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Abstract

Sequential decision-making (SDM) methods en-
able AI agents to compute an action policy toward
achieving long-term goals under uncertainty. Exist-
ing research has shown that contextual knowledge
in declarative forms can be used for improving
the performance of SDM methods. However, the
contextual knowledge from people tends to be in-
complete and sometimes inaccurate, which greatly
limits the applicability of knowledge-based SDM
methods. In this paper, we develop a novel algo-
rithm for knowledge-based SDM, called PERIL,
that learns from interaction experience to reason
about contextual knowledge, as applied to urban
driving scenarios. Experiments have been con-
ducted using CARLA, a widely used autonomous
driving simulator. Results demonstrate PERIL’s
superiority in comparison to existing knowledge-
based SDM baselines.

1 INTRODUCTION

Artificial intelligence agents need to estimate the current
world state while determining what to do based on the cur-
rent state estimation, resulting in the problem of sequential
decision-making (SDM) under partial observability [Kael-
bling et al., 1998, Hausknecht and Stone, 2015, Jaakkola
et al., 1994]. Existing research has demonstrated that an
agent’s SDM capability can be improved by reasoning
with contextual knowledge to estimate the current world
state [Zhang and Stone, 2015, Chitnis et al., 2018]. How-
ever, the contextual knowledge provided by domain experts
can hardly be comprehensive, and sometimes includes inac-
curate information. Motivated by the observation that AIs
need significant efforts to recover from inaccurate knowl-
edge in SDM tasks [Amiri et al., 2020], we aim to develop
an approach to help the SDM robots learn to reason about

contextual knowledge.

Consider a lane changing scenario in urban driving. On the
one hand, the vehicle needs to perceive the environment,
e.g., using Lidar range sensors, to detect whether there is
sufficient room in the desired lane. The perception output,
together with other contextual information (say weather and
traffic), is then processed in a reasoning system to estimate
the world state, including the intentions of other drivers
(humans or not). On the other hand, the vehicle can plan ac-
tions to actively facilitate lane changing, such as using turn
signals to request space, and slowing down to find room for
the lane change. Existing methods have enabled robots to
logically reason about the world state, and use the reasoning
results to facilitate decision making [Zhang and Sridharan,
2022]. However, how to learn from a robot’s decision mak-
ing experience to improve the reasoning capability for SDM
tasks is still an open problem.

In this paper, we develop a learning algorithm for
knowledge-based SDM, called perceptual reasoning and
interactive learning (PERIL), as shown in Figure 1 1. We
use a perceptual reasoner that consists of a deep supervised
learning classifier and a knowledge base of logic rules for
perceiving and reasoning about the current world state. The
perceptual reasoner takes as input streaming data from on-
board sensors and observable facts, such as current time and
weather. The contextual information is processed together to
compute a distribution representing the current world state
estimation. The distribution is then provided to the interac-
tion component as an informative prior to guide its action
selections toward achieving long-term goals.

The main contributions of this paper includes:

• A formal statement of the knowledge-based SDM prob-
lem we are concerned with, where we specify the algo-
rithm input and output, as well as the assumptions;

• The PERIL algorithm that enables AIs to learn from
both contextual knowledge and data gathered at run-
time to close the perceive-reason-act loop;
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Figure 1: An overview of PERIL. The perceptual reasoner consists of a classifier for passive perception and a knowledge base
of rules and weights for automated reasoning. It receives streaming data of feature vectors and facts from the environment.
Based on the perception state estimation of the classifier and observed facts, the perceptual reasoner uses the knowledge
base to infer an informative prior to compute the initial belief for the interaction. In the interaction, world dynamics refers
to the way in which the environment and the state evolve over time (in POMDPs, world dynamics is represented by the
transition function). Then a policy suggests the best action for information collection based on the belief at each time step.
Finally, the loop is closed by providing feedback containing labels and ground truth to the perceptual reasoner, training the
classifier, and learning the new weights of rules.

• Extensive experiments and illustrative trials in urban
driving scenarios using CARLA-based [Dosovitskiy
et al., 2017] simulation for demonstrating the superior-
ity of our approach.

