 8K3/2

)
(a)
≤ 8d2H2 log

(
(1 + cβ)

2(dKH)2

δ2

)
+ 8d2H2 log(9) log

(
(cβ + 1)dKH

δ

)
= (16 + 8 log(9))d2H2 log

(
(cβ + 1)dKH

δ

)
,
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where (a) follows from (C.6) and cβ > 0. Similarly,

(II)
(a)
≤ 4d2H2 log

(
8(cβ + 1)2ι(dKH)2

δ

)
(b)

≤ 4d2H2 log

(
(cβ + 1)2ι(dKH)2

δ2

)
+ 4d2H2 log(8)

= 4d2H2 log

(
(cβ + 1)2(dKH)2

δ2

)
+ 4d2H2 log(ι) + 4d2H2 log(8)

(c)
≤ 8d2H2 log

(
(cβ + 1)dKH

δ

)
+ 4d2H2ι+ 4d2H2 log(8)

(d)
≤ (12 + 4 log(8))d2H2 log

(
(cβ + 1)dKH

δ

)
where (a) follows from cβ > 0, (b) from δ2 < δ, (c) from log(ι) < ι (since ι > 1 from (C.5)), and (d) from ι ≤
log
(

(cβ+1)dKH
δ

)
and from (C.6).

Now, joining the upper bounds for (I) and (II) in (C.8), we finally obtain∥∥∥∥∥
k−1∑
τ=1

ϕτ
h[V

i,k
h+1(x

τ
h+1)− PhV

i,k
h+1(x

τ
h, a

τ
h)]

∥∥∥∥∥
2

(Λk
h)

−1

≤ (36 + 8 log(9) + 4 log(8))d2H2 log((cβ + 1)dKH/δ)

which proves the claim and thus the proof.

Proof of Lemma B.3. For any (i, k) ∈ [n]× [K],

wi,k
h − wi,π̄

h = (Λk
h)

−1
k−1∑
τ=1

ϕτ
h(r

τ
h + V i,k

h+1(x
τ
h+1))− wi,π̄

h

(a)
= (Λk

h)
−1

k−1∑
τ=1

ϕτ
h(ϕ

τ
h
⊤wi,π̄

h − PhV
i,π̄
h+1(x

τ
h, a

τ
h) + V i,k

h+1(x
τ
h+1))− wi,π̄

h

= (Λk
h)

−1

((
k−1∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤ − Λk
h

)
wi,π̄

h

+

k−1∑
τ=1

ϕτ
h

(
V i,k
h+1(x

τ
h+1)− PhV

i,π̄
h+1(x

τ
h, a

τ
h)
))

(b)
= (Λk

h)
−1

(
−λwi,π̄

h +

k−1∑
τ=1

ϕτ
h(V

i,k
h+1(x

τ
h+1)− PhV

i,π̄
h+1(x

τ
h, a

τ
h))

)

= −λ(Λk
h)

−1wi,π̄
h︸ ︷︷ ︸

(I)

+(Λk
h)

−1
k−1∑
τ=1

ϕτ
h(V

i,k
h+1(x

τ
h+1)− PhV

i,k
h+1(x

τ
h, a

τ
h))︸ ︷︷ ︸

(II)

+ (Λk
h)

−1
k−1∑
τ=1

ϕτ
hPh(V

i,k
h+1 − V i,π̄

h+1)(x
τ
h, a

τ
h)︸ ︷︷ ︸

(III)

.

where (a) follows from the fact that, for any (x, a, h) ∈ S ×A× [H], Qi,π̄
h (x, a) := ⟨ϕ(x, a), wi,π̄

h ⟩ = (rh+PhV
i,π̄
h+1)(x, a)

for some wi,π̄
h ∈ Rd (this follows from Proposition A.1 and the Bellman equation); and (b) follows from the definition of

Λk
h. Since ⟨ϕ(x, a), wi,k

h ⟩ −Qi,π̄
h (x, a) = ⟨ϕ(x, a), wi,k

h − wi,π̄
h ⟩ for any (x, a) ∈ S ×A, then we look to bound the inner

product of each of the terms (I) – (III) with the term ϕ(x, a).
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Regarding the term (I),

|⟨ϕ(x, a), (I)⟩| = |⟨ϕ(x, a), λ(Λk
h)

−1wi,π̄
h ⟩| = |λ⟨(Λk

h)
−1/2ϕ(x, a), (Λk

h)
−1/2wi,π̄

h ⟩|

≤ λ
∥∥∥wi,π̄

h

∥∥∥
(Λk

h)
−1

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a) ≤

√
λ
∥∥∥wi,π̄

h

∥∥∥√ϕ(x, a)⊤(Λk
h)

−1ϕ(x, a)

where the last inequality follows from ∥ · ∥(Λk
h)

−1 ≤ 1√
λ
∥ · ∥.