In comparison to competitive baselines [Amiri et al., 2020,
Ulbrich and Maurer, 2013], we found that PERIL improves
the autonomous vehicle’s overall performance in sequen-
tial decision-making by increasing cumulative rewards and
reducing interaction costs.

2 RELATED WORK

This paper is about incorporating perceptual reasoning and
interactive learning into sequential decision-making under
uncertainty. We discuss research topics that are relevant to
this work.

Researchers have developed methods that incorporate hu-
man knowledge in declarative forms into planning under
uncertainty frameworks [Göbelbecker et al., 2011, Zhang
and Stone, 2015, Hanheide et al., 2017, Chitnis et al., 2018,
Amiri et al., 2020, 2022]. There are other works that studied
how human knowledge can be used to improve the perfor-
mance of reinforcement learning (RL) agents [Zhang et al.,
2022b, Leonetti et al., 2016, Yang et al., 2018, Icarte et al.,
2022, Jiang et al., 2019, Hayamizu et al., 2021, Zhang et al.,
2022b]. A survey paper summarized research on knowledge-
based sequential decision making [Zhang and Sridharan,

2022]. Those methods use a knowledge base that cannot be
updated as the agent becomes more experienced. Recently,
LLM-based planning methods have been proposed, such as
SayCan [Ahn et al., 2022], and Inner Monologue [Huang
et al., 2022]. Nevertheless, these methods lack the ability
to reason about human knowledge (COWP and LLM+P are
exceptions [Liu et al., 2023, Ding et al., 2022b]), whereas
our approach explicitly addresses quantitative uncertainty.
In comparison, PERIL learns to reason about contextual
knowledge, producing agent behaviors that are robust to
imperfect knowledge.

AIs, including autonomous vehicles, that operate in the real
world require the simultaneous capabilities of perception for
estimating the current world state, and planning to achieve
long-term goals [Nilsson, 1984, Thrun et al., 2005]. It is
a common practice that the perception component outputs
the current world state in a symbolic form to the planning
component [Khandelwal et al., 2017, Veloso, 2018, Shuai
and Chen, 2019]. There is recent research from the literature
that tightly integrates the perception and planning compo-
nents [Hausknecht and Stone, 2015, Lee et al., 2020, Wang
et al., 2020, Srinivas et al., 2018, Ding et al., 2022a]. There is
the survey paper on interactive perception that summarized
relevant research [Bohg et al., 2017]. They used machine
learning techniques, e.g., a deep neural network, to esti-
mate the current world state. What is passed to the planning
component includes not only the current state in symbolic
forms, but also the (un)reliability information. Also, recent
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research developed an approximate algorithm to help the
agent choose a subset of exogenous state variables to reason
about when planning and planning in such a reduced state
space can often be significantly more efficient than planning
in the full model [Chitnis and Lozano-Pérez, 2020]. There
exists research that uses universal planning networks to learn
underlying representations through visual perceptions so as
to optimize planning. The learned representation can be
leveraged to transfer task-related semantics to other agents
for more challenging tasks. PERIL shares the same spirit
with the above-mentioned methods by learning complex
representations for estimating the current world state [Srini-
vas et al., 2018]. Beyond that, PERIL leverages contextual
knowledge from domain experts to refine the output from
neural networks (CNNs in our case) before passing it along
to the planning component.

Autonomous vehicles, as a type of robots, need to plan their
behaviors under partial observability [Bai et al., 2015]. More
specifically, the on-board sensors cannot provide a global
view of the environment, and the vehicles need to estimate
the current world state based on the streaming data collected
over time. POMDPs are well suitable for planning behaviors
under partial observability [Kaelbling et al., 1998], and have
been used in planning for autonomous vehicles [Ulbrich
and Maurer, 2013, Wray et al., 2017, Suchan et al., 2019,
Wray et al., 2021, Ha et al., 2020, Zhang et al., 2022a]. For
instance, Wray et al. used POMDPs to reason at the times
when the perception data is limited, but their approach does
not leverage any contextual knowledge for reasoning.

Work closest to this research is an algorithm called
LCORPP [Amiri et al., 2020] that learns from data and
reasons about human knowledge to estimate the world state.
They used LSTM [Hochreiter and Schmidhuber, 1997] for
sequence classification, and P-log [Baral et al., 2009] for rep-
resenting and reasoning about contextual knowledge. Other
than a different application domain, the main difference
from that work is that PERIL is able to learn from the inter-
action experience to improve its reasoning capability, using
Markov logic networks [Richardson and Domingos, 2006,
Domingos and Lowd, 2019]. To the best of our knowledge,
PERIL is the first work that learns to use human knowledge
for sequential decision-making under uncertainty.

3 BACKGROUND

In this section, we summarize three key techniques used in
this paper: convolutional neural networks, Markov logic net-
works, and partially observable Markov decision processes.

3.1 CONVOLUTIONAL NEURAL NETWORKS

A convolutional neural network (CNN) is comprised of con-
volutional layers followed by fully connected layers as in

a standard multilayer neural network [LeCun et al., 1998].
The basic building blocks of CNN consist of convolutional,
pooling, activation, and fully-connected layers. In a convo-
lutional layer, a filter is passed over the image, viewing a
few pixels at a time. The convolution operation is a dot prod-
uct of the original pixel values with weights defined in the
filter. Pooling layers are used for downsampling, and fully-
connected layers output a list of probabilities for different
possible labels. The activation layers introduce non-linearity.
The architecture of a CNN is designed to take advantage of
the 2D structure of an input image (or other 2D input such
as a speech signal). We use CNNs for the perception of road
conditions in this work.

3.2 MARKOV LOGIC NETWORKS

Markov networks are undirected cyclic probabilistic graph-
ical models where each edge has a potential func-
tion [Richardson and Domingos, 2006, Domingos and Lowd,
2019]. Markov logic networks (MLNs) are a template for
building Markov networks. They are first-order knowledge
bases with a weight associated with each rule. A first-order
logic knowledge base is a set of hard constraints on the set
of possible worlds: if a world violates even one formula, it
has zero probability. The basic idea in MLNs is to soften
these constraints: When a world violates one formula in
the knowledge base it is less probable, but not impossible.
An MLN program is a set of pairs (Fi, wi), where Fi is
a formula in first-order logic and wi is a real number that
specifies the weight of the formula. Learning in MLNs can
be done using the following equation:

∂logPw(X = x)

∂wi
= ni(x)−

∑
x′

Pw(X = x′)ni(x
′)

where the sum is over all possible databases x′, and
Pw(X = x′) is P (X = x′) computed using current weight
vector w = (w1, ..., wi, ...) and ni(x) is the true groundings
in data x. In this paper, we use MLNs to enable an SDM
agent to not only reason with human knowledge, but also
learn to improve its reasoning capability from experience.

3.3 PARTIALLY OBSERVABLE MDPS

Markov decision processes (MDPs) can be used for SDM.
When the environment is not fully observable, we can
use POMDPs that generalize MDPs by assuming par-
tial observability of the current state [Kaelbling et al.,
1998]. A partially observable MDP (POMDP) is a tuple
(S,A, T,R, Z,O, γ) where S is the state space, A is the
action set, T is the state-transition function, R is the reward
function, O is the observation function, Z is the observation
set, and γ is a discount factor that determines the planning
horizon.
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A POMDP agent maintains a belief state distribution b with
observations (z ∈ Z) using the Bayes update rule:

b′(s′) =
O(s′, a, z)

∑
s∈S T (s, a, s′)b(s)

Pr(z|a, b)

where s is the state, a is the action, Pr(z|a, b) is a normal-
izer, and z is an observation. Solving a POMDP produces
a policy that maps the current belief state distribution to an
action toward maximizing long-term utilities.

4 PROBLEM STATEMENT

In this section, we formally present the knowledge-based
sequential decision making problem to pave the way for the
learning algorithm developed in this paper. We first define
the problem domain by the tuple below:

〈Θ, ︸ ︷︷ ︸
VR

E,F,H,

VI︷︸︸︷
Q,V ,A, T, Z,O〉.