For the term (II), since the event Ei from Lemma B.2 is given and λ = 1, we directly obtain

|⟨ϕ(x, a), (II)⟩| =

∣∣∣∣∣
〈
ϕ(x, a), (Λk

h)
−1

k−1∑
τ=1

ϕτ
h(V

i,k
h+1(x

τ
h+1)− PhV

i,k
h+1(x

τ
h, a

τ
h))

〉∣∣∣∣∣
≤

∥∥∥∥∥
k−1∑
τ=1

ϕτ
h(V

i,k
h+1(x

τ
h+1)− PhV

i,k
h+1(x

τ
h, a

τ
h))

∥∥∥∥∥
(Λk

h)
−1

∥ϕ(x, a)∥(Λk
h)

−1

≤ CdH
√

log((cβ + 1)dKH/δ)
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

where C is an absolute constant independent of cβ > 0.

For the term (III),

⟨ϕ(x, a), (III)⟩ =

〈
ϕ(x, a), (Λk

h)
−1

k−1∑
τ=1

ϕτ
hPh(V

i,k
h+1 − V i,π̄

h+1)(x
τ
h, a

τ
h)

〉

=

〈
ϕ(x, a), (Λk

h)
−1

k−1∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤
∫
S
(V i,k

h+1 − V i,π̄
h+1)(x

′)dµh(x
′)

〉
(a)
=

〈
ϕ(x, a),

∫
S
(V i,k

h+1 − V i,π̄
h+1)(x

′)dµh(x
′)

〉
︸ ︷︷ ︸

(III.1)

−λ

〈
ϕ(x, a), (Λk

h)
−1

∫
S
(V i,k

h+1 − V i,π̄
h+1)(x

′)dµh(x
′)

〉
︸ ︷︷ ︸

(III.2)

where (a) follows from the definition of Λk
h. We immediately see from our assumption on linear stochastic game that

(III.1) = Ph(V
i,k
h+1 − V i,π̄

h+1)(x, a) and

|(III.2)| ≤ λ

∥∥∥∥∫
S
(V i,k

h+1 − V i,π̄
h+1)(x

′)dµh(x
′)

∥∥∥∥
(Λk

h)
−1

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

≤
√
λ

∥∥∥∥∫
S
(V i,k

h+1 − V i,π̄
h+1)(x

′)dµh(x
′)

∥∥∥∥√ϕ(x, a)⊤(Λk
h)

−1ϕ(x, a)

(a)
≤

√
λ2H

∫
S
∥µh(x

′)∥ dx′
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

(b)

≤ 2H
√
dλ
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

where (a) follows from the value functions being bounded, and (b) from the definiton of the linear MDP.

Finally, putting it all together with λ = 1, we conclude that,

|⟨ϕ(x, a), wi,k
h ⟩ −Qi,π̄

h (x, a)− Ph(V
i,k
h+1 − V i,π̄

h+1)(x, a)|

≤
(∥∥∥wi,π̄

h

∥∥∥+ CdH
√
log((cβ + 1)dKH/δ) + 2H

√
d

)√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

≤
(
4H

√
d+ CdH

√
log((cβ + 1)dKH/δ)

)√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)
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where the last inequality follows from Proposition A.1.

Now, from equation (C.6) in Lemma B.2, we have
√

log((cβ + 1)dKH/δ) > 1 independently from cβ > 0, and thus

|⟨ϕ(x, a), wi,k
h ⟩ −Qi,π̄

h (x, a)− Ph(V
i,k
h+1 − V i,π̄

h+1)(x, a)| ≤ C̄dH
√
log((cβ + 1)dKH/δ)

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a),

for an absolute constant C̄ = C + 4 independent of cβ .

Finally, to prove this lemma, we only need to show that there exists a choice of the absolute positive constant cβ so that
C̄
√
log((cβ + 1)dKH/δ) ≤ cβ

√
ι, which is equivalent to

C̄
√
ι+ log(cβ + 1) ≤ cβ

√
ι (C.9)

since
√

log
(

(1+cβ)dKH
δ

)
=
√
log
(
dKH

δ

)
+ log(1 + cβ) =

√
ι+ log(1 + cβ).

Two facts are known: 1) ι ∈ [log(2),∞) by its definition and d ≥ 2; and 2) C̄ is an absolute constant independent of cβ .

Since we know we are looking for cβ > 0 and using the bound log(x) ≤ x− 1 for any positive x ∈ R, we conclude that
proving the following equation implies (C.9),

C̄
√
ι+ cβ ≤ cβ

√
ι. (C.10)

After some algebraic calculations, we can show that

cβ ≥ C̄2

2 log(2)
+

1

2

√
C̄4

(log(2))2
+ 4C̄2 (C.11)

suffices. This finishes the proof.
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