The agent is provided with contextual knowledge Θ, a finite
set of first-order logical statements (rules). The logical rules
of Θ are over a finite set of variables VR = F ∪ E ∪
H ∪ Q, where F , E, H , and Q are sets of fact, evidence,
hidden, and query variables respectively. V is the set of
latent variables for interaction. Interaction variables VI

consists of query and latent variables (VI = Q ∪ V ). The
agent is provided with a finite set of actions A that the
agent can perform. T is a transition function: T (s, a, s′) =
Pr(s′|s, a), where s, s′ ∈ S is the factored space specified
by VI . Z is an observation set, and O is an observation
function: O(s, a, z) = Pr(z|s, a).

Figure 2 depicts the two sets of variables VR and VI for
reasoning and interaction respectively, and their overlap
on Q. Variable sets E, F , H , and Q are mutually exclu-
sive. Logical reasoning with Θ produces the combinatorial
possible settings of VR that are consistent to the logical
statements. The query variables are shared by both interac-
tion and reasoning variables (Q = VR ∩VI , and Q 6= ∅).
Some properties of the variables and their values:

• The agent cannot directly observe the variables of H ∪
Q ∪ V .

• Values of fact variables F can be directly collected
from the world and no perception is needed.

• Variables E are estimated via streaming data λ from
sensory readings (e.g., Lidar sensors and cameras).

In episode i and at execution time t, the agent receives
zt ∈ Z, and sensory readings λt, where λit is a perception
of Ei. After each episode i (i.e., when a terminal state is
reached), values of VR∪VI are provided by a human expert,
and the collected data can be used for learning purposes.

The robot’s task is specified by a reward functionR(s, a)→
R. The objective is to compute a policy π for the robot to
choose actions at each time step toward maximizing its
expected future discounted reward, E [

∑∞
t=0 γ

trt], where γ
is a discount factor, and rt is the reward received at time t.
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ables and their depen-
dencies.

Remarks: The diagram in Fig-
ure 2 can be viewed as an in-
tegration of two subproblems.
The “reasoning” box points
to a logical-probabilistic rea-
soning subproblem [Richard-
son and Domingos, 2006, Baral
et al., 2009, Wang et al., 2019],
whose input includes logical
facts (F ), e.g., current time,
and evidence (E), e.g., us-
ing computer vision techniques.
The values of E are estimated
using streaming data λ. One
can use provided logical-probabilistic rules to infer the val-
ues of Q (Subproblem I). The “interaction” box and the
two variables of A and Z together capture the dependencies
of a POMDP at one specific step, which is the second sub-
problem of planning under uncertainty (Subproblem II).
Variables Q and V form the state space of a POMDP, and
values of Z are used for state estimation. One can compute
a policy π for the POMDP for sequentially selecting a ∈ A.
When the two subproblems overlap on some variables (Q),
one can leverage the reasoning results to guide a robot’s
sequential decision-making. To the best of our knowledge,
it is the first time that this integrated reasoning and planning
problem is formulated using a pictorial diagram.

While existing research has investigated reasoning for plan-
ning under uncertainty [Zhang and Stone, 2015, Chitnis
et al., 2018, Amiri et al., 2020], those robots cannot improve
their reasoning capabilities as the robots become more ex-
perienced. Next, we present a learning algorithm that helps
a robot improve its skills of leveraging domain knowledge
for decision making under uncertainty.

5 ALGORITHM

In this section, we present PERIL, short for “perceptual
reasoning and interactive learning,” a novel algorithm that
addresses the knowledge-based sequential decision-making
problem described in Section 4. A PERIL agent perceives
the environments using supervised learning, reasons over
domain variables using contextual knowledge, and generates
interaction behaviors using a decision-theoretic planning
approach. PERIL’s reasoning capability is enhanced via
relational learning as the agent is more experienced over
time.

Algorithm 1 describes PERIL, the key contribution of this re-
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Algorithm 1 PERIL
Ensure: Domain 〈Θ, E, F,H,Q, V,A, T, Z,O〉, reward func-

tion R, and parameter N
Require: MLN system SolR, POMDP system SolP , relational

learning system LrnR, and supervised learning system LrnS

1: Initialize dataset Φ ← ∅; dataset Ψ ← ∅; π ← random;
classifier C ← random

2: Initialize weights W , w ← 1.0, each w corresponds to θ ∈ Θ

3: Compute π using SolP for POMDP: (Q∪ V,A, T, Z,O,R)
4: while true do {No termination condition – lifelong learning}
5: for i ∈ [0, N − 1] do
6: Get λ, and f from the world, where f is a vector of F
7: e← C(λ); e is a vector and includes the values of E
8: Pr(Q)← SolR(Θ,W, f, e)
9: Compute distribution b over state set S = Q ∪ V using

Pr(Q) and uniform distributions over variables V
10: while s is not a terminal state do
11: Select action a← π(b) and execute a
12: Make an observation z
13: Update b based on a and z
14: end while
15: Collect ground truth values vR = {ê, f̂ , ĥ, q̂}
16: Augment dataset: Φ← Φ ∪ {λ : ê}
17: Augment dataset: Ψ← Ψ ∪ {vR}
18: end for
19: C ← LrnS(Φ) {Supervised learning}
20: W ← LrnR(Θ,Ψ,W ) {Relational learning}
21: end while

search. The input includes a domain description, a problem
description specified by reward function R, and parameter
N for batch-based learning. Implementing PERIL systems
requires software tools for relational learning (LrnR) and
supervised learning (LrnS), as well as MLN and POMDP
systems (SolR and SolP ). Lines 1-2 are for initialization,
where Φ and Ψ are for storing data for supervised learning
and relational learning respectively.

There are three loops in PERIL. Each iteration of the outer
while loop (Lines 4-21) corresponds to one batch where su-
pervised learning and relational learning are activated once
(Lines 19-20). The nested for-loop (Lines 5-18) includes
N iterations – each corresponding to a sequence of percep-
tual reasoning (Lines 5-9), interaction (Lines 10-14), and
data augmentation (Lines 15-17). In perceptual reasoning,
the agent infers the query variables Q, using the logical
weighted rules (Θ, W ), and the direct observations (f ) or
the estimated observations (e) from the world (Lines 6-8).
Using the union of inferred Q and V , PERIL builds the ini-
tial prior belief b (Line 9), where the posterior is calculated
in the inner interaction while-loop (Lines 10-14). Once the
interaction loop is done, two datasets are augmented with
the newly collected data instances. The inner while loop
(Lines 10-14) corresponds to one episode, where the agent
takes one action a, makes an observation z, and updates

(a) Cooperative (b) Not cooperative

Figure 3: Two lane merging situations in CARLA-based
simulation. (a) The vehicle on the left is cooperative and
yields the right of way. (b) The vehicle on the left is not
cooperative

belief b. The actions in this loop are suggested by policy π
calculated by SolP . PERIL is a lifelong learning algorithm
for SDM, and does not have a termination condition.

PERIL agents learn from interaction experience to improve
their capabilities of reasoning with contextual knowledge
from people, and planning under uncertainty. To the best of
our knowledge, no existing algorithm supports this “learn-
ing to reason and plan” capability. Next, we describe a full
instantiation of PERIL, as applied to an urban driving do-
main.

6 INSTANTIATION

We use CARLA, an open-source autonomous driving simu-
lation platform, to illustrate a realization of PERIL [Doso-
vitskiy et al., 2017]. A CARLA environment consists of
3D models of vehicles, traffic signs, buildings, and pedestri-
ans. Figure 3 shows two example lane-merging situations.
Next, we provide technical details of each component of our
PERIL framework.

CNNs for Perception C is our classifier that takes as
input raw sensory data (3D Lidar sensory readings in our
case), and outputs the road condition. We use CNN to build
classifier C, and to process streaming data λ from Lidar
sensors. Figure 4 shows how C is constructed in our instan-
tiation. The 3D sensory readings are first projected to 2D
space. Then the road area is cropped out to generate a 2D
image, which is fed into CNNs for classification. The output
of classifier C is saved in variable CarsDetected (true
or false). In our domain, E includes only one element:
E = {CarsDetected}.

MLNs for Logical Probabilistic Reasoning We use
MLN for logical probabilistic reasoning, and relational
learning. Our MLN-based reasoner includes five vari-
ables: Weather, Time, Crowded, CarsDetected, and
Cooperative. Among them, Weather and Time are fact
variables: F = {Weather, T ime}. The weather can
be Sunny or Rainy, and the time is either Busy or
Normal, which is used for reasoning about traffic con-
dition. Crowded and Cooperative are query variables:
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3D Lidar perception 2D Lidar perception CNN modelCropped and greyscaled

Figure 4: An overview of the perception component where the vehicle receives raw data from the Lidar sensor. The sensory
readings are projected to 2D space, and converged into an image. Finally, a CNN outputs if the desired lane is sensed
crowded.

Q = {Crowded,Cooperative}. H = ∅. There is one ev-
idence variable E = {CarsDetected}. Other drivers’ be-
haviors are simplified to a binary variable of Cooperative
with a domain of true or false. An MLN program includes
a set of first-order logical statements, where each is asso-
ciated with a weight. We use MLN to build our logical
probabilistic reasoner SolR and relational learning system
LrnR. First-order logic rules Θ form the declarative domain
knowledge base. For instance, the following rule

Time(+t,s)→ Crowded(+c,s)

indicates that the time implies the crowdedness of the road.
If it is at busy time, it is likely the road is crowded. If it is at
normal time, it is more likely that the road is not crowded.
The second rule

Crowded(+c,s)→ CarsDetected(+d,s)

states that, when the road is crowded, it is more likely that
the ego vehicle can detect surrounding cars. The third rule

Weather(+w,s) ∧ Crowded(+c,s)→ *Cooperative(s)

states that the weather condition and the road crowdedness
affects the surrounding vehicles (drivers) being cooperative
or not. For example, rainy weather (e.g., affecting drivers’
visibility) and crowded roads might cause the drivers to be
less cooperative. All rules Θ are associated with weights.
During weight (relational) learning, each rule is converted to
conjunctive normal form, and a weight is learned for each of
its clauses. It should be noted that those are “commonsense”
rules that are normally correct but not always. MLNs are
well suited for learning to reason with those rules. We then
use the input of H ,E and F to infer the value of Query
variables Q from MLN.

POMDPs for Planning under Uncertainty We use
POMDPs to construct a probabilistic planner for active
information gathering, and goal achievement. S : Q ×
V ∪ {term} is the state space, where term is a ter-
minal state that identifies the end of an episode. V =
{RoomAvailable}. RoomAvailable = true means that

there is room available in the desired lane for the ego vehi-
cle’s lane merging behavior. We consider three behaviors in
our action space: A = {signal, move, merge}, where we
assume the vehicle can only merge to one side of the road
(say left). signal means that the vehicle uses turn signal to
indicate its intention to merge. move means that the vehi-
cle adjusts its position to get prepared for lane changing,
which is also useful for communicating its intention to the
other drivers. Intuitively, after the vehicle is confident that
there is room in the desired lane, and the other drivers are
cooperative, the vehicle should take the merge action.

We use transition function T (s, a, s′) = Pr(s′|s, a) to
model how action a leads the transition from s to s′. Ac-
tions except formerge have different costs (a small negative
value). Action merge causes either a big reward or a big
penalty (a big negative value), depending on the road con-
dition (values of Cooperative, and RoomAvailable). For
instance, if Cooperative = false or RoomAvailable =
false, action merge will result in a big penalty. Action
costs, success reward, and failure penalty are modeled in
reward function R(s, a).

The observation set is Z : {true, false, na}. We use the
observation function O(s, a, z) = Pr(z|s, a) to describe
the perception model of the vehicle. For instance, when
Cooperative = true, there is 0.7 probability that the vehi-
cle observe true (the other drivers are cooperative).

7 ILLUSTRATIVE EXAMPLE

Figure 5 shows an example trial. The vehicle first collected
a “fact” that it was a rainy day at a busy time. The vehicle
received streaming data, and the CNN classifier outputs
that CarsDetected = true, meaning that the left lane is
occupied by at least one vehicle. Reasoning with contextual
knowledge about weather and time, our vehicle believed that
it was likely the road was crowded and the other drivers were
less cooperative. The ego vehicle then used our MLN-based
reasoner to perform probabilistic inference, and found that
Pr(Crowded = true) = 0.995, and Pr(Cooperative =
false) = 0.970. Those probabilities were used to initialize
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Agent Perceives 
and directly 
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Variable Fact
Time Busy
Weather Rainy
Perception Crowded

Infer on latent 
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Latent Variables Value Probability

Congestion
Empty 0.005
Not Empty 0.995

Behavior
Cooperative 0.03
Not cooperative 0.97

Action Observation
left signal negative
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(Streaming Data) Facts of Time and Weather

Figure 5: An illustrative example trial of PERIL.

the POMDP belief b. With the initial belief of the current
state and sequential observations, the ego vehicle repeatedly
selected actions as shown in Figure 6. After two signal and
two move actions, the ego vehicle successfully completed a
merging lane task.

8 EXPERIMENTS

We have conducted experiments using the CARLA simu-
lator to evaluate the key hypothesis that learning to reason
about domain knowledge improves the agent’s performance
within the sequential decision-making context. We have
compared PERIL with the following baselines. LCORPP
is a baseline method that uses supervised learning for per-
ception, and automated reasoning to guide a probabilistic
planner [Amiri et al., 2020]. LCORPP’s knowledge base is
hardcoded, so it cannot learn to reason about knowledge.
PERIL w/o POMDP is the same as PERIL except that the
action policy is manually crafted: the vehicle takes up to two
signal actions (depending on the confidence on state esti-
mation), then a move action, and merge. POMDP-LC is
a classic POMDP-based approach for planning lane chang-
ing behaviors [Ulbrich and Maurer, 2013], which includes
neither supervised learning nor relational learning.

Experiment Setup In each trial, we first spawn our ego
vehicle, which is tasked to merge to the left lane. We set the
range of Lidar sensor to 20m. We sequentially spawn M
vehicles on the left lane (0 ≤M ≤ 8 in our case) within an
area of radius = 20m around the ego vehicle. If a vehicle
has any contact with an existing one, then this vehicle is
moved and re-spawned. We annotated the Lidar sensory
data: if there exist two vehicles in the left lane that are at
most 10m away from each other, then a Lidar instance is

labeled true, i.e., CarsDetected = true. Otherwise, the
label is false. Fact variables Time and Weather were
sampled uniformly. Crowded and Cooperative were sam-
pled using the Markov network of our MLN program. For
instance, if Time = normal, then there is probability 0.7
that Crowded = true. We have added perception noise
into the observation model. For instance, the vehicle’s ob-
servation is correct in 0.7 probability. The costs of signal
and move actions are 10s and 15s respectively. Success-
ful and unsuccessful trials receive 100 and −100 reward
respectively.

We used Alchemy for MLN-based relational learning and
logical probabilistic reasoning.1 POMDPs were solved us-
ing an off-the-shelf solver [Kurniawati et al., 2008]. We
used PyTorch [Paszke et al., 2019] for training the CNNs.

Experimental Results Every data point in our figures is
an average of 4,000 trials, evenly distributed into 5 runs. We
evaluated the mean values of the 5 runs for each data point,
and used the 5 mean values to generate the standard errors.

Figure 7 shows the results of comparing PERIL with three
baseline methods. We see that PERIL achieved the high-
est cumulative reward on average, and required the lowest
interaction cost on average. The LCORPP baseline pro-
duced the second best performance in both reward and cost,
which indicates the usefulness of perceptual reasoning. In
a stochastic world, LCORPP cannot learn how likely the
handcrafted rules are correct while with perceptual reason-
ing, PERIL can learn weights associated with such rules for
better reasoning. Specifically, PERIL uses MLN to learn to
reason about contextual knowledge, which contributes to
the best performance among the four methods. All meth-
ods produced an average success rate between 0.87 to 0.89,
where we did not observe statistically significant differences
among the methods. A successful merge is when the ego
vehicle merges left in the presence of enough room and
vehicle cooperation. An unsuccessful merge in our setup
functions like a risky situation in practice, and does not in-
dicate a collision, because autonomous vehicles (or human
drivers) have collision-avoidance mechanisms, which are
not considered in our experiments. Results here support our
key hypothesis that PERIL outperforms baseline methods
with higher rewards and lower costs.

Table 1 shows the performances of PERIL and baselines un-
der low and high perception capabilities. Low (high) percep-
tion quality corresponds to a POMDP observation function,
where the vehicle can correctly perceive “crowdedness” in
0.7 (0.9) probability. Our hypothesis is that PERIL’s superi-
ority over the other methods is not affected by the vehicle’s
perception system. The results suggest that PERIL signifi-
cantly outperformed the baselines at 0.05 significance level.

1https://alchemy.cs.washington.edu/
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Figure 6: The ego vehicle took a sequence of actions in the interaction process to successfully merge left. (a) The ego vehicle
intended to merge left. It turned on the left signal. (b) The surrounding vehicle on the left was not cooperative at first. The
ego vehicle kept left blinking. (c) The surrounding vehicle on the left became cooperative, and the ego vehicle started to
move left. (d) The ego vehicle kept moving left and found room in the left lane. (e) The ego vehicle successfully merged left.

PERIL (Ours)
LCORPP

PERIL w/o POMDP

POMDP-LC
15

20

25

30

35

40

45

Re
wa

rd

PERIL (Ours)
LCORPP

PERIL w/o POMDP

POMDP-LC
25

30

35

40

45

Co
st

Figure 7: PERIL performed better than the baselines in both
overall reward, and interaction cost.

Ablation Study We did an ablation study to evaluate the
importance of the two learning components in PERIL (su-
pervised learning and relational learning). The results are
shown in Figure 8. Our first observation is that PERIL per-
formed better than its two ablations in both overall reward,
and interaction cost, except for the very early learning phase.
Another observation is that relational learning plays an im-
portant role in the PERIL system. When relational learning
was disabled, there was significant increase in interaction
cost, in comparison to the ablation with supervised learning
removed. This is potentially because the MLN-based rea-
soner can learn to “compensate” for the missing perception
component.

9 CONCLUSION AND FUTURE WORK

In this work, we develop an algorithm called PERIL that
learns to reason with contextual knowledge for sequen-
tial decision-making. PERIL uses convolutional neural net-
works for perception, Markov logic networks for reason-
ing, and partially observable Markov decision processes
for planning under uncertainty. We have extensively evalu-

Table 1: The performances of PERIL and baselines in re-
ward and cost under different perception qualities. PERIL
performed the best in both reward and cost with statistically
significant improvement, as indicated using italic font.

Algorithm
Perception quality

Low High
Reward Cost Reward Cost

PERIL 46.5 (0.5) 28.7 (0.3) 64.1 (0.7) 27.1 (0.3)
LCORPP 43.5 (1.0) 34.1 (0.3) 62.4 (0.4) 31.0 (0.2)

PERIL w/o POMDP 20.9 (0.9) 45.0 (0.0) 20.2 (1.0) 45.0 (0.0)
POMDP-LC 40.2 (0.8) 39.7 (0.1) 62.4 (0.4) 32.3 (0.2)
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Figure 8: PERIL performed better than its two ablative
versions as more data instances were provided for training.

ated PERIL in urban driving scenarios. Results suggest that
PERIL outperformed competitive baselines, as well as its
own ablations, in both overall reward and interaction cost.

Currently, the vehicle learns to perceive the environment
(road condition) from data, and learns to improve its reason-
ing capability using MLN. One direction of future work is
to replace the POMDP-based planner with a reinforcement
learning component. By doing that, the vehicle will be able
to learn to select actions from its task-completion experi-
ence. Another direction is to actively acquire knowledge
from people [Amiri et al., 2019], commonsense knowledge
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bases [Speer et al., 2017], or pre-trained models [Brown
et al., 2020] to avoid hand-coding rules.

The experimental setting focuses only on a small subset
problem of autonomous driving and certain set-ups are sim-
plified, due to the limitation of time and resources. To further
verify the scalability of PERIL in solving real-world com-
plicated autonomous driving problems, the data collection
in autonomous driving (or other multiagent, interactive) do-
mains could be expensive, time-consuming, and sometimes
risky, which is far beyond the scope of this paper. But this
is definitely something PERIL (ours) practitioners should
consider. We will consider applying PERIL to other non-
driving domains and incorporating robot control into the
loop in the future.
